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Abstract

We descibe a dg-equivalence of dg-categories between Block’s PA, corresponding to the de
Rham dga A of a compact manifold M and the dg-category of ∞-local systems on M . We under-
stand this as a generalization of the Riemann-Hilbert correspondence to Z-graded connections
(superconnections in some formulations). An ∞-local system is an (∞, 1) functor between the
(∞, 1)-categories π∞M and the linear simplicial nerve of the dg-category of cochain complexes.
This theory makes crucial use of Igusa’s notion of higher holonomy transport for Z-graded con-
nections which is a derivative of Chen’s main idea of generalized holonomy. In the appendix we
describe the linear simplicial nerve construction.

1 Introduction and Summary

Given a compact manifold M, the classical Riemann-Hilbert correspondence gives an equivalence
of categories between Rep(π1(M)) and the category Loc(M) of local systems on M. While
beautiful, this correspondence has the primary drawback that it concerns the truncated object
π1, which in most cases contains only a small part of the data which comprises the homotopy
type of M. From the perspective of (smooth) homtopy theory the manifold M can be replaced by
its infinity-groupoid Sing∞• M := π∞M of smooth simplices. Considering the correct notion of
a representation of this object will allow us to produce an untruncated Riemann-Hilbert theory.
More specifically, we define an infinity local system to be a map of simplicial sets which to each
simplex of π∞M assigns a homotopy coherence in the category of chain complexes over R. Our
main theorem is a stable, tensor, dg-quasi-equivalence

RH : PA → Loc
C(R)(π∞M) (1)

Where, PA is the dg-category of graded bundles on M with flat Z-graded connection and
Loc

C(R)(π∞M) is the dg-category of infinity local systems on M.
The classical Riemann-Hilbert equivalence

Loc(M) → Rep(π1(M)) (2)

is proven by calculating the holonomy of a flat conection. The holonomy descends to a repre-
sentation of π1(M) as a result of the flatness. The other direction

Rep(π1(M)) → Loc(M) (3)

is acheived by the obvious associated bundle construction.
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In the first case our correspondence proceeds analogously by a calculation of the holonomy
of a flat Z-graded connection. The technology of iterated integrals suggests a precise and rather
natural notion of such holonomy. Given a vector bundle V over M with connection, the usual
parallel transport can be understood as a form of degree 0 on the path space PM taking values in
the bundle Hom(ev∗1V, ev

∗
0V ). The higher holonomy is then a string of forms of total degree 0 on

the path space of M taking values in the same bundle. Such a form can be integrated over cycles
in PM, and the flatness of the connection implies that such a pairing induces a representation
of π∞ as desired. This is the functor

RH : PA → Loc
C(R)(π∞M). (4)

It would be an interesting problem in its own right to define an inverse functor which makes
use of a kind of associated bundle construction. However we chose instead to prove quasi-
essential surjectivity of the above functor. Given an ∞-local system (F, f) one can form a

complex of sheaves over X by considering Loc
C(R)(π∞U)(R, F ). This complex is quasi-isomorphic

to the sheaf obtained by extending by the sheaf of C∞ functions and then tensoring with the de
Rham sheaf. Making use of a theorem of Illusie we construct from this data a perfect complex
of A0-modules quasi-isomorphic to the zero-component of the connection in RH(F ). Finally we
follow an argument of [B1] to complete this to an element of PA which is quasi isomorphic to
RH(F ).

We reserve the appendix to work out some of the more conceptual aspects of the theory as it
intersects with our understanding of homotopical/derived algebraic geometry (in the parlance
of Lurie, Toen-Vezzosi, et. al.). One straightforward extension of this theory is to take represen-
tations in any linear ∞-category. In fact, considering representations of π∞M in the category
of A∞-categories leads to a fruitful generalization of recent work of Emma Smith-Zbarsky [SZ]
who has considered the action of a group G on families of A∞ algebras over a K(G, 1).

2 Infinity Local Systems

First we develop an (∞, 1) version of a local system. These objects will be almost the same as
the A∞-functors of [Ig02], but tailored to suit our equivalence result. We want to emphasize
the analogy with classical local systems. Throughout this paper ∞-category will mean (∞, 1)-
category. There is a theory of stability for such ∞ categories which subsumes the theory of pre-
triangulated dg-categories, however we may use the terms “pre-triangulated” interchangeably
with “stable” when discussing dg-categories. Let C be a pre-triangulated dg-category over k a
characteristic 0 field (which we are implicitly regarding at R in this paper), and K a simplicial
set which is a ∞-category (a weak Kan complex, see [Lu2]). Fix a map F : K0 → Ob C. Then
define:

CkF (K) := ⊕
i+j=k,i≥0

Ci,jF , (5)

with,
Ci,jF := {maps f : Ki → Cj | f(σ) ∈ Cj(F (σ(i)), F (σ(0)))} (6)

There are some obvious gradings to keep track of. For f ∈ Cp,qF define

T (f) := (−1)p+qf =: (−1)|f |f, K(f) := (−1)qf, J(f) := (−1)pf (7)

With respect to the simplicial degree in CkF , we write

f = f1 + f2 + . . . (8)

f i ∈ Ci,•F .
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We define some operations on these maps:

(df i)(σi) := d(f i(σi)) (9)

(δf i)(σi+1) :=

i∑

l=1

(−1)lf i(∂l(σ)) (10)

δ̂ = δ ◦ T (•) (11)

and for gp ∈ Cp,qF ,

(f i ∪ gp)(σ ∈ Ki+p) := (−1)i(p+q)f i(σ(0...i))g
p(σ(i...p+i)). (12)

Extend by linearity to sums in ⊕Cs(K) so that the cup product is defined as the sum of the
cups across all internal pairs of faces:

(f ∪ g)(σk) :=
k−1∑

t=1

(−1)t|g
k−t|f t(σ(0...t))g

k−t(σ(t...k)) (13)

More transparently we could write f ∪ g := µ ◦ (f ⊗ g) ◦∆ were ∆ is the usual comultiplication
which splits a simplex into a sum over all possible splittings into two faces:

∆(σk) =
∑

p+q=k,p,q≥1

σp ⊗ σq (14)

and µ is the composition C• ⊗C• → C•. The sign above appears because an i-simplex passes an
element of total degree p+ q.

Definition 2.1. A pair (F, f) with f ∈ C1
F (K) wuch that 0 = δ̂f+df+f ∪f is called an ∞-local

system. The set of ∞-local systems valued in C is denoted Loc
k,C
∞ (K)

We will often denote an ∞-local system (F, f) by just F if no confusion will arise.

Example 2.2. If F denotes an ordinary local system, then it naturally defines an ∞-local

system.

Proof. Exercise.

Often it will be the case that the differential in C will be given by commutation with some
family of degree-1 elements dx ∈ C1(x, x) i.e.,

df(σk) = dF (σ(0)) ◦ fk(σ(0...k)) − (−1)|fk|fk(σ(0...k)) ◦ dF (σ(k)) (15)

A more conceptual description is the following

Definition 2.3. An ∞-local system on K valued in C is an element of the functor category

sSet(K, C∞).

Here C∞ is the linear simplicial nerve construction applied to the dg-category C. We work
out this prespective in the appendix, but prefer in our paper to give more explicit constructions
of these objects.

We define a morphism between two ∞-local systems F,G:

Loc
k,C
∞ (K)(F,G) := ⊕

i+j=k
{φ : Ki → Cj |φ(σ) ∈ Cj(F (σ(i)), G(σ(0)))} (16)

Proposition 2.4. Loc
C
∞(K) is a dg-category.
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Proof. We define the differential D:

Dφ = δ̂φ+ dφ +G ∪ φ− (−1)|φ|φ ∪ F. (17)

In the above, φ = φ0 + φ1 + . . . is of total degree |φ| = p, and

(δ̂φ)(σk) := δ ◦ T =

k−1∑

j=1

(−1)j+|φ|φk−1(∂j(σk)) (18)

dφ(σk) := dG(σ(0)) ◦ φ(σ(0...k)) − φ(σ(0...k)) ◦ dF (σ(k)) (19)

D2 = 0 follows from the following observations:

δ̂[F,G] = [δ̂F,G] + (−1)|F |[F, δ̂G] (20)

where [, ] is the graded commutator [A,B] = A ∪B + (−1)|A||B|B ∪A,

[F, [G,H ]] = [[F,G], H ] + (−1)|F ||G|[G, [F,H ]], (21)

and the fact F and G are local systems:

δ̂F + dF + F ∪ F = δ̂G+ dG+G ∪G = 0 (22)

We can define a shift functor in Loc
C
∞(K). Given F ∈ Loc

C
∞(K), define F [q] via, F [q](x ∈

K0) := F (x)[q] and F [q](σk) := (−1)qF (σk). For a morphism φ the shift is inconsequential:
φ[q] = φ.

And a cone construction: Given a morphism φ ∈ Loc
C
∞(K)(F,G) of total degree q, define

the map C(φ) : K0 → ObC by the assignment x 7→ F [1 − q](x) ⊕G(x). And define the element
c(φ) of C1

C(φ) via,

c(φ) =

(
f [1 − q] 0
φ[1 − q] g

)
(23)

In general this will not be an element of Loc
C
∞(K), but this useful construction will appear in

our calculations later.
Evidently the Maurer-Cartan equation is preserved under this shift, and the resulting cate-

gory is a pre-triangulated dg-category[Bondal-Kapranov].
A degree 0 closed morphism φ between two ∞-local systems F,G over K is a homotopy

equivalence if it induces an isomorphism in HoLoc
C
∞(K). We want to give a simple criterion for

φ to define such a homotopy equivalence. On the complex Loc
•,C
∞ (K)(F,G) define a decreasing

filtration by

F kLoc
•,C
∞ (K)(F,G) = {φ ∈ Loc

•,C
∞ (K)(F,G))| φi = 0 for i < k}

Proposition 2.5. There is a spectral sequence

Epq0 ⇒ Hp+q(Loc
•,C
∞ (K)(F,G) (24)

where

Epq0 = gr (Loc
•,C
∞ (K)(F,G)) = {φ : Kp → Cq|φ(σ) ∈ Cq(F (σ(i)), G(σ(0)))}

with differential

d0(φ
p) = dG ◦ φp − (−1)p+qφp ◦ dF

Corollary 2.6. For two ∞-local systems F and G, the E1-term of the spectral sequence is a

local system in the ordinary sense.

Proposition 2.7. A closed morphism φ ∈ Loc
0,C
∞ (K)(F,G) is a homotopy equivalence if and

only if φ0 : (Fx, dF ) → (Gx, dG) is a quasi-isomorphism of complexes for all x ∈ K0.

Proof. The proof follows as in the proof of Proposition 2.5.2 in [B1].
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2.1 A∞ Local Systems

We also point out that a local system can take values in an A∞-category. We are not particularly
interested in developing this theory here but point out the corresponding definitions for the sake
of presentation and interest. We will use almost entirely the same notation. Let C be an
A∞-category, with multiplications denoted µi, and K a simplicial set which is an ∞-category.

As before, an object F consists of a choice of a map F : K0 → ObC along with an element f
of total degree 1 from the set

f ∈ C1
F (K) := ⊕

i+j=1,i≥0
Ci,jF , (25)

with,
Ci,jF := {k-linear maps f : Ki → Cj |F (σ) ∈ Cj(F (σ(i)), F (σ(0)))} (26)

and which satisfies a generalized Maurer-Cartan equation.
Morphisms are also as before:

LocA∞
(K)q(F,G) = {k-linear maps Ki → Cj(F (i), G(0)} (27)

We define a series of multiplications on composible tuples of morphisms. Consider an n+ 1-
tuple of objects (Fn, . . . , F0) and a corresponding tuple of composible morphisms (φn⊗ . . .⊗φ0).

mn : ⊗n≥i≥0LocA∞
(K)•(Fi+1, Fi) → LocA∞

(K)(F0, Fn)
•[2 − n] (28)

For n = 1,

m1 : φ 7→ µ1 ◦ (φ) − (−1)|φ|φ ◦ µ1 + (−1)|φ|(
∑

l

(−1)lφ ◦ ∂l) (29)

and for n ≥ 1,
mn : (φn ⊗ . . .⊗ φ0) 7→ µn ◦ (φn ⊗ . . .⊗ φ0) ◦ ∆(n) (30)

Definition 2.8. A pair (F, f) with f ∈ C1
F (K) such that 0 =

∑∞
i=1mi(f

⊗i) is called an A∞-local

system. The set of A∞-local systems is denoted Loc
C
A∞

(K).

It is important to note that the Maurer-Cartan equation above is not finite, but has a finite
number of terms when evaluated on any simplex due to the fact that ∆n(σ) = 0 for n >> 0.

If the multiplications defined above satisfy the constraint that for any tuple of composible
morphisms, (φ0, . . . , φN ), the graded vector space ⊕i,jLocA∞

(K)•(Fi, Fj) equipped with the
direct sums of the above multiplications becomes an A∞-algebra, then LocA∞

(K) is an A∞-
category. In particular the one-point A∞-category is just an A∞-algebra.[K-S]

Proposition 2.9. Loc
C
A∞

(K) is an A∞-category.

In a recent pre-print[SZ] Emma Smith-Zbarsky develops a closely related theory. She con-
siders a Z-graded bundle V over a smooth manifold M and then passes to the bundle which is
fiberwise

g•x =
∞∏

n=1

Hom•(V ⊗n
x , Vx[1 − n]) (31)

If one chooses a usual local system ∇, a total degree 1 form α valued in this bundle which
satisfies the relevant Maurer-Cartan equation gives the graded bundle V extra structure. In
particular the 0-form part of α turns V into a bundle of A∞ algebras. In her paper Smith-
Zbarsky calculates the first couple terms of the holonomy of such an M-C element to show that
the MC equation implies that the fiber of V over each point is an A∞ algebra and that parallel
transport is an A∞ morphism. For a smooth, pointed manifold (M,x) which is a K(G, 1), loops
at x act on the fiber of V over x by A∞ morphisms and a homotopy of paths yields an A∞
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homotopy between the corresponding parallel transports morphisms. Thus Zbarsky-Smith calls
this type of action of π1(M,x) a homotopy group action of A∞ algebras. In forthcoming work
Zbarsky-Smith will further develop this A∞ point of view with applications to Lagrangian Floer
theory.

This setup can be fruitfully understood in terms of our formalism. The bundle g is the
bundle whose fiber is

HomCoAlg(B(Vx), B(Vx)) (32)

where B(•) denotes the bar construction. Given a usual local system ∇, a g-valued form α
satisfying

d∇α+ α ◦ α = 0 (33)

yields a flat Z-graded connection via

d∇ + [α, ] : g• ⊗A0 A• → g• ⊗A0 A• (34)

whose holonomy yields an ∞-local system F satisfying

dF + δ̂F + F ∪ F = 0. (35)

(A useful guide is [Me]). This holonomy breaks further according to the components in g to
give the sum-over-trees formulas that one usually sees in such A∞ applicaitions. In fact, this
construction yields a local system valued in the category of A∞ algebras, and can be worked out
in this case over any manifold. However, one should be careful to note that the starting bundle
in this case is not of finite rank, so developing this theory technically involves an extension of
our results which we expect to go through without serious hitches.

3 Iterated Integrals and Holonomy of Z-graded Connec-

tions

Now let A = (A•(M), d) be the deRham DGA of a compact, C∞-manifold M. We define π∞M
to be Sing∞• M , the simplicial set over k = R of C∞-simplicies. By C we denote the dg-
category of complexes over R. Our goal is to derive an equivalence of categories between PA and
Loc

C
∞(π∞M), where the latter should be thought of as representations of π∞M . Specifically, to

any dg-category C over k we can associate to it the so-called k-linear simplicial nerve C∞ which
is a simplicial set satisfying the adjunction

sSet(∆n, C∞) = dgCatk(I ◦DK ◦ k ◦ C[∆n], C) (36)

See the appendix for the relevant definitions. In the case we are considering the target cate-
gory for representations is C∞ where C is the category of cochain complexes over R. Sussinctly
an ∞-local system is a functor in sSet(π∞M, C∞) or likewise dgCatk(I ◦DK ◦ k ◦ C[π∞M ], C).
One could conceivably then descibe the Riemann-Hilbert correspondence as the representability
of the functor which sends a space to its category of “homotopy-locally constant” sheaves of
vectorspaces. In fact Toen and Vezzosi present such a notion in [TV] and [Toen]. Their primary
concern is a Segal Tannakian theory, and they show that for a CW complex X, π∞X can be
recovered from the category of simplicial local systems. Our Reimann-Hilbert correspondence
concerns smooth manifolds (and uses iterated integrals) and so we have not developed a theorem
which applies to CW complexes.

An object of PA is a pair (E•,E) where E• is a Z-graded (bounded), finitely-generated,
projective, right A0-module and E is a Z-connection with the flatness condition E◦E = 0. Such
a module corresponds to the smooth sections of a Z-graded vector bundle V • over M with the
given Z-connection.
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In [I] Kiyoshi Igusa presents from scratch a notion of higher parallel transport for a Z-
connection. This is a tweaked example of Chen’s higher transport outlined in [Ch] which makes
crucial use of his theory of iterated integrals. We slightly reformulate and extend this idea to
produce a functor from PA to Loc

C
∞(K) which is a dg-quasi-equivalence. To start we present a

version of iterated integrals valued in a graded endomorphism bundle.

3.1 Sign Conventions

Let V be a graded vector bundle on M, then End(V) is a graded algebra bundle on M. The
symbols T,J,K will be used to denote an alternating sign with respect to the total degree,
form degree, and bundle-grading degree of a form valued in a graded bundle. For instance if
ω ∈ V q⊗A0 Ap, then Tω = (−1)p+qω,Kω = (−1)qω, and Jω = (−1)pω. The similar convention
carries over for forms valued in the End(V ) which has an obvious grading.

Given a form A = (f ⊗ η) ∈ Endk(V ) ⊗A0 Ap it is understood as a homomorphism

V • ⊗A0 A• → V • ⊗A0 A• (37)

via
(f ⊗ η)(v ⊗ α) 7→ (−1)|v|(f(v) ⊗ η ∧ α) (38)

Hence composition in End•V ⊗A0 A• is calculated,

(f ⊗ η) ◦ (g ⊗ ρ) := (fΞg ⊗ η ∧ ρ) (39)

Here Ξ is the alternating identity section (−1)k+1Idkx : Vx → Vx for any x ∈M . Note that with
respect to these conventions I ⊗ 1 acts as Ξ.

We will use ◦ to denote the above composition of homomorphisms and ∧ used to denote the
coordinatewise product. Left-contraction doesn’t see the bundle degree:

ι : Γ(M,TM⊗k) → Hom(End•V ⊗A0 A•, End•V ⊗A0 A•−k) (40)

via
ξ = ξ1 ⊗ . . .⊗ ξk 7→ (f ⊗ α 7→ f ⊗ ιξα) (41)

With local coordinates in a trivializing patch, we have a differential d which acts on V-valued
forms via:

d(v ⊗ α) = (dv) · α+ ((−1)|v|v ⊗ dα) (42)

This implies that on endomorphism-valued forms (which are matrix-valued forms locally) we
have

d(φ ⊗ η) = d ◦A− TA ◦ d = dφ · η + (−1)|φ|φΞ ⊗ dη (43)

and it follows
d(A ◦B) = dA ◦B + TA ◦ dB (44)

Note that this convention for the local description of a superconnection agrees with the formula
for the shift in PA, namely, E[q] = (−1)qE.

3.2 Path Space Calculus

In [Ch] and earlier works, Chen defined a notion of a differentiable space –the archetypical
differentiable space being PM for some smooth manifold M. This is a space whose topological
structure is defined in terms of an atlas of plots –maps of convex neighborhoods of 0 in R

n

into the space which cohere with composition by smooth maps– and the relevant analytic and
topological constructs are defined in terms of how they pull back onto the plots. In particular
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one can construct a reasonable definition of vector bundles over a differentiable space as well as
differential forms. One can likewise define an exterior differential, and subsequently a so-called
Chen deRham complex [H]. We will try to make transparent use of these constructions, but we
defer the reader to the existing discussions of these matters in [Ch],[H],[I],[B-H].

The primary reason that path-space calculus is relevant to our discussion is that the holonomy
of a Z-graded connection on V can be defined as a sequence of smooth forms on PM with values
in the bundle Hom(p∗1V, p

∗
0V ). The usual parallel transport will be the 0-form part of the

holonomy. The higher terms will constitute the so-called higher holonomy.

3.3 Iterated Integrals

Now define
η : PM 7→ PM : γ 7→ cγ(0) (45)

F : PM × I → PM : Fτ (γ)(t) = γ(τt) (46)

where cx is the constant path at x, and F as the “spaghetti” homotopy between η and the
identity map. Let V be a graded bundle on PM, and in a trivializing patch we identify End(V)
as a graded matrix bundle Mat•(V ). And denote the Chen DGA of PM by PA and more
generally on any Chen space X by A(X). Then F induces a so-called Poincare operator:

∫

F

: Mat•(V ) ⊗PA0 PA 7→Mat•(V ) ⊗PA0 PA (47)

given by ω 7→
∫ 1

0
(ι ∂

∂t
F ∗ω)Ξdt. In this notation, iterated integrals are defined recursively:

∫
ω1 . . . ωr :=

∫

F

T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞ (48)

Here pi is the projection from PM →M given by evaluation at i.
We can write this process differently and perhaps more transparently:
Let us parametrize the k-simplex by k-tuples t = (1 ≥ t1 ≥ t2 ≥ . . . ≥ tk ≥ 0). Then we

define the obvious evaluation and projection maps:

evk : PM × ∆k →Mk : (γ, (t1, . . . , tk)) 7→ (γ(t1), γ(t2), . . . , γ(tk)) (49)

π : PM × ∆k → PM (50)

Let E = Mat•(V ) be the trivial bundle of matrices as above, we can embed i : (E⊗A0A)⊗k →
E⊠k ⊗A0 A. Given the space of forms ev∗kE

⊠k ⊗A(PM×∆k)0 A(PM × ∆k, ) we can use the
multiplication in E to define

µ : ev∗kE
⊠k ⊗A(PM×∆k,)0 A(PM × ∆k) → p∗0E ⊗A(PM×∆k,)0 A(PM × ∆k) (51)

by multiplication in the fiber. The iterated integral map is the composition:

(−1)♠π∗(µ(ev∗k(i(a1 ⊗ . . .⊗ ak))))Ξ (52)

Since E is graded, the elements {ai} are bi-graded as usual. Calculate

♠ =
∑

1≤i<k

(T (ai) − 1)(k − i). (53)
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3.4 Z-graded Connection Holonomy

Suppose V has a Z-connection E. Locally E is of the form d− [A0 +A1 + . . .+Am]. (With the
above conventions, (−1)kd is locally the trivial connection on Ek) Let ω = A0 +A1 + . . .+Am.
This is a form of total degree 1, i.e. in ⊕End1−i(V )⊗A0 Ai. To any such form we can associate
its holonomy/parallel transport

Ψ := I +

∫
ω +

∫
ωω +

∫
ωωω + . . . (54)

which breaks further into its components with respect to the “form-grading”. For instance,

Ψk =

∫
Ak+1 +

∑

i+j=k+2

∫
AiAj +

∑

i1+i2+i3=k+3

∫
Ai1Ai2Ai3 + . . . (55)

Chen calculated the differential of a holonomy form (whithout the graded changes we have
worked into our definition)

dΨ = −

∫
κ+ (−

∫
κω +

∫
Jωκ) + . . .

+
∑

i+j=r−1

(−1)i
∫

(Jω)iκωj + . . .+ −p∗0ω ∧ Ψ + JΨ ∧ p∗1ω. (56)

where κ = dω−Jω∧ω defines the curvature of ω, and the integral itself is defined with different
sign conventions.

A modified form of the above calculation can be proven with two basic lemmas which are
slight modifications of Chen’s.

Proposition 3.1. Let w = h⊗ α be a form in Matk ⊗PA0 PAp. Then

dPM

∫

F

w +

∫

F

dPMw = F ∗
t=1wΞ − F ∗

t=0wΞ (57)

Proof. Let F ∗w = v = f ⊗ dt ∧ v′ + g ⊗ v′′, broken into its components with respect to t-
dependence in the form part. Then,

∫

F

dPMw =

∫ 1

0

ι ∂
∂t

(dPM×If · dt ∧ v′ − (−1)|f |fΞ ⊗ dt ∧ dv′+

+ (−1)|g|gΞ ⊗ dv′′ + dPM×Ig · v
′′)dt =

=

∫ 1

0

(−d(f ⊗ v′) + (−1)|g|gΞ ⊗
∂v′′

∂t
+
∂g

∂t
⊗ v′′)dt =

=

∫ 1

0

(−dPM (f ⊗ v′) +
∂(gΞ ⊗ v′′)

∂t
)dt (58)

And,

dPM

∫

F

w = dPM

∫ 1

0

(f ⊗ v′)dt =

∫ 1

0

dPM (f ⊗ v′)dt (59)

So, summing the terms yields,

dPM

∫

F

w +

∫

F

dPMw = gΞ ⊗ v′′(1) − gΞ ⊗ v′′(0) = F ∗
1wΞ − F ∗

0wΞ. (60)

the last equality because F is a homotopy between the identity map and the trivial one.
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In most cases we will be concerned with such forms restricted to a fixed-endpoint path space
such as PM(x0, x1) in which case the above result becomes

dPM

∫

F

w +

∫

F

dPMw = wΞ − F ∗
0wΞ (61)

Proposition 3.2.

d

∫
ω1 . . . ωr =

=
r∑

i=1

(−1)i
∫
Tω1 . . . dωiωi+1 . . . ωr −

r−1∑

i=1

(−1)i
∫
Tω1 . . . (Tωi ◦ ωi+1)ωi+2 . . . ωr−

− p∗0ω1 ◦

∫
ω2 . . . ωr + T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωr (62)

Proof. Using the previous proposition, and the definition of iterated integrals, we have

d

∫
ω1 . . . ωr = d

∫

F

T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞ =

= −

∫

F

d(T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞ) + F ∗

1 T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞΞ−

− F ∗
0 T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞΞ. (63)

which expands to

∫

F

T (d

∫
ω1 . . . ωr−1) ◦ p

∗
1ωrΞ + (−1)r

∫

F

T (

∫
Tω1 . . . Tωr−1) ◦ p

∗
1dωrΞ+

+ T (

∫
ω1 . . . ωr−1) ◦ p

∗
1ωr (64)

It is easy to see that he F ∗
0 term disappears because evaluating

∫
F
ω at a constant path yields

0. The final result then follows by induction after calculating a low dimensional case such as:

d

∫
ω1ω2 = −

∫
dω1ω2 +

∫
Tω1dω2 +

∫
(Tω1 ◦ ω2) − p∗0ω1 ◦

∫
ω2 + T (

∫
ω1) ◦ p

∗
1ω2 (65)

If ω has total degree 1, then

d

∫
(ω)r = −

∑

i+j+1=r

∫
(ω)idω(ω)j −

∑

i+j+2=r

∫
(ω)i(ω ◦ ω)(ω)j+

− p∗0ω ◦

∫
(ω)r−1 +

∫
(ω)r−1 ◦ p∗1ω (66)

So for ω in ⊕End1−k(V ) ⊗A0 Ak,

dΨ =

[−

∫
κ + (−

∫
κω −

∫
ωκ) − . . .−

∑

i+j=r−1

∫
(ω)iκωj + . . . ] + −p∗0ω ◦ Ψ + Ψ ◦ p∗1ω. (67)
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where here κ := dω − Tω ◦ ω = dω + ω ◦ ω is the curvature.
Note that if κ = 0 then we have

dΨ = −p∗0ω ◦ Ψ + Ψ ◦ p∗1ω (68)

and on PM(x0, x1) this reduces further to

dΨ = −p∗0A
0 ◦ Ψ + Ψ ◦ p∗1A

0 (69)

The condition κ = 0 locally amounts to the series of equations

A0 ◦A0 = 0

A0 ◦A1 +A1 ◦A0 + (dA0) = 0

. . .

q+1∑

i=0

Ai ◦Aq−i+1 + (dAq) = 0

. . .

(70)

which is identical to the flatness condition E ◦E = 0 in PA. With the help of the Stokes formula
the equation (69) is equivalent to the integral form

−A0
x0

◦

∫

Iq

h∗Ψq + (−1)q(

∫

Iq

h∗Ψq) ◦A
0
x1

=

∫

∂Iq

h∗Ψq−1 (71)

for any q-family of paths h : Iq → P (M,x0, x1) inside a trivializing patch. The sign (−1)q

appears when the q-simplex passes the degree 1 element A0.

3.5 Holonomy With Respect to the Stable Structure

3.5.1 Holonomy with Respect to the Shift

Let (E•,E) be an element of PA, d − A a local coordinate description, and Ψ its associated
holonomy transport. It is not hard to see that holonomy commutes with the shift functor. Each
iterated integral of length k has k copies of Ξ embedded so a shift on the forms is exactly can-
celled. But the overall holonomy understood as a homomorphism via our conventions alternates
with respect to the bundle degree. Hence a shift by q gives an overall sign of (−1)q

3.5.2 Holonomy of a Cone

Suppose we have a morphism in PA, i.e. an element φ of total degree q of

Homq
PA

(E1, E2) = {φ : E1 ⊗A0 A• → E2 ⊗A0 A•|φ(ea) = (−1)q|a|φ(e)a} (72)

The differential is defined
dφ := E2 ◦ φ− (−1)|φ|φ ◦ E1 (73)

We can construct the cone complex associated to φ, C(φ).

C(φ)k = (E1[1 − q]k ⊕ Ek2 ) (74)

with the differential (this has total degree 1):

D =

(
E1[1 − q] 0
φ[1 − q] E2

)
(75)
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Note that Ei[1 − q] = (−1)1−qEi, and φ[1 − q] = φ, and that that D is flat iff φ is a closed
morphism.

In a trivializing coordinate patch write Dφ = d − ω and denote the corresponding Z-
connection holonomy by Ψφ. Then applying Chen’s formula for dΨ on PM(x0, x1), we calculate,

dΨφ = −

∫
κ + (−

∫
κω −

∫
ωκ) − . . .

−
∑

i+j=r−1

∫
ωiκωj + . . . ] − p∗0ω

0 ◦ Ψφ + Ψφ ◦ p∗1ω
0 (76)

And since Dφ
11, and Dφ

22 are flat, it is evident that

κ = dω + ω ◦ ω =
(

0 0
dφ 0

)
(77)

Then the 21-component is:

dΨφ
21 = [−

∫
dφ − . . .−

∑

i+j+2=r

∫
(B)idφ[1 − q](A[1 − q])j − . . . ]−

− p∗0B
0 ◦ Ψφ

21 + Ψφ
21 ◦ p

∗
1A

0[1 − q] (78)

Alternately, if we first take dφ in PA and take the holonomy of its cone (C(dφ), Ddφ). We
already showed that since Ddφ is flat, dΨdφ = −p∗0ω

dφ,0 ◦ Ψdφ + Ψdφ ◦ p∗1ω
dφ,0. And we have,

Ψdφ
21 =

∫
dφ+ . . .

∑

i+j+1=r

∫
(B)idφ[q](A[q])j + . . . =

=

∫
dφ[q] + . . .

∑

i+j+1=r

(−1)j
∫

(B)idφ[q](A[1 − q])j + . . . (79)

But according to our definition of iterated integrals each term in each integral has a hidden
factor of Ξ so the shift gives a factor of (−1)j again. Thus, the above formula becomes,

Ψdφ
21 = −

∫
dφ− . . .

∑

i+j+1=r

∫
(B)idφ(A[1 − q])j + . . . (80)

And consequently,
dΨφ

21 = −Ψdφ
21 − p∗0B

0 ◦ Ψφ
21 + Ψφ

21 ◦ p
∗
1A

0 (81)

3.6 Cubes to Simplices

Now we want to integrate over simplices rather than cubes, which will involve realizing any
simplex as a family of paths with fixed endpoints. This construction is described technically in
[Chen77],[I] and elsewhere and only outlined here. P is the path space functor.

Given a geometric k-simplex, σ : ∆k → M , we want to realize this as a factor of a (k-1)-
family of paths into M. That is, we produce a map θ : Ik → ∆k which then can be viewed as a

family of paths θ(k−1) : Ik−1 → P∆k. This map is factored into two parts: Ik
λ
−→ Ik

πk−→ ∆k.

Here πk is an order-preserving retraction. λ is given by the map λw : I → Ik parametrized by
w ∈ Ik−1. The result, is an Ik−1-family of paths in Ik (we call this λ(k−1) : Ik−1 → PIk) each
starting at (w1, w2, . . . , wk−1, 1) and ending at (0, 0, . . . , 0). When post-composed with πk we
get a (k−1)-family of paths in ∆k which start at σk and end at σ0. Define θ(k−1) : Ik−1 → P∆k
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by Pπk ◦ λ(k−1)

We restate the characteristic properties of such a factorization c/o [I]:
• If x ≤ X ′ in the sense that xi ≤ x′i for all i, then πk(x) ≤ πk(x

′).
Furthermore, πk(x) ≥ x.

• πk sends ∂+
i I

k = {x ∈ Ik|xi = 1} to the back k − i face of ∆k spanned by {vi, . . . , vk}
and given bt the equation y ≥ vi.

• πk sends ∂−i I
k = {x ∈ Ik|xi = 0} onto ∂i∆

k = {y ∈ ∆k|yi = yi+1}.
and

• The adjoint of θ(k) is a piecewise-linear epimorphism Ik ։ ∆k

• For each w ∈ Ik−1, θw is a path from θw(0) = vk to θw(1) = v0.
• θw passes through the vertex vi iff wi = 1.
• θ(k) takes each of the 2k−1 vertices of Ik−1 to the shortest path from vk to v0 passing

through the corresponding subset {v1 . . . vk−1}.

4 A dg-quasi-equivalence of categories

In this section we establish our Riemann-Hilbert correspondence for ∞-local systems. Recall
that C is the category of cochain complexes over R.

Theorem 4.1. There is a dg-functor

RH : PA → Loc
C
∞(π∞M)

which is a dg-quasi-equivalence.

4.1 The functor RH : PA → Loc
C

∞
(π∞M)

On objects the functor RH : Ob(PA) → Ob(Loc
C
∞(π∞M)) is described as follows. Given an ele-

ment (E•,E) ∈ PA take the corresponding graded bundle V over M with a Z-graded connection
E. Define an ∞-local system by the following assignment:

RH((E•,E))(x) = (Vx,E
0
x) (82)

RH((E•,E))k(σk) :=

∫

Ik−1

θ∗(k−1)(Pσ)∗Ψ (83)

i.e. assign to each k-simplex the integral of the higher holonomy integrated over that simplex
(understood as a k-1 family of paths), which is a degree (1-k) homomorphism from the fiber
over the endpoint to the fiber over the starting point of the simplex. To a 0-simplex this yields
a degree 1 map in the fiber over that point which we shall see will be a differential as a result
of the flatness of the Z-graded connection. To a 1-simplex (a path) we get the usual parallel
transport of the underlying graded connection. Flatness will imply that this is a cochain map
with respect to the differentials on the fibers over the endpoints of the path.

So far we only have a simplicial set map π∞M → C∞. Call it F. Since we are integrating a
flat Z-graded connection,

dΨ = −p∗0A
0 ◦ Ψ + Ψ ◦ p∗1A

0. (84)

So via Stokes’ Theorem, F satisfies the local system condition:
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E
0 ◦ Fk(σ) − (−1)kFk(σ) ◦ E

0 =

k−1∑

i=1

(−1)iFk−1(σ0, . . . , σ̂i, . . . , σk)+

−
k−1∑

i=1

(−1)iFi(σ0, . . . , σi) ◦ Fk−i(σi, . . . , σk)
(85)

which is the Maurer-Cartan equation

dF + δ̂F + F ∪ F = 0 (86)

Proving this abmounts to the task of figuring out what
∫
∂Iq−1 h

∗Ψ is in the case that h is the
map constructed above which factors through σ. That is we must relate ∂Iq−1 to ∂∆q−1. Igusa
works this out elegantly in [I] and obtains (If we write I :=

∫
θ∗(P [•])∗(Ψ))

∫
θ∗(P [•])∗(dΨ) = −δ̂I − I ∪ I (87)

On morphisms RH is described as follows. Given a morphism φ ∈ PA
q(E1, E2) we can

form the homological cone and the holonomy transport of the cone Ψφ. Applying RH get
I = RH(C(φ)) : π∞ → C∞ a simplicial set morphism that isn’t necessarily a local system.
However, if dφ = 0 then we have already shown that I is a local system, i.e. it satisfies:

dI + δ̂I + I ∪ I = 0 (88)

Let F := RH(E1), G := RH(E2). If we represent I as a 2x2 matrix it is not hard to see that
I11 = RH(E1[1 − q]) = F [1 − q] and I22 = F2 := RH(E2).

Most importantly I21 can be regarded as a morphism of local systems between F1[1− q] and
F2 after we specify that I21(point) = φ0(point)

Theorem 4.2. The assignment φ 7→ I21 = RH(C(φ))21 gives a map of complexes,

RH : PA
q(E1, E2) → Loc

q,C
∞ (π∞)(F1, F2). (89)

And in fact is a dg-functor PA → Loc
q,C
∞ (π∞).

Proof. Given a morphism φ ∈ PA
q(E1, E2), denote the holonomy transport associated to the

homological cone (C(φ), Dφ) by Ψφ, and the transport associated to the cone (C(dφ), Ddφ) by
Ψdφ. Locally write Dφ = d−Dφ,0 − . . . and similarly for Ddφ.

We already calculated that (on PM(x0, x1)),

− (dΨφ)21 + (p∗0D
φ,0 ◦ Ψφ − Ψφ ◦ p∗1D

φ,0)21 = Ψdφ (90)

Thus, applying
∫
θ∗(P [•])∗(Ψ) to both sides yields,

(I ∪ I + δ̂I + dI)21 = RH(dφ) (91)

and the left hand side is by definition DRH(φ).

Proposition 4.3. The functor RH is dg-quasi-fully faithful.
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Proof. Consider two objects Ei = (E•
i ,Ei) ∈ PA, i = 1, 2. The chain map

RH : PA(E1, E2) → Loc
C
∞(π∞M)(RH(E1),RH(E2))

induces a map on spectral sequences (24) and [B1], Theorem 2.5.1. At the E1-level on the PA

side, we have that H∗((Ei,E
0
i )) are both vector bundles with flat connection, while according

to 2.6, we have H∗((RH(Ei),E
0
i )) are local systems on M . At the E2-term the map is

H∗(M ;Hom(H∗(E1,E
0
1), H

∗(E2,E
0
2))) → H∗(M ;H∗((RH(E1),E

0
1)), H

∗((RH(E2),E
0
2)))

which is an isomorphism by the ordinary De Rham theorem for local systems.

4.2 RH is dg-essentially surjective

We must prove that for any (F, f) ∈ Loc
C
∞(π∞M), that there is an object E = (E•,E) ∈ PA

such that RH(E) is quasi-isomorphic to (F, f). We first define a complex of sheaves on M .
Let R denote the constant local system, and thus an ∞-local system. We also view R as
a sheaf of rings with which (M,R) becomes a ringed space. For an open subset U ⊂ M ,
let (CF (U), D) = (Loc

C
∞(π∞U)(R|U , F |U ), D). Let (CF , D) denote the associated complex of

sheaves. Then CF is soft; see the proof of Theorem 3.15, [W]. By corollary 2.6, CF is a perfect
complex of sheaves over R. Let AM denote the sheaf of C∞ functions and (A•, d) denote the dg
sheaf of C∞ forms on M . Set C∞

F = CF ⊗R AM . By the flatness of AM over R, C∞
F is perfect

as a sheaf of AM -modules. Now the map

(C•
F , D) → (C∞

F ⊗A
M

A•
M , D ⊗ 1 + 1 ⊗ d)

is a quasiisomorphism of sheaves of R-modules by the flatness of AM over R.
We need the following

Proposition 4.4. Suppose (X,SX) is a ringed space, where X is compact and SX is a soft

sheaf of rings. Then

1. The global sections functor

Γ : Mod-SX → Mod-SX(X)

is exact and establishes an equivalence of categories between the category of sheaves of right

SX-modules and the category of right modules over the global sections SX(X).

2. If M ∈ Mod-SX locally has finite resolutions by finitely generated free SX-modules, then

Γ(X ;M) has a finite resolution by finitely generated projectives.

3. The derived category of perfect complexes of sheaves Dperf(Mod-SX) is equivalent the

derived category of perfect complexes of modules Dperf(Mod-SX(X)).

Proof. See Proposition 2.3.2, Exposé II, SGA6, [SGA6].

Theorem 4.5. The functor

RH : PA → Loc
C
∞(π∞M)

is dg-essentially surjective.

Proof. By the Proposition , there is a (strictly) perfect complex (E•,E0) of A-modules and
quasiisomorphism e0 : (E•,E0) → (X•,X0) := (Γ(M,C∞

F ), D). Following the argument of
Theorem 3.2.7 of [B1], which in turn is based on arguments from [OTT], we construct the higher
components E

i of a Z-graded connection along with the higher components of a morphism ei at
the same time.
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We have a Z-graded connection on X• by

X := D ⊗ 1 + 1 ⊗ d : X• → X• ⊗A A•

Then we have an induced connection

H : Hk(X•,X0) → Hk(X•,X0) ⊗A A1

for each k. We use the quasi-morphism e0 to transport this connection to a connection, also
denoted by H on Hk(E•; E0)

Hk(E•; E0)
H
→ Hk(E•,E0) ⊗A A1

↓ e0 ↓ e0 ⊗ 1

Hk(X•,X0)
H

−→ Hk(X•,X0) ⊗A A1

(92)

The right vertical arrow above e0 ⊗ 1 is a quasi-isomorphism because A• is flat over A. The
first step is handled by the following lemma.

Lemma 4.6. Given a bounded complex of finitely generated projective A modules (E•,E0) with

connections H : Hk(E•; E0) → Hk(E•,E0) ⊗A A1, for each k, there exist connections

H̃ : Ek → Ek ⊗A A1

lifting H. That is,

H̃E
0 = (E0 ⊗ 1)H̃

and the connection induced on the cohomology is H.

Proof. (of lemma) Since E• is a bounded complex of A-modules it lives in some bounded range
of degrees k ∈ [N,M ]. Pick an arbitrary connection on EM , ∇. Consider the diagram with
exact rows

EM
j
→ HM (E•,E0) → 0

∇ ↓
θ

ց H ↓

EM ⊗A A1 j⊗1
→ HM (E•,E0) ⊗A A1 → 0

(93)

In the diagram, θ = H ◦ j − (j ⊗ 1) ◦ ∇ is easily checked to be A-linear and j ⊗ 1 is surjective
by the right exactness of tensor product. By the projectivity of EM , θ lifts to

θ̃ : EM → EM ⊗A A1

so that (j ⊗ 1)θ̃ − θ. Set H̃ = ∇ + θ̃. With H̃ in place of ∇, the diagram above commutes.
Now choose on EM−1 any connection ∇M−1. But ∇M−1 does not necessarily satisfy

E
0∇M−1 = H̃E

0 = 0. So we correct it as follows. Set µ = H̃E
0 − (E0 ⊗ 1)∇M−1. Then

µ is A-linear. Furthermore, Imµ ⊂ Im E
0 ⊗ 1; this is because H̃E ∈ Im E ⊗ 1 since H̃ lifts

H. So by projectivity it lifts to θ̃ : EM−1 → EM−1 ⊗A A1 such that (E0 ⊗ 1) ◦ θ̃ = θ. Set

H̃ : EM−1 → EM−1 ⊗A A1 to be ∇M−1 + θ̃. Then E
0
H̃ = H̃E

0 in the right most square below.

EN
E
0

−→ EN+1 E
0

−→ · · ·
E
0

−→ EM−1 E
0

−→ EM → 0

∇M−1 ↓
µ

ց H̃ ↓

EN ⊗A A1 E
0⊗1
−→ EN+1 ⊗A A1 E

0⊗1
−→ · · ·

E
0⊗1
−→ EM−1 ⊗A A1 E

0⊗1
−→ EM ⊗A A1 → 0

(94)

Now we continue backwards to construct all H̃ : E• → E•⊗AA1 satisfying (E0⊗1)H̃ = H̃E
0 = 0.

This completes the proof of the lemma.
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(Proof of the theorem, continued.) Set Ẽ
1 = (−1)kH̃ on Ek. Then

E
0
Ẽ

1 + Ẽ
1
E

0 = 0

but it is not necessarily true that e0Ẽ
1 − X

1e0 = 0. We correct this as follows. Consider
ψ = e0Ẽ

1 − X
1e0 : E• → X• ⊗A A1. Check that ψ is A-linear and a map of complexes.

(E• ⊗A A1,E0 ⊗ 1)
eψ

ր ↓ e0 ⊗ 1

E• ψ
−→ (X• ⊗A A1,X0 ⊗ 1)

(95)

In the above diagram, e0⊗1 is a quasi-isomorphism e0 is a homotopy equivalence. So by Lemma
1.2.5 of [OTT] there is a lift ψ̃ of ψ and a homotopy e1 : E• → X•−1 ⊗A A1 between (e0 ⊗ 1)ψ̃
and ψ,

ψ − (e0 ⊗ 1)ψ̃ = (e1E
0 + X

0e1)

So let E
1 = Ẽ

1 − ψ̃. Then

E
0
E

1 + E
1
E

0 = 0 and e0E
1 − X

1e0 = e1E
0 + X

0e1. (96)

So we have constructed the first two components E
0 and E

1 of the Z-graded connection and
the first components e0 and e1 of the quasi-isomorphism E• ⊗A A• → X• ⊗A A•.

To construct the rest, consider the mapping cone L• of e0. Thus

L• = E[1]• ⊕X•

Let L
0 be defined as the matrix

L
0 =

(
E

0[1] 0
e0[1] X

0

)
(97)

Define L
1 as the matrix

L
1 =

(
E

1[1] 0
e1[1] X

1

)
(98)

Now L
0
L

0 = 0 and [L0,L1] = 0 express the identities (96). Let

D = L
1
L

1 +

(
0 0

X
2e0 [X0,X2]

)
. (99)

Then, as is easily checked, D is A-linear and

1. [L0, D] = 0 and

2. D|0⊕X• = 0.

Since (L•,L0) is the mapping cone of a quasi-isomorphism, it is acyclic and since A• is flat over
A, (L• ⊗A A2,L0 ⊗ 1) is acyclic too. Since E• is projective, we have that

Hom•
A((E•,E0), (L• ⊗A A2,L0))

is acyclic. Moreover

Hom•
A((E•,E0), (L• ⊗A A2,L0)) ⊂ Hom•

A(L•, (L• ⊗A A2, [L0, ·]))

is a subcomplex. Now we have D ∈ Hom•
A(E•, L• ⊗A A2) is a cycle and so there is L̃

2 ∈

Hom•
A(E•, L• ⊗A A2) such that −D = [L0, L̃2]. Define L

2 on L• by

L
2 = L̃

2 +

(
0 0
0 X

2

)
(100)
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Then

[L0,L2] =[L0, L̃2 +

(
0 0
0 X

2

)
]

= −D + [L0, L̃2 +

(
0 0
0 X

2

)
]

= − L
1
L

1

(101)

So
L

0
L

2 + L
1
L

1 + L
2
L

0 = 0.

We continue by setting

D = L
1
L

2 + L
2
L

1 +

(
0 0

X
3e0 [X0,X3]

)
(102)

Then D : L• → L• ⊗A A3 is A-linear, D|0⊕X• = 0 and

[L0, D] = 0.

Hence, by the same reasoning as above, there is L̃
3 ∈ Hom•

A(E•, L• ⊗A A3) such that −D =

[L0, L̃3]. Define

L
3 = L̃

3 +

(
0 0
0 X

3

)
(103)

Then one can compute that
∑3

i=0 L
i
L

3−i = 0.
Now suppose we have defined L

0, . . . ,Ln satisfying for k = 0, 1, . . . , n

k∑

i=0

L
i
L
k−i = 0 for k 6= 2

and
2∑

i=0

L
i
L

2−i = 0 for k = 2

Then define

D =

n∑

i=1

L
i
L
n+1−i +

(
0 0

X
n+1e0 [X0,Xn+1]

)
(104)

D|0⊕X• = 0 and we may continue the inductive construction of L to finally arrive at a Z-graded
connection satisfying LL = 0. The components of L construct both the Z-graded connection on
E• as well as the morphism from (E•,E) to (X•,X).

It follows from Proposition 2.7 that RH((E•,E))
e
→ (F, f) is a quasi-isomorphism.

5 Appendix

5.1 The Linear Simplicial Nerve Construction

We describe here a variant of a construction called the simplicial nerve functor which was
originally introduced by Cordier [Co] and appears in Lurie’s book on higher Topoi [Lu1]. The
simplicial nerve is a functor

N : sCat→ sSet (105)
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which is defined by the adunction property:

sSet(∆n, N(C)) = sCat(C[∆n], C) (106)

Where C[•] is a kind of free-functor which in a sense constructs the free simplicial category gen-
erated by a simplicial set. The k-simplices of N(C) can be understood as homotopy coherences
in the category C. This will become apparent as we further describe the this functor. This
exposition is taken almost verbatim from [Lu1] but we include it for completeness.

Let k be a field.

Definition 5.1. Let [n] denote the linearly ordered, finite set of n+1 elements {0, 1, 2, . . . , n}, as

well as the corresponding category, and let ∆n denote the simplicial set which is the combinatorial

n-simplex. C[∆n] is the element of sCat given by the following assignments:

ObC[∆n] = [n] (107)

for i, j ∈ [n],

C[∆n](i, j) =

{
∅ for j > i

N(Pi,j) for i ≤ j
(108)

Where N [•] the usual nerve functor, and Pi,j the partially ordered set of subsets I ⊂ {i ≤ . . . ≤ j}
such that both i ∈ I, and j ∈ I. For the ordered tuple, (i0 ≤ . . . ≤ il), the compositions in C[∆n]

C[∆n](i0, i1) × . . .× C[∆n](il−1, il) → C[∆n](i0, il) (109)

are induced by the poset maps given by the union:

Pi0,i1 × . . .× Pil−1,il → Pi0,il (110)

I0 × . . .× Il 7→ I0 ∪ . . . ∪ Il (111)

And C is functorial:

Definition 5.2. For f : [n] → [m] a monotone map of linearly ordered finite sets, we get a

morphism

C[∆n](f) : C[∆n] → C[∆m] (112)

v ∈ ObC[∆n] 7→ f(v) ∈ ObC[∆m] (113)

For i ≤ j in [n], the map

C[∆n](i, j) → C[∆m](f(i), f(j)) (114)

is induced by

f : Pi,j → Pf(i),f(j), I 7→ f(I) (115)

by applying N [•].

C can be extended uniquely to a functor which preserves small colimits, and so it is easily
verified that C[•] is a functor

C : sSet→ sCat (116)

Definition 5.3. The truncation functor

T : dgCatk → dgCatk,≤0 (117)
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from the category of small dg-categories over k to the category of small dg-categories over k which

are supported in non-positive degree is given by setting ObT (C) = ObC, and for X,Y ∈ ObC,

TC•(X,Y ) =






0 for • > 0

Z(C0(X,Y )) for • = 0

C•(X,Y ) for • > 0

(118)

with the appropriate restriction of the differentials of course.

The adjoint of T is the inclusion I : dgCatk,≤0 → dgCatk.
We denote by Ch≤0(k) the category of cochain complexes over k supported in non-positive

degree, and by
DK : sVectk ⇆ Ch≤0(k) (119)

the Dold-Kan adjunction. sVectk is the category of simplicial vector spaces, and sCatk the
category of small categories enriched on sV k. This adjunction can be applied on homsets to
yield an adjunction of enriched categories

DK : sCatk ⇆ dgCatk,≤0 (120)

Finally denote by S the forgetful functor

S : sCatk → sCat (121)

Definition 5.4. By composition with T, DK, and S, we define the functor N(k):

N(k) := N ◦ S ◦DK ◦ T : dgCatk → sSet (122)

Given C ∈ dgCatk it is instructive to describe the objects of N(k)[C] explicitly. We describe
this as a stand-alone construction and then show it satisfies the adjunction

sSet(∆n, N(k)[C]) = dgCatk(I ◦DK ◦ k ◦ C[∆n], C) (123)

Definition 5.5. We write C∞ in place of N(k)[C] in order to reduce clutter. The name N(k) is

only presented in the appendix. In addition, we may want to mimic the (k[G]−mod)−Repk(G)
adjunction by abusing k and writing

sSet(∆n, C∞) = dgCatk(k[∆
n], C) (124)

Given a dg-category C in dgCatk,≤0, we produce a simplicial set C∞ which is an ∞-category,
and demonstrate that this is in fact an explicit construction of the linear simplicial nerve above.

Denote by Yi([n]) the set of length-i (ordered) subsets of [n]. We denote an element of Yj([n])
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as an ordered tuple (i0 < i1 < . . . < ij) and make use of this notation below.

C∞ 0 = {F = (F0, f)|

f : Y1([0]) → kObC

C∞ 1 = {F = (F0 + F1, f)|

f : Y1([1]) → kObC

F1 : Y2([1]) → C0(f(i1), f(i0))}

. . .

C∞ l = {F = (

l∑

i=0

Fi, f)|

f : Y1([1]) → kObC

. . .

Fj : Yj+1([l]) → C1−j(f(ij), f(i0)),

. . .

Fl : Yl+1([l]) → C1−l(f(il), f(i0))}

such that dF + δ̂F + F ∪ F = 0, where

dF (i1 < . . . < ij) := d(F (i1 < . . . < ij)) (125)

δ̂Fj(i0 < . . . < ij+1) := −
k−1∑

q=1

(−1)qFj(i0 < . . . < îq < . . . < ij+1) (126)

and

(F ∪ F )j(i0 < . . . < ij) =

j−1∑

q=1

(−1)qFq(i0 < . . . < iq) ◦ Fj−q(iq < . . . < ij) (127)

The face maps are defined as follows:

∂qFj(i0 < . . . < ij+1) = Fj(i0 < . . . < îq < . . . < ij+1) (128)

and degeneracies,

sqFj(i0 < . . . < ij−1) = Fj(i0 < . . . < iq < iq < . . . < ij−1). (129)

C∞ is a simplicial set, and we need to show that it satisfies the weak Kan extension property.
The qth k-horn Λkq is the simplicial set which consists of the combinatorial k-simplex ∆k with

the unique k-face and codimension-1 face ∂q∆
k removed. If q 6= 0, k we call Λkq an inner horn.

Definition 5.6. A weak Kan complex is a simplicial set K which satisfies the property that for

any sSet map T: Λkq → S from an inner horn to S, can be extended to a map from the entire

simplex T̂ : ∆k → S.

Proposition 5.7. C∞ is an ∞-category.
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Proof. Let 0 < q < k, and S be a simplicial set map S : Λkq → C∞. We show that this extends

to S : ∆k → C∞. We first define S on the missing k − 1-face:

Sk−1(01 . . . q̂ . . . k) :=

(−1)q+1
k−1∑

j=1,j 6=q

(−1)jSk−1(0 . . . ĵ . . . k)+

(−1)q
k−1∑

j=1

(−1)jSj(0 . . . j)Sk−j(j . . . k)

(130)

We then define the new k-face:

Sk(01 . . . k) := 0(any closed morphism will work) (131)

Then by this assignment,

(δ̂S)k(0 . . . k) + (S ∪ S)k(01 . . . k) =

= −(−1)qSk−1(0 . . . q̂ . . . k) +

k−1∑

j=1,j 6=q

(−1)jS(0 . . . ĵ . . . k)+

+(S ∪ S)k(01 . . . k) = 0.

hence, dSk + (δ̂S)k + (S ∪ S)k = 0.

(132)

It remains to show that the new k − 1-face satisfies the corresponding equation:

dSk−1(0 . . . q̂ . . . k) = −(δ̂S)k−1(0 . . . q̂ . . . k) − (S ∪ S)k−1(0 . . . q̂ . . . k) (133)

Expanding the LHS we have:

(−1)q+1
∑

j=1,j 6=q

(−1)jd(Sk−1(0 . . . ĵ . . . k))+

+ (−1)q
k−1∑

j=1

(−1)jd(Sj(0 . . . j)) ◦ Sk−j(j . . . k)+

+ (−1)q
k−1∑

j=1

(−1)j(−1)1−jSj(0 . . . j) ◦ d(Sk−j(j . . . k)) (134)

Expanding just the first of the three terms above we get:

(−1)q+1
k−1∑

j=1,j 6=q

(−1)j+1(δ̂S)k−1(0 . . . ĵ . . . k)+

(−1)q+1
k−1∑

j=1,j 6=q

(−1)j+1(S ∪ S)k−1(0 . . . ĵ . . . k) (135)
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And the first of the two sums above yelds:

(−1)q+1

q−1∑

j=1

(−1)j+1[

j−1∑

t=1

(−1)tSk−1(0 . . . t̂ . . . ĵ . . . k)+

+

k−1∑

t=j+1

(−1)t+1Sk−2(0 . . . ĵ . . . t̂ . . . k)]+

+ (−1)q+1
k−1∑

j=q+1

(−1)j [

j−1∑

t=1

(−1)tSk−1(0 . . . t̂ . . . ĵ . . . k)+

+
k−1∑

t=j+1

(−1)t+1Sk−1(0 . . . ĵ . . . t̂ . . . k)] (136)

After some inspection it can be seen that all of the terms here appear in cencelling pairs except
for when t=q. So this reduces to

q−1∑

j=1

(−1)jSk−2(0 . . . ĵ . . . q̂ . . . k) +
k−1∑

j=q+1

(−1)j+1Sk−2(0 . . . q̂ . . . ĵ . . . k), (137)

which is exactly equal to (−δ̂S)k−2(0 . . . q̂ . . . k) on the RHS.
We now expand the second sum of (135):

(−1)q+1
k−1∑

j=1,j 6=q

(−1)j+1[

j−1∑

t=1

(−1)tSt(0 . . . t) ◦ Sk−t−1(t . . . ĵ . . . k)+

+

k−1∑

t=j+1

(−1)t−1St−1(0 . . . ĵ . . . t) ◦ Sk−t(t . . . k)] (138)

And likewise we expand the second two sums of (134):

(−1)q
k−1∑

j=1

(−1)j(−(δ̂S)j(0 . . . j) − (S ∪ S)k−j(j . . . k)) ◦ Sk−j(j . . . k)+

+ (−1)q
k−1∑

j=1

Sj(0 . . . j) ◦ (−(δ̂S)k−j(j . . . k) − (S ∪ S)k−j(j . . . k)) (139)

Expanding the above sums without the triple composition terms, we get

(−1)q
k−1∑

j=1

j−1∑

t=1

(−1)t+jSj−1(0 . . . t̂ . . . j) ◦ Sk−j(j . . . k)+

(−1)q
k−1∑

j=1

k−1∑

t=j+1

(−1)t+jSj(0 . . . j) ◦ Sk−j−1(j . . . t̂ . . . k) (140)

It can be seen that these pair with the terms in (138) to cancel all but the terms which give
−(S ∪ S)k−1(0 . . . q̂ . . . k) on the RHS. It just remains to analyze the triple composition terms
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of (139):

(−1)q
k−1∑

j=1

(−1)j(S ∪ S)j(01 . . . j) ◦ Sk−j(j . . . k) =

= (−1)q
k−1∑

j=1

j−1∑

t=1

(−1)j+t+1St(0 . . . j) ◦ Sj−t(t . . . j) ◦ Sk−j(j . . . k) (141)

(−1)q
k−1∑

j=1

(−1)j+1(−1)1−j(−1)Sj(0 . . . j) ◦ (S ∪ S)k−j(j . . . k) =

= (−1)q
k−1∑

j=1

k−1∑

t=j+1

(−1)t+jSj(0 . . . j) ◦ St−j(j . . . t) ◦ Sk−t(t . . . k). (142)

The sum of these above terms can be seen to vanish since each term appears twice with opposite
signs.

Now we loosely demonstrate the adjunction by considering the details of the Dold-Kan
construction in the relevant direction (See [G-J] for more details).

Define G : sAb→ Ch≤0 via
G(A)• = (A•/DA•, d) (143)

where d :=
∑

(−1)idi and DA is the subcomplex of A spanned by degenerate simplices.
Let C be an element of dgCat. A functor H from D := I ◦G ◦ k ◦ C[∆] to C is specified by its

object map and its values on a basis for the hom spaces in C[∆]. To each object [n], H assigns
an object of C. To each pair of objects m < n H gives a map

H(m,n) : D(m,n) → C(H(m), H(n)) (144)

A basis for D−k(m,n) is the set of length-k compositions in Pm,n. For the simplicity suppose
m = 0. One can think of the 0-simplices of P0,n as the vertices of an (n−1)-cube, the coordinates
indexing the linearly ordered subsets of [n] in the obvious way with (0, . . . , 0) corresponding to
(0, n) and (1, . . . , 1) corresponding to (0, 1, 2, . . . , n). Then the simplices of NP0,n give a trian-
gulation of this cube. In particular, the non-degenerate paths are ones which are compositions
entirely of proper inclusions. The paths which are not in the image of a face map are the
non-degenerate, length-n, paths which follow the edges of the cube.

The functor H must commute with the differentials:

H(
∑

(−1)idiσ) = dH(σ) (145)

In particular, suppose σ is the (n− 1)-cube above:

σ =
∑

I∈Sn−1

(−1)sgn(I)((0n) →֒ (0I1n) →֒ . . . →֒ (0I12,...(n−1)n)) (146)

Where I1 denotes the image of 1, I12 the pair either I1I2 or I2I1 ordered linearly depending on
whether I1 ≤ I2 or not, and so forth.

Then it is evident that the boundary breaks into two parts with the middle terms cancelling:

∑
(−1)idiσ = d0σ + (−1)ndnσ (147)
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Because of the composition rules in Pi,j one can write

((0I1n) →֒ . . . →֒ (0I12...(n−1)n)) =

((0I1) →֒ . . . →֒ (0 . . . I−1...(n−1))) ◦ ((I1n) →֒ . . . →֒ (I+
1...(n−1) . . . n)) (148)

Where I−12 represents either I1 or I2I1 depending on whether or not I2 ≤ I1 and so forth. H
respects these factorizations by functoriality. Because the notation is cumbersome it is best to
see this in some examples:

H(013 →֒ 0123) = H(01)H(13 →֒ 123) (149)

H(024 →֒ 0124 →֒ 01234) = H(02 →֒ 012)H(24 →֒ 234) (150)

The terms of d0σ can always be split in this manner between I1.
Now we define an element F on the left hand side of the adjunction from the data of H. For

an object of ∆n, F assigns an object of C∞, which is just an object of C. We think of these as
objects assigned to the n+ 1 vertices of an n simplex. Set F (j) := H(j). To any edge (ij) we
assign F (ij) = H((ij)). And any subset of [n] is a composition of such assignments: eg.,

F (01)F (12)F (25) := H(0125) (151)

The value on a k-simplex is given by

F (01 . . . k) := H(
∑

{I∈Sk−1}

((0k) →֒ (0I1k) →֒ . . . →֒ (0I1...(k−1)k))) (152)

In the above considerations, it is not hard to see that H(d0σ) computes −F ∪ F and that

H((−1)ndnσ) computes −δ̂F so that

dF + δ̂F + F ∪ F = 0 (153)

indeed yields an ∞-local system.
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