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Introduction

A well known theorem of M. H. Stone published in 1930 [5] establishes a
one-to-one correspondence between strongly continuous unitary representations
of the real line in Hilbert space and spectral resolutions in that space. More recently,
W. B. Arveson [1] generalized the notion of spectral subspace (corresponding to
spectral projection in the Hilbert space situation) to a large class of representations
in Banach space. His theory is particularly useful in the case of an ultraweakly
continuous one-parameter group of *-automorphisms a = {a,} of a von Neumann
algebra M. In fact, by [1, Lemma 2, p. 233], the spectral subspaces of M of the form
Ma[X, +00) completely determine the representation a. In view of this result it is
natural to ask how to synthesize a from the Ma[A, +oo).

Although a constructive answer to this question seems hard to give in general, it
can quite easily be provided in the special case where M is a type I factor. The
solution (Lemma l(b) below) is based on an idea of E. Stormer [6] and actually
makes use of Stone's theorem in the Hilbert space of Hilbert-Schmidt operators
associated with M.

Closely related to the synthesis problem there is also a characterization problem:
given a family {M;};eR of ultraweakly closed subspaces of a von Neumann algebra
M, when does there exist a one-parameter group a of *-automorphisms of M such
that M-,, = M\l, oo) for all >, e Ul A number of necessary conditions come
immediately to mind:

(a) I < ii => Mtl c M,, (b) H My = M,,

(c) 0 Mv = {0} and (\J MA =M, (d) M,M^ <= M,
V G ft \V 6 ft / + / , .

To avoid trivial counterexamples, we should certainly also specify that 1 e Mo. And
finally, defining the 'spectrum' Z of the family {M;} as

Y = {I e U | M;._e ± Mk+e for all e > 0 } ,

the symmetry condition Z = — Z must hold.
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These properties are sufficient if M = if(C2) (even without the requirement that
1 e Mo) but they already fail to characterize spectral subspaces in the case of the
3 x 3 matrix algebra M = if(C3). Consider the following subspaces of S£(C3):

M, =

( if(C3)

l l l 4 2 l13

0
0

0
0
0

«22

0

0
0
0

023

«33

«13

0
0

{0}

if X ^ - 1 ,

if - 1 < X ^ 0 ,

if 0 < X ^ 1 ,

if X > 1

Although {Mx} satisfies all of the conditions enumerated above, it can be shown that
there is no corresponding one-parameter group a.

In this paper we shall solve the characterization problem in the special case of a
type I factor, by adding to the list (a)-(d) above a symmetry condition ((e) in
Theorem 7) which is much stronger than £ = — £. Along the way we are led to
characterize, in terms of their spectral resolution, those unitary representations of IR
in the Hilbert space of Hilbert-Schmidt operators that are multiplicative (Theorem 4).

1.

Let H be a Hilbert space, let ££{H) denote the von Neumann algebra of all
bounded linear operators on H, and let Tr be the usual trace on £?(H). We use 9){H)
(or simply §) to refer to the space of all Hilbert-Schmidt operators on H. It is well
known that §(H) is an ultraweakly dense *-ideal of i f (H), and that it also has the
structure of a complete Hilbert space, the scalar product being given by

{x \ y) = Tr {y* x), x,ye?>.

The algebra and Hilbert space structures combine to make § into an (achieved)
Hilbert algebra, the associated von Neumann algebra of which is isomorphic to
S£{H). Let us call this isomorphism n: it carries 5£{H) into J£?(§) and is given by

n{x)y = xy, xe if (H), y e §

[2, Chapitre I, §§5-6]. Finally we make the observation that the weak Hilbert space
topology on § is stronger than the topology induced by the ultraweak operator
topology of &{H).

We consider a locally compact abelian group G and an ultraweakly continuous
representation a = {ar}reG of G by *-automorphisms of <£{H). Let ut denote the
restriction of af to if). Then u = {wr}(6G is a strongly continuous representation of G
by unitary operators on § . This can quite easily be shown directly, as is done in [6,
Lemma]. Alternatively, u can be looked upon as the canonical implementation of a
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when J£{H) is represented in its standard form via n, so that [3, Corollary 3.6]
applies.

It was first pointed out by E. Stormer [6] that there is a close link between the
spectral subspaces Ma( •) of S£{H) associated to a (in the sense of Arveson [1]), and
the projection-valued measure (or resolution of the identity) Pu( •) defined by u in
virtue of Stone's theorem. We recall Stormer's result in the first statement of the
following lemma. We use the assumptions and notation introduced above.

1 LEMMA. Let E be a closed subset ofG. Then

(a) Ma(E) — f] (PU(E + N)<O)~, where the closure is taken in the ultraweak

topology on S£{K) and N ranges over all compact neighbourhoods of the identity in G,

(b) P"(£)§ = M°(£) n S,

(c) if E is a neighbourhood of the identity O G G , and 1 denotes the identity
operator on H, then 1 G (Ma(E) n § ) " .

Proof. First we make the following remark: if x e Jr> and fe I}(G), the integral

<xf{x) = /(f)a,(x)dr exists, not only in the sense of the ultraweak topology on

c
but also in the (stronger) sense of the weak topology on § . In particular,

f{t)at(x)dt = \f{t)ut(x)dt is a Hilbert-Schmidt operator.
j
c

Now x G Pu(£)§ if and only if x is Hilbert-Schmidt and I f(t)ut{x)dt = 0 for all
G

feI}(G) such that its Fourier transform / vanishes on a neighbourhood of £
[1, p. 225]. By the above remark, this means exactly that x e Ma{E) n § , and (b)
follows.

Since 1 G Ma({0}), (c) is a consequence of (a) and (b).

The second part of this lemma shows how one can reconstruct a from its spectral
subspaces: knowledge of the spectral subspaces Ma(E) implies knowledge of the
projections PU{E), hence (by Stone's theorem) of the canonical implementation u of
a. On the other hand, it is clear that not all representations of G by unitary operators
on § give rise to a representation of G by *-automorphisms of 5£{H). A necessary
and sufficient condition to that effect is readily established.

2 LEMMA. Let u = {u,}ieG be a strongly continuous unitary representation of G in
§ . Then u is the restriction to § of some ultraweakly continuous representation
a. = {af},6G of G by *-automorphisms of $£{H) if and only if

ut(xy) = ut(x)ut(y) f°r QH x> y e $> and t eG.

Proof. The necessity is obvious. Suppose conversely that the condition
ut{xy) = ut(x)ut(y) holds for all x j e § , t G G. Define /? = {/?,},eG to be the group of
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•-automorphisms of i f (§) implemented by u : pt{A) = ^Au'1 for all A e <£?(§) and
t e G. Let x, y e § . Then, with 71: if(H) -> JSf(§) as above,

hence Pt{n(x)) = n(ut{x)).
Since n(9)) is ultraweakly dense in n{S£(H)\ we conclude that

f}t(n(g{H))) = %(&{H)) for all t e G . Define an ultraweakly continuous
representation a = {<x,}f6G of G as a group of ""-automorphisms of S£{H) by

7r(a,(x)) = A(n(x)), x e JSP(H), tcG.

For x in 9) we have 7r(ar(x)) = /?,(7t(x)) = n(ut(x)), hence at(x) = ut(x).

2.

Motivated by the previous lemmas we now turn to a study of the spectral
subspaces of strongly continuous unitary representations of the real line U in 9)(H)
such that the condition of Lemma 2 holds (we shall call these representations
'multiplicative').

3 PROPOSITION. Let u be a multiplicative strongly continuous unitary
representation ofU in § , let P"( • ) be the corresponding resolution of the identity in § ,
and put 9)x = PU\_X, 4- oo)§, X e IF§. Then the following properties hold for all X, fie U:

(i) if X < pL, then §^ c= 9)k, (ii) Q §v = § ; 5

(v) SA §^ c= §A + / i .

Moreover, if(i) through (v) hold for a family {$>x}xe& of closed subspaces of 9), then one
also has

(vi) & # < = & „ .

(Of course, 1 denotes the orthogonal complement with respect to the scalar product
(• I •) on $.)

Proof. Statements (i), (ii) and (iii) correspond to the following properties of

(a) if X < PL, then Pu|>, + 00) ^ PU[X, + 00),

(b) lim Pu[v, + 00) = PU[X, +00),
»• <;.

(c) lim Pu[v, +00) = 0
v — +oc

(the limits are considered in the strong operator topology).
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To prove (iv) and (v), let a be the extension of u to an ultraweakly continuous
one-parameter group of *-automorphisms of S£{H) (Lemma 2). Then
£v = Ma[v, + oo) n § for all v e IR (Lemma l(b)). Hence

§v* = (Ma[v, +00) n §)* = Ma[v, +oo)* n §

= Ma(-oo, - v ] n § [4, Lemma 8.3.3]

= P " ( - o o , - v ] 5 .

Consequently

( p«(-oo, -v]§V= (P"(-oo, - W = P-[-A, +oo)§ = 5-i
v > A / \ v > A

Likewise, property (v) is a consequence of

Ma[A, +oo)MaO, +oo) c Ma[A + /*, +oo)

[1, Lemma 1, p. 232].
Finally, suppose that {5A6fi *s a ny family of closed subspaces of § for which (i)

through (v) hold. Let //, v be real numbers. By (v), we have

and hence

&
As a consequence,

) = u(u
\v > -

where the last equality follows from (ii). Finally (J 5? is dense in 5f by (i) and (iv)
V > —/.

and multiplication is continuous in 5> hence we obtain 515^" c : 5̂ +/i» a s desired.

The aim of the sequel is to show that the necessary conditions (i)-(vi) on the £>;
described in the statement of Proposition 3 are also sufficient to define a
multiplicative one-parameter group of unitaries on 5 (they are actually redundant,
as is apparent from the proof of the proposition). However, due to the symmetry
around the origin expressed in 3(iv), it is both more natural and more convenient to
start with a 'one-sided' family of subspaces {5;.};. ^ o- Sufficient conditions obtained in
that case will immediately lead to conditions in terms of a 'two-sided' family of
subspaces, indexed by the whole of U (Corollary 6).
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4 THEOREM. Let H be a Hilbert space, and let {§;}; ^0 be a family of closed
subspaces of §(H) satisfying

(a) ifO^ k<fi, then 9)^ c § , (b) for all k > 0, f| §v = &,
0 < v < A

( $ * Y = §0,
v > 0 \v > 0 /

(e) & $ „ <= $ i + J I /or a/Z A, ,x > 0, (f) £f ^ c= $f+|1 /or all X, p > 0.

Then there exists a unique multiplicative strongly continuous unitary representation u
of U in § such that

for allk^O.

To prove the theorem, we first make the definition forced upon us by (iv) in
Proposition 3: for A < 0, we put

& = I U i
\ v > -A

5 LEMMA. Under hypotheses (a)-(d) above, and with the previous definition, the
family {§>x}keU has all the properties (i)-(iv) of Proposition 3. If moreover (e) and (f)
hold, then so do (v) and (vi).

Proof (i) Suppose that k < p. If 0 ^' k then § p c $$x by hypothesis (a). If

( V
<F)̂  = I (J §* by hypothesis if \i = 0, by definition otherwise

M J §,* because —k>—fi
\ v > - A /

= §A by definition.

The case when k < 0 < \i follows by combining the two cases above,

(ii) If k > 0, we have
n §v = n §v by (j)

= §A by hypothesis (b).
If k ^ 0, then

P) §v = Pi ( n ^* x ) by definition
v < A v < A \ n > - v /

= 0 ^* x = ^A by definition if A < 0, by hypothesis (d) if A = 0

(iii) P) §v = Pi Sv = {0} by (i) and (c).
velfe 0 < v
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(iv) Suppose that X < 0. Then we have

(u «Y = n &*
\v > X J v > X

= (1 S"* by (i)
X < v < 0

= n ( U ^v) by definition and by (a)
A < v < 0 \ / i > - v /

(we also used the simple fact that ft*1 = ft1* for every subspace ft of Jr>).

Now if X < v, obviously §_A <= (J ^ <= I \J &A , and hence
^ > -V Xfl > -V /

§_; c: p) ( U § J . On the other hand if v < 0 we have ( (J § J c §_v
A < V < 0 \ / J > — v / \ /i > - v /

by hypothesis (a) and because §_v is closed. Thus

n ( u s,) «= n »..-»-i
/. < v < 0 \ /« > - v / A < v < 0

by (b). Altogether we have f] I (J 6^1 = §_ ; , and that finishes the proof of
/. < v < 0 \ fi > - v /

(iv) in the case when X < 0. The cases when A = 0 and X > 0 follow by hypothesis
(d) and by definition, respectively.

Thus far we only used hypotheses (a) through (d). Let us assume from now on
that (e) and (f) are valid as well.

(v) Again we have to distinguish between several cases:

(1) X ^ 0 and n ^ 0: this is hypothesis (e),
(2) 0 ^ X ^ - f i o r 0 ^ pi- ^ -X.

First suppose that X ^ 0 and that v > -X-fj. ^ 0. By hypothesis (e),
§ v § . c £,.+;, hence §*§* c §(*+; and §;.(§,*+ J 1 c (S*)-1. Taking intersections over
all v > — X — n, we obtain

\v > -i.-n J v > -/.-//

By definition (or by hypothesis (d) if A + JI = 0), this means exactly

The proof of the case when 0 ^ \i ^ — X is analogous.

(3) 0 < -X < fiov 0 < -\x < X.
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Suppose that 0 < -A < v < /x. By hypothesis (f), we have fdv&t-v <= JF)1, or

^v*1^ = &X*S,, <= ^ _ , Hence ( 0 S*1) S, <= f| S,-v Using (i) and

the definition of 9)k in the left hand side and hypothesis (b) in the right hand side, the
previous inclusion yields

The case when 0 < — [i < X is treated similarly.

(4) A < 0 and \i < 0.

Put v > — X — \i. Since 0 < — \i < v, we have by (3) above that
§^§v <= -5,,+v, Sv*S? c §*+v, and §#„$„ c §*x. As before we conclude, by
considering intersections over all v > —X — pL, that §A§^ <= §A+/J. This ends the proof
of property (v) and indeed of the whole lemma, since it was shown in Proposition 3
that (i) through (v) entail (vi).

Proof of Theorem 4. First we claim that ( (J §v I = §• Indeed, [j Jr>v is a
subspace of 6 by property (i) and Vveft / vefe

vek

= f] §v
x, again by (i)

v < 0

= D ( U S?) by definition
v < 0 v . > — v /

- n §*v = {o},

by hypotheses (a) and (c). Together with properties (i), (ii) and (iii) (shown to hold in
Lemma 5), this implies, by Stone's theorem, the existence of a strongly continuous
one-parameter group u = {u,}teR of unitary operators on § with associated
projection-valued measure Pu( •) determined by P"[A, +oo)Jr> = § ; for all X G U.

Next we prove that

(•) (^(-o

for all X, (A G U. Let v > X and E, > fi. Since

&1 = ( H > , +t t ) )§)1 = P" ( -oo ,v )S ,

by Lemma 5 we have
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Hence

\v > X / v > X

or

by well known properties of projection-valued measures. Taking intersections over
all t, > (i and repeating the same reasoning yields^*).

We are now in a position to show that u is multiplicative. To that end, let
j£?w(§, <£?(£))) denote the space of bounded linear maps from § into i f (§) that are
continuous with respect to the weak (Hilbert space) topology on § and the
ultraweak (operator) topology on <£ (§). Let jS be the group of *-automorphisms of
$£(§) implemented by u (as in the proof of Lemma 2). Define a one-parameter group
of isometries (j) = {</>,},eR of J£w{9), 3?{5))) by

= ft 0 \JJ 0 Ut
 1

for all ^ e J&PW(§, <£?(§)) and t e R. Let M*( • ) and M0( • ) be the spectral subspaces
of «£?(£>), respectively JSfw(§, &(&)), corresponding to j9 and 0. Finally, let
7c0 : § -> JSf (§) denote the restriction of n to § (that is no{x)y = xy for all x,ye §).
Clearly n0 e i f w (§ , JSf (§)), and we are in the situation described in the preliminaries
to [1, Theorem 2.3].

Suppose that k e & and x e §;, = P"[A, + oo)§. Then

for all fxeU, by property (v). Hence by Corollary 2 of [1, Theorem 2.3],
7to(x) e M\X, + oo). Thus we have shown that

7ro(P"[A, +oo)§) e M"[A, +oo)

for all Ae R. But by [1, Theorem 2.3] this implies that n0 e M0[O, +00). On the
other hand, using (*) above, we obtain in a similar way that

for all XGU, and then 7r0 e M * ( - 00, 0]. The conclusion is that 7r0 6 M*({0}), or
equivalently that ft o n0 = n0 o ut for all t e R. If now x,yE<o, w e n a v e

by definition of ft ,

= ut{x)ut{y),

and u is indeed a multiplicative unitary representation of U in §>.
To prove uniqueness, suppose that v is a multiplicative strongly continuous

unitary representation of IR in § , with corresponding spectral resolution Pv{ •), such
that

§ . = py[A, + oo)§ for all A ^ 0 .
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Then obviously PV\_X, + oo) = PU[X, + oo) for all X ^ 0. This equality actually holds
for all real X, by Proposition 3(iv). Hence v = u.

From Theorem 4 we can easily deduce criteria for a family of subspaces {iO;.}^
of 9) to define a multiplicative one-parameter group of unitaries of § .

6 COROLLARY. Let (Jo^efe be a family of closed subspaces of 9) satisfying

(a) i/O < A < A< tten S , c & , (b) forallX>0, ft & =
0 < v < /.

(c) pi & = {0}, (d) f (J &*Y = S_;Jor a// X > 0,
> o

(e) §;§„ <= ̂ x+, for all X,fieU.

Then there exists a unique multiplicative strongly continuous unitary representation of
U in § such that %x = PU[X, + oo)§ for all XeU.

Proof. By Lemma 5, hypotheses (a) through (d) imply that properties (i)
through (iv) of Proposition 3 hold (notice that, for X > 0, hypothesis (d) coincides
with the definition of §_A made just before Lemma 5). Consequently, using (e) above
(which is nothing but 3(v)) we obtain 3(vi) as well, by Proposition 3. A fortiori the
conditions in the statement of Theorem 4 are met and the corollary follows from the
proof of that theorem.

3.

Let us now consider the original problem of characterizing spectral subspaces of
one-parameter groups of *-automorphisms of

7 THEOREM. Let H be a Hilbert space, and let { M ; } ; 6 K be a family of ultraweakly
closed subspaces of ££{H) satisfying

(a)

(c)

(e)

ifk<,u, then M^

= {0},

v
\4* n §) n §/or

(b)

(d)

n
v < /.

0.

Mv = M,/or a// A 6 R,

•r a// X, [i

Then there exists a unique ultraweakly continuous one-parameter group a of
*-automorphisms of ^(H) such that M; = Ma[A, +oo) for all X e U.

Proof. Uniqueness follows from [1, Lemma 2, p. 233]. To prove existence,
define Jr>; = Myn§ for all X G U. Notice that § ; is closed in § . Moreover the family
{§;.};. eft clearly satisfies the conditions of Corollary 6, hence there is a multiplicative
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strongly continuous unitary representation u of U in § such that § , = P"[X, + oo)§.
Let a be the extension of u to an ultraweakly continuous one-parameter group of
""-automorphisms of S£{H) (Lemma 2). By Lemma l(b),

Mk n 9) = & = PU[X, +oo)§ = Ma[X, + oo) n § .

We show that in fact M, = Ma[/l, +oo).
For all X e U we clearly have

(Af |7 , +oo) n § ) - = (M;. n § ) " c MA

(where the closure is taken in the ultraweak topology). Consequently

e > 0 c> 0

But the left hand side is equal to Ma[X, + oo) by Lemma l(a), whereas the right hand
side equals Mk by hypothesis (b) in the statement. Hence we have shown that
Ma[A, +oo) c= M;. To establish the converse inclusion, let xeM; and £ > 0. By
Lemma l(c) there exists a net {j/,-} c Ma[ — e, +co) n § = M_c n § converging
ultraweakly to Jhe identity operator on H. Hence {y^} converges ultraweakly to x.
On the other hand j/,-x e{M_En § )M ; . Since

we conclude that

xe f) (Ma[A-e, + o o ) n § ) - = Ma[A, +oo),
r. > 0

and this ends the proof of the theorem.

The conditions in the theorem are clearly necessary. Notice however that the
above proof uses the formally weaker versions

(a') if k < /i then Mfln9) cz M; n §

and

(C') n ( M . "$) = {o}
reft

of conditions (a) and (c).

8. Concluding remarks

(i) If H is finite-dimensional, the conditions of Theorem 4 are not fully

independent: (a), (c) and (e) imply that Jr>0 c I \J <r>* J . To show this, first notice
\v > 0 /

that, by (a) and (c), there exists Ao > 0 such that Jr>- = {0} whenever X > Ao.
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Suppose v > 0, x e § 0 , y e §v . By (e) we have yx e Jrjv and {yxf e §,)V for all positive
integers n. Since 9)nv = {0} as soon as nv > Xo, yx is nilpotent. This implies that
(x | y*) = Tv(yx) = 0, or equivalently that x l y * .

Incidentally, a similar argument using the same hypotheses shows that
/ V

l e M|6v* • H e n c e (a), (c), (d) and (e) entail 1 e §0-\ v>0 /

(ii) Next we want to establish that each of the conditions (d), (e) and (f) of
Theorem 4 are independent of the other two, given (a), (b) and (c). Let us consider
the following examples.

(1) Let H = C3; identify §> with the algebra of 3 x 3 matrices (a^), ^ tJ ^ 3, and
define subspaces fto> ^

Fix two real numbers 0 < X1 < X2 and consider the following family j ^ } ; . 5=0
subspaces of § :

§0 = ^o '

i f O < X

if xy <;

if X > X,

Clearly conditions (a), (b), (c) and (d) of Theorem 4 are satisfied. However, (e) holds
if and only if 2XX ^ X2, and (f) holds if and only if 2A, ^ A2.

(2) Let H = C4, and define the following subspaces of § :

0
0
0

a22

0
0

fl2 3

«33

0

2 ~

« 2 4

fl44 t

\l

\

\

'0
0
0
0

0
0
0
0

0
0
0
0

1

0 10
0 /
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Define {§>?}x>o a s m the previous example, with 0 < Xx < X2. Now (a), (b) and (c)

still hold, but (d) does not (however Jr>0 c (J § • ] and 1 e § O ) . Yet (e) and (f) are
\ v > 0 /

satisfied, provided that 2XX = X2 (in fact (e) requires that 2Xy ^ X2 and (f) requires
that 2XX ^ X2).

(iii) These examples, together with the one given in the introduction, indicate
that there is little hope of characterizing the family of spectral subspaces
{Ma[A, + oo)}/le^ of a one-parameter group a of *-automorphisms of S£{H) without
some condition involving the trace. Moreover in the above proofs advantage has
been taken of the exceptional fact that the space of Hilbert-Schmidt operators is
complete as a Hilbert space (cf. [2, Chapitre I, §8, no. 5]). Consequently there is no
obvious way to obtain a similar characterization when more general von Neumann
algebras are acted upon by 1R (not even type II x factors).
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