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Homotopy Theory and Generalized Duality

for Spectral Sheaves
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We would like to express our sadness at the passing of Robert Thomason whose ideas have had a

lasting impact on our work. The mathematical community is sorely impoverished by the loss. We

dedicate this paper to his memory.

1 Introduction

In this paper we announce a Verdier-type duality theorem for sheaves of spectra on a

topological space X. Along the way we are led to develop the homotopy theory and stable

homotopy theory of spectral sheaves. Such theories have been worked out in the past,

most notably by [Br], [BG], [T], and [J]. But for our purposes these theories are inappropri-

ate. They also have not been developed as fully as they are here. The previous authors did

not have at their disposal the especially good categories of spectra constructed in [EKM],

which allow one to do all of homological algebra in the category of spectra. Because we

want to work in one of these categories of spectra, we are led to consider sheaves of

spaces (as opposed to simplicial sets), and this gives rise to some additional technical

difficulties.

As an application we compute an example from geometric topology of stratified

spaces. In future work we intend to apply our theory to equivariant K-theory.

2 Spectral sheaves

There are numerous categories of spectra in existence and our theory can be developed

in a number of them.
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Thus, let Sp be any one of the following categories:

(1) The category of spectra as constructed by [LMS].

(2) The category of S-module spectra of [EKM].

(3) The category of A-module spectra where A is an S-algebra spectrum [EKM].

(4) The category of commutative A-module spectra where A is a commutative

S-algebra spectrum [EKM].

Each of these categories has a closed model category structure described in the

works cited above and we will make use of these when we need to.

Let X be a topological space. Let PSp(X) be the category of presheaves of spectra

from Sp.

Definition 2.1. A presheaf F is called a sheaf if and only if the following diagram is an

equalizer:

Γ (U, F) →
∏

α

Γ (Uα,F) ⇒
∏

α0,α1

Γ (Uα0 ∩ Uα1 ,F)

for any open set U in X and open cover {Uα} of U. We let Sp(X) denote the category of

sheaves on X of spectra from Sp.

The next proposition describes the relationship between the category of sheaves

and presheaves.

Proposition 2.1. The forgetful functor l: Sp(X) → PSp(X) has a left adjoint

a: PSp(X) → Sp(X).

The functor a is called the sheafification functor. The proof that a exists is more

involved than in the classical case of abelian sheaves. Instead of a two pass procedure

as in Artin [Ar], it is accomplished with a transfinite number of passes, similarly to

the spectrification functor in [LMS], Appendix. As usual, when doing a construction on

sheaves that takes you out of the category of sheaves, one performs the sheafification

functor to force one back.

For F ∈ PSp(X) and x ∈ X the stalk Fx is defined as usual by Fx ≡ co limU%x Γ (U, F)

where the colimit is taken in Sp. Similarly the homotopy stalk is defined by hoFx =
hoco limU%x Γ (U, F). Since sequential colimits and homotopy groups do not commute in

general, there is indeed a difference between the stalk and the homotopy stalk. For two

presheaves F,G ∈ PSp(X), define a presheaf F ∧P G by

Γ (U, F ∧P G) = Γ (U, F) ∧ Γ (U, G).
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Here the smash product of spectra is to be taken in the appropriate category. Thus for

example, if we are dealing with sheaves of A-module spectra (A a commutative S-algebra

spectrum in the sense of [EKM]), then ∧ means ∧A. If F,G ∈ Sp(X) are sheaves, then we

denote by F ∧ G the sheafification of F ∧P G.

For two presheaves F,G ∈ PSp(X) (or sheaves) define Hom(F,G) by the requirement

that the following diagram is an equalizer:

Γ (U, Hom(F,G)) →
∏

V⊆U

F(Γ (V,F), Γ (V,G))
f

⇒
g

∏

W⊆V⊆U

F(Γ (U, F), Γ (W,G)).

Here f is induced by the restriction map r: Γ (U, F) → Γ (V,F) and g is induced by the

restriction r: Γ (V,G) → Γ (W,G) and F denotes the function spectra between two spectra (in

the appropriate category, as per the remarks above). Notice that if F and G are sheaves,

then so is Hom(F,G).

Proposition 2.2. (1) Let F,G,H ∈ PSp(X). Then one has

Hom(F ∧P G,H) ∼= Hom(F,Hom(G,H)).

(2) If F,G,H ∈ Sp(X), then one has

Hom(F ∧ G,H) ∼= Hom(F,Hom(G,H)).

Thus the functor · ∧P G (and · ∧ G ) is left adjoint to Hom(G, ·) in the category PSp(X) or

(Sp(X) resp.).

Corollary 2.3. If Sp denotes either category (2) or (4), then categories PSp(X) and Sp(X)

are symmetric monoidal categories.

Limits and colimits in the category of presheaves are created sectionwise. Limits

in the category of sheaves are created at the presheaf level and colimits are obtained

from the presheaf colimits by application of the sheafification functor. Thus we have the

following proposition.

Proposition 2.4. The categories PSp(X) and Sp(X) are complete and cocomplete.

Given f: X → Y a continuous map between topological spaces, we construct the

various functors usually associated with such a map:

(1) f∗: Sp(X) → Sp(Y) direct image,

(2) f−1: Sp(Y) → Sp(X) inverse image,

(3) f!: Sp(X) → Sp(Y) direct image with proper supports, (when X and Y are locally

compact).
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The constructions of these functors are not so different from their classical coun-

terparts. We sketch only the construction of f!. Let f: X → Y be a continuous map between

locally compact spaces. Let U ⊆ Y and V ⊆ f−1(U), U open and V closed in X. We say V

is U-relatively compact if the map f: V → U is proper. Let F ∈ Sp(X). Define the functor,

ΓV (U, F), of sections with supports in V as the fiber

ΓV (U, F) → Γ (U, F)
rU,U\V
−−−→ Γ (U\V,F).

(Note however that the restriction map need not be a (q)-fibration.) It is clear that for

a closed set V ′ ⊆ V one has a map ΓV ′ (U, F) → ΓV (U, F) and this map is a (spacewise)

inclusion. Now define f!: Sp(X) → Sp(Y) by

Γ (U, f!F) = co lim
V ′

ΓV ′ (f−1(U),F)

where U ⊆ Y and the colimit is taken over all U-relatively compact subsets V ′ ⊆ f−1(U).

Then, in fact, f!F is a sheaf. A particularly important example of pushforward with proper

support is the pushforward with proper supports of a sheaf F on an open subset U ⊆ X to

X which we denote by FU. More concretely, Γ (W,FU) ≡ Γ (W,F) if W ⊆ U and is the trivial

spectrum if no connected component of W sits inside U.

We summarize the properties of these functors in the following proposition.

Proposition 2.5. Let f: X → Y be a continuous map between topological spaces, F,G,H ∈
Sp(X). Then

(1) f−1: Sp(Y) → Sp(X) is left adjoint to f∗: Sp(X) → Sp(Y).

(2) There are natural isomorphisms f∗Hom(f−1F,G) ∼= Hom(F, f∗G).

(3) (fg)−1 = g−1f−1.

(4) (fg)∗ = f∗g∗.

(5) (fg)! = f!g!.

3 Homotopy theory of sheaves and presheaves

In this section we study the homotopy theory of the category of presheaves and sheaves.

3.1 Presheaves

Let F ∈ PSp(X). The presheaf π̃.(F) of graded abelian groups on X is defined by Γ (U, π̃.(F)) =
π̃.(Γ (U, F)) for U open in X and we will call it the homotopy presheaf of F. Similarly, if

F ∈ Sp(X) define the homotopy sheaf of F to be the sheafification of π̃.(F), and denote it by

π.(F).
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A map f: F → G in PSp(X) is called a weak equivalence if the induced map

f: π̃.(F) → π̃.(G) is an isomorphism of presheaves. And a map f: F → G in Sp(X) is a

weak equivalence if the induced map on π.(F) → π.(G) is an isomorphism of sheaves, or

equivalently, it induces a weak equivalence on homotopy stalks. Consider the constant

sheaf with stalks isomorphic to Σ∞(I+) where I+ denotes the unit interval plus a base

point and Σ∞ denotes the associated suspension spectrum. We will denote this sheaf

by I+.

Let F,G ∈ Sp(X). A homotopy in Sp(X) is a map ϕ: F∧ I+ → G. The maps f and g are

called homotopic if there is a homotopy connecting them in the usual manner. It is easy

to see that this determines an equivalence relation on maps in Sp(X). At this point, we

will need to use the closed model category structure on Sp. Thus if we are working in the

category of S-module spectra of [EKM], then a q-fibration is a map of S-module spectra

f: E → F such that the diagonal arrow exists in any diagram of the form

CSn ∧ {0}+ → E

↓ ↗ ↓
CSn ∧ I+ → F.

We will preserve the q-terminology of [EKM], reserving the words fibration and cofibra-

tion to mean the classical concepts, namely, maps satisfying the homotopy lifting and

extension properties respectively. A map f: E → F in PSp(X) is called a q-fibration if

and only if for any two open sets V ⊆ U ⊆ X the map Γ (U, E) → Γ (U, F) ×Γ (V,F) Γ (V,E) is a

q-fibration in Sp. A map G → H is called a q-cofibration if it has the left lifting property

with respect to all acyclic fibrations. That is, any diagram of the form, where E → F is

an acyclic fibration,

G → E

↓ ↓
H → F

admits a lifting H → E.

Theorem 3.1. The category PSp(X) with these notions of weak equivalences, q-cofibra-

tions, and q-fibrations forms a closed model category.

It is important to have on hand a large supply of q-cofibrations. To that end,

we say that a map f: F → G in PSp(X) represents G as an F-relative cell presheaf if

G = co lim Fn where F0 = F and Fn is obtained from Fn−1 as the pushout of a sum of

attaching maps (Sq
U∨S

q
V
CS

q
V ) → Fn along the coproduct of the natural maps (Sq

U∨S
q
V
CS

q
V ) →

CS
q
U and where V ⊆ U ⊆ X are open sets and S

q
U denotes the pushforward with proper

supports of the constant sheaf on U with stalk Sq and CF denotes the cone of F. Such
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a map is a q-cofibration. This also gives meaning to a cell presheaf. Thus a cell (ep,∂ep)

is a pair of presheaves (CS
p−1
U , S

p−1
U ∨

S
p−1
V

CS
p−1
V ). Unlike the case of topological spaces or

spectra, the cell ep = CS
p−1
U does not determine its boundary S

p−1
U ∨

S
p−1
V

CS
p−1
V so we have

to incorporate it into the definition of a cell. In the proof of the next proposition, the

following formula for the smash product of two cells is useful: For two cells (ep,∂ep) and

(eq,∂eq), (ep ∧ eq, ep ∧ ∂eq ∪ ∂ep ∧ eq) ∼= (ep+q,∂ep+q) where

∂ep+q = S
p+q−1
U∩U′ ∨

S
p+q−1
(V∩U′)∪(V ′∩U)

CS
p+q−1
(V∩U′)∪(V ′∩U).

So the smash product of two cells is again a cell.

Propostition 3.2. Let F,G ∈ PSp(X) be cell presheaves. Then F ∧ G is also a cell presheaf

with the sequential filtration (F ∧ G)n =
⋃

p+q=n(Fp ∧ Gq), n ≥ 0.

We can refine Theorem 3.1 using the notion of topological closed model category.

Theorem 3.3. The category PSp(X) has the structure of a topological closed model cat-

egory.

At this point we introduce the homotopy category hoPSp(X). It is a triangulated

category. Recall that a localizing subcategory D in a triangulated category C is a full

subcategory of C closed under the formation of arbitrary coproducts and such that if

any two members of a distinguished triangle belong to D, then so does the third. It is

clear that the only localizing subcategory of hoPSp(X) containing the collection {SU}U⊆X in

hoPSp(X) is hoPSp(X) itself. Indeed, using the operations of taking the homotopy cofiber

and coproducts, one can build up any cell and then one can approximate any presheaf

by a cell presheaf. It is also clear that the objects SU are small, that is for any collection

of presheaves {Fi}, the following equality holds in hoPSp(X):
[
SU,

∐
Fi

]
=

∐

i

[SU,Fi] .

As usual, [F,G] means homotopy classes of maps, that is, Hom in the homotopy cate-

gory. The category hoPSp(X) inherits the structure of a symmetric monoidal category

from PSp(X). The functors smash product and internal Hom are exact because they are

sectionwise exact. Summarizing, we get the following theorem.

Theorem 3.4. The category hoPSp(X) is a triangulated category generated by the sheaves

SU with a symmetric monoidal structure compatible with the triangulation (in the sense

of [HPS]) in which coproducts of arbitrary families exist. Furthermore, every cohomology

functor on hoPSp(X) is representable.
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In other words, the category hoPSp(X) is almost a stable homotopy category in

the sense of [HPS] except that it does not have a set of strongly dualizable generators.

The main thing to check is the representability of cohomology functors. And this follows

from the standard proof, [HPS], which only uses the smallness of the generators SU and

not strong dualizabililty.

3.2 Sheaves

We now turn to the category Sp(X) which is of primary interest to us. We already have the

notion of weak equivalence in Sp(X). Say that a map f: F → G in Sp(X) is a q-fibration if it is

one in the category PSp(X). Say that a map in Sp(X) is a q-cofibration if it has the left lifting

property (LLP) with respect to all acyclic q-fibrations in Sp(X). The notion of relative cell

sheaf and cell sheaf is inherited from the category of presheaves by sheafification. A q-

fibrant sheaf will also be called flabby. We cannot hope that Sp(X) will be a closed model

category without any assumptions on the space X. To that end we propose to consider two

essentially different types of spaces for which the category of sheaves will be a closed

model category.

(1) X is locally compact and any point of X has a neighborhood embeddable into

Rn (for some n, which can depend on the point of X). We call such spaces

locally embeddable. If X embeds in Rn, we call X embeddable.

(2) X is a locally Noetherian topological space of locally finite Krull dimension.

Theorem 3.5. For a space X of one of the two types above, the category Sp(X) is a topo-

logical closed model category.

To avoid notational quagmires, we will deal from now on with the situation of a

space X locally embeddable in Rn. Recall that we have an adjoint pair of functors

PSp(X)
a

"
l

Sp(X)

between the categories of sheaves and presheaves. By definition, l preserves q-fibrations.

It also preserves acyclic q-fibrations. This formally implies that l is left exact and a is

right exact in the sense of Quillen, [Q], that is l preserves weak equivalences between

fibrant objects and a preserves weak equivalences between cofibrant objects. Further-

more it implies that the total derived functors (see the next section for a discussion of

derived functors) La: hoPSp(X) → hoSp(X) and Rl: hoSp(X) → hoPSp(X) exist and form

an adjoint pair of functors. Thus to obtain a homotopically invariant sheafification of a

presheaf, one must first replace it by a cofibrant presheaf (e.g., a cell presheaf). Recall the

notion of a (Bousfield) localization functor, [HPS], which is a pair (L, ι) of an endofunctor
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L: hoPSp(X) → hoPSp(X) and a natural transformation ι: Id → L such that

(1) the natural transformation Li: L → L2 is an equivalence,

(2) for all objects F,G the map [LF, LG] → [F, LG] is an isomorphism, and

(3) if LF = 0, then L(F ∧ G) = 0 for all G.

Proposition 3.6. The functor Rl◦La considered as an endofunctor of hoPSp(X) is a Bous-

field localization. The subcategory of local objects with respect to Rl ◦ La is hoSp(X) and

the category of Rl ◦ La-acyclic objects will be the subcategory of presheaves with trivial

homotopy stalks.

The following proposition is an easy consequence of the definition of a localiza-

tion functor and the fact that Brown representability holds in hoPSp(X).

Proposition. In hoSp(X), any cohomology functor is representable.

4 Derived functors

In this paragraph we will show how to derive the natural functors on sheaves that were

considered in Section 2. Throughout the rest of this paper we will assume X is locally

embeddable in Rn, though the results still hold for finite Krull dimension Noetherian

spaces. We will call a functor F: C → D from a closed model category C to another

category D left (resp. right) exact if it takes weak equivalences between fibrant (resp.

cofibrant) objects into isomorphisms in D. For the functor F to have a right (resp. left)

derived functor RF: hoC → D (and resp. LF: hoC → D), it is sufficient it be left (resp. right)

exact. In that case the derived functor is formed in the following manner. For F ∈ C, find

a weak equivalence F → I (resp. P → F ) where I is a fibrant object (resp. P is cofibrant)

and define RF(F) = F(I) (resp. LF(F) = F(P)).

Proposition 4.1. Let X1 and X2 be topological spaces and f: X1 → X2 a continuous map.

Then the functor f−1: Sp(X2) → Sp(X1) admits a left derived functor Lf−1: hoSp(X2) →
hoSp(X1). The functor f∗: Sp(X1) → Sp(X2) admits a right derived functor Rf∗: hoSp(X1) →
hoSp(X2). Moreover, the functors Lf−1 and Rf∗ are adjoint.

Corollary 4.2. The functors of taking the stalk at a point x ∈ X, F → Fx and the global

sections functor F → Γ (X,F) are right and left exact respectively. We can thus derive

these functors to get LFx: hoSp(X) → hoSp and RΓ (X,F): hoSp(X) → hoSp.

We denote RΓ (X,F) by H(X,F) and Hi(X,F) = π−i(H(X,F)). To get a derived stalk

functor, one first approximates the given sheaf by a cofibrant one (e.g., a cell sheaf) and

takes the stalk at the given point. At first, it may appear odd to derive the stalk functor,
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since classically, exactness is defined in terms of stalks. In the context of ordinary sheaves

or simplicial sheaves as in [Br] or [J], this derived functor never appears since the stalk

functor is exact. Now recall that the homotopy stalk F at x is defined as hoco limx∈U Γ (U, F).

It is not clear that for a cell sheaf the homotopy stalk and the actual stalk are weakly

equivalent. Nevertheless, this is in fact true.

Proposition 4.3. The functor f!: Sp(X1) → Sp(X2) is left exact and therefore there exists

a right derived functor Rf!: hoSp(X1) → hoSp(X2).

Proposition 4.4. Suppose that Sp is either (2) or (4). Then the functor ∧: Sp(X) ×Sp(X) →
Sp(X) is right exact in either of its two variables. Therefore, there exists a left derived

functor
L
∧: hoSp(X) × hoSp(X) → hoSp(X) .

Proposition 4.5. Let I ∈ Sp(X) be a flabby sheaf or P ∈ Sp(X) a cell or more generally a

q-cofibrant sheaf. Then the functors Hom(P, ·) and [P, ·] are left exact and Hom(·, I) and

[·, I] are right exact. Thus, Hom and [·, ·] can be derived by resolving the first variable by

cell sheaves and the second variable by flabby ones.

In nature we often see presheaves of spectra (or spaces), not sheaves. (This is

probably one of the reasons that topological sheaves have not been studied systematically

until now.) It is convenient to extend the class of fibrant sheaves allowing certain types

of presheaves which are suitable for forming fibrant resolutions.

Definition 4.1. A presheaf P ∈ X is called quasiflabby if the following diagram is a

homotopy equalizer:

Γ (U, P) →
∏

α

Γ (Uα,P) ⇒
∏

α0,α1

Γ (Uα0 ∩ Uα1 ,P)

for any open set U in X and open cover {Uα} of U.

Remark. In the context of schemes this notion of a quasiflabby sheaf was introduced

by Brown and Gersten, [BG] who called it pseudoflasque.

Proposition 4.6. The homotopy invariant sheafification of a quasiflabby presheaf P is

sectionwise weakly equivalent (i.e., in the category hoPSp(X)) to the presheaf P.

The proof is essentially the same as in [BG].

Theorem 4.7. Let X be a locally compact embeddable space. For E ∈ Sp(X), there is a

strongly convergent local to global spectral sequence

E
pq
2 = Hp(X,πq(E)) ⇒ πq−pH(X,E).



992 Jonathan Block and Andrey Lazarev

The differentials are of bidegree (r, r−1). The spectral sequence respects all the structure

of Sp. For example, if E is a sheaf of ring spectra, then the spectral sequence is a spectral

sequence of algebras.

The proof of the theorem follows the pattern of Brown and Gersten, [BG], by filter-

ing the sheaf E by Postnikov stages. Since we consider general (possibly non-connective)

spectra, their Postnikov towers may be infinite in both directions and special care must

be taken to ensure the proper behavior of the direct limit.

5 Duality

We now take up the discussion of duality in the category Sp(X) or, more properly, in

its homotopy category hoSp(X). Here we will assume we are working in the category (3)

of A-module spectra where A is an S-algebra spectrum [EKM], and we will denote this

category SpA(X) to emphasize the presence of A. Let X and Y be two locally compact,

locally embeddable spaces.

Theorem 5.1. Let f: X → Y . In the category hoSpA(X), the functor Rf! has a right adjoint

f!: hoSpA(Y) → hoSpA(X). In addition, if A is a commutative S-algebra spectrum, then

RHom( Rf!F,G) ∼= Rf∗RHom(F, f!G) in hoSpA(Y).

The existence of f! is equivalent to the representability of the functor F 5−→
Hom(Rf!F,G) for any G ∈ hoSpA(Y). Since in hoSpA(Y) any cohomology functor is repre-

sentable, it follows from the fact that Rf! respects coproducts. The idea of using Brown

representability to derive duality results can be found in [N].

For f: X → pt. denote also by A the constant sheaf f−1A and by DA = f!A and is

called the dualizing sheaf of X over A. For any sheaf F ∈ SpA(X) we define its dual DAF to

be the sheaf Hom(F, DA). (Notice our abuse of notation in using DA for both the dualizing

sheaf and the dualizing operator.)

Proposition 5.2. Let X be locally contractible in the sense that any point x ∈ X has

a fundamental system of contractible neighborhoods. Then the following isomorphism

holds in the category of spectra

RΓ (X,A) = F(Σ∞U+, A).

In particular, H·(X,A) = A·(X), the generalized cohomology of X.

We now give a more concrete description of the sheaf DA.

Proposition 5.3. In the category hoSpA(X), the dualizing sheaf DA is isomorphic to the

sheafification of the presheaf U 5−→ FA(RΓc(U,A), A).



Homotopy Theory and Generalized Duality for Spectral Sheaves 993

Theorem 5.4. Let X be a compact manifold of dimension n, A an S-algebra spectrum.

Suppose that X has a fundamental class with respect to the generalized cohomology

theory determined by A. Then the dualizing sheaf is isomorphic to ΣnA the nth suspension

of the constant sheaf A.

5.1 Duality on stratified spaces

Let X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X−1 = ∅ be a stratified space as in [B]. It is required that any

point x ∈ Xk\Xk−1 admit a neighborhood Ux = Bk×
◦
cL, where Bk is homeomorphic to a

k-dimensional ball and
◦
cL is an open cone on a stratified space of dimension n − k − 1.

We call such a neighborhood a distinguished neighborhood.

A sheaf F ∈ SpA(X) is called constructible if for any x ∈ Xk\Xk−1, there is a neigh-

borhood Ux ⊂ Xk\Xk−1 so that F|Ux is weakly equivalent to a constant sheaf whose stalk

is a finite cell A-module spectrum.

In some ways the subcategory of constructible sheaves is analogous to the sub-

category of strongly dualizable objects in a stable homotopy category: it inherits the tri-

angulated structure from the category hoSpA(X) and is closed under formation of internal

hom and smash products. However, constructible sheaves only have a weak dualizability

property which we will now explain.

Let us call an object F weakly dualizable (with respect to the dualizing sheaf)

if for any object the natural map F → DADAF is an isomorphism. Recall that there is a

notion of strong dualizability which implies weak dualizabilility (albeit wih respect to

the constant sphere sheaf).

Proposition 5.5. Let X be a stratifiable space and F ∈ hoSpA(X) and F is constructible.

Then F is weakly dualizable.

Proposition 5.6. Let X be a stratified space, DA the dualizing sheaf of X over A. Then DA

is constructible.

Corollary 5.7. We have an isomorphism DADA = A, that is, the constant sheaf is weakly

dualizable.

We see, thus, that Verdier duality is a perfect duality on the subcategory of con-

structible sheaves.

6 Čech cohomology and homology

In the category PSp(X), Čech cohomology works similarly as in the classical situation and

is based on the treatment in [T]. Let F ∈ PSp(X) and let U be a covering of X. We form the
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cosimplicial spectrum F·
U by

∏

α0

Γ (Uα0 ,F) →←→
∏

α0,α1

Γ (Uα0 ∩ Uα1 ,F)
→←→→←→

∏

α0,α1,α2

Γ (Uα0 ∩ Uα1 ∩ Uα2 ,F) · · · .

For a presheaf F and a cover U of X, we form the Čech cohomology of F on U as

Ȟ•(U,F) = holim∆F·
U

where the homotopy limit is formed over the simplicial category ∆.

If V is a refinement of U, then there is a map of spectra Ȟ•(V,F) → Ȟ•(U,F) and

this map is independent up to homotopy of the choice of the refinement map. For Uλ a

cofinal system of covers of X, let F· = hocolimλF
·
Uλ

the homotopy colimit of cosimplicial

spectra. Finally define the Čech cohomology of X with coefficients F as

Ȟ•(X, F) = holim∆F·.

Theorem 6.1. Let X be a locally compact, embeddable paracompact space. For F ∈
PSp(X) there is a weak equivalence between the Čech cohomology of F and the sheaf

cohomology of its sheafification, i.e. Ȟ•(X, F) ∼= H•(X, aF) in hoSp.

Up until now, we have not considered (pre)cosheaves of spectra; this is partly

because we do not think it likely that such a theory can be developed as completely as

the corresponding sheaf theory. So we merely content ourselves with Čech homology and

therefore concentrate on precosheaves of spectra. The definition of these Čech homology

groups is dual to the construction of the Čech cohomology as given above and can be found

in [Q1] or [W]. We show how they can be expressed in our language as sheaf cohomology

via duality. First, if C is a precosheaf of A-module spectra on a topological space X, where

A is an S-algebra then we can form a naive dual presheaf C′ by Γ (U, C′) = FA(Γ (U, C), A).

We can also define the naive dual of a presheaf (which is then a precosheaf) similarly in

which case C′′ is back to being a precosheaf and there is a map C → C′′.

Theorem 6.2. For X a paracompact locally compact locally embeddable space and C a

precosheaf of spectra, then the Čech homology of C,

Ȟ•(X,C)′′ ∼= H•(X, DA(aC′)).

(The ′′ indicates the double dual of the spectrum Ȟ•(X,C).) If C is constructible over A,

then one has

Ȟ•(X,C) ∼= H•(X, DAC′).
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7 Examples

In this section we describe some of the examples that motivated our study. Thus let X be

a stratified space. According to Weinberger [W], there is a precosheaf of spectra LBQon X

which fits into a surgery exact sequence as follows: p. 130: Let X be a PL stratified space.

Then under certain technical assumptions stated in the reference above there is a fibra-

tion for computing SPL(X) =(simple homotopy transverse simple homotopy equivalences

Y → X ) modulo PL homeomorphism

SPL(X) → H•(X, LBQ) → LBQ(X) × ⊕[Hi−4(Xi; Z/2) × Z].

Notice that the characteristic class data (namely the normal invariants) are ex-

pressed in homology rather than cohomology, as would be expected for a singular space.

According to the previous section and the following proposition, these homology

spectra can be described in terms of sheaf cohomology of the sheaf DL∗(e)LBQ′.

Proposition 7.1. The ring spectrum L∗(e) can be provided with the structure of an S-

algebra spectrum (or equivalently, an E∞ ring spectrum structure). Moreover, LBQ has

the structure of a precosheaf of L∗(e)-modules.

The proof is based upon the calculations in [TW] together with the knowledge

that BU and Eilenberg-MacLane spectra are E∞ ring spectra.

Finally, we mention the following pretty example of Verdier duality in a geometric

setting, which is alluded to in [W], Theorem 14.4.1. Here we see an example of where the

cosheaf might be quite complicated, yet its Verdier dual is much simpler.

Theorem 7.2. Suppose X is a stratified space such that the links of all strata are aspher-

ical manifolds for which the Borel conjecture is true(or more generally crigid stratified

spaces, in the terminology of [W]). Then DL∗(e)LBQ′ is weakly equivalent to the constant

sheaf L∗(e).

To see this, assume as in the theorem that the links of all strata are aspherical

manifolds for which the Borel conjecture is true. Then one knows for every strata S with

link LS that the assembly map L+
S ∧ L∗(e) → L∗(π1(LS)) is a weak equivalence. On the other

hand, the Verdier dual of the constant sheaf L∗(e) has stalk at x ∈ S equal to L+
S ∧ L∗(e)

which is then weakly equivalent to L∗(π1(LS)) which, by the construction of the cosheaf

LBQ, [W], is what its costalk is.
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