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Abstract: This paper attempts to provide an analogue of the Novikov con-
jecture for algebraic (or Kähler) manifolds. Inter alia, we prove a conjecture
of Rosenberg’s on the birational invariance of higher Todd genera. We ar-
gue that in the algebraic geometric setting the Novikov philosophy naturally
includes non-birational mappings.

1. Introduction

This paper describes an attempt to export the Novikov conjecture’s philosophy
in the direction of algebraic geometry. We hope that our discussion is useful to
algebraic geometers and topologists.

Our story begins with Hirzebruch’s Riemann-Roch theorem, or even earlier,
with Hirzebruch’s signature theorem, which was a lemma in his proof of Riemann-
Roch. Let M4k be a smooth closed oriented manifold of dimension 4k. The
signature of M , sign(M) is by definition the signature of the symmetric bilinear
form

∪ : H2k(M ;R)×H2k(M ;R) → H4k(M ;R) ∼= R
By Poincare duality, this is a nonsingular pairing, and since 2k is even, the pairing
is symmetric. Such forms can be diagonalized, and the signature is the difference
in dimensions between the positive and negative definite parts.

Hirzebruch’s signature theorem [27] asserts that

(1.1) sign(M) = 〈L(M), [M ]〉.
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where L(M) is a particular graded polynomial in the Pontrjagin classes of M .
Note that as a consequence of this, without knowing a thing more about L, that
if N → M is a finite cover, then sign(N) = s · sign(M), where s is the number of
sheets of the cover. In fact, Hirzebruch was very interested in the exact formula
for L, and it is quite intimately related to problems as disparate as the number
of exotic differential structures on the sphere [30] and Euler-MacLauren formula
and lattice point counting problems [14].

The two sides of the formula (1.1) are of very different sorts. The left hand side
is, by definition, an oriented homotopy invariant. (It is defined cohomologically.)
The right hand side seems to depend on the smooth structure. Indeed, ultimately
(1.1) is one of the key ingredients in Novikov’s proof that Pontrjagin classes are
(rationally) topological invariants [36]. We will return to this later.

It is also quite obvious from Stokes’ theorem and (1.1) that the right hand
side vanishes whenever M is the boundary of an oriented manifold. (If it merely
bounded a chain, the cohomology class L(M) might not extend). That this is
true for sign(M) was first observed by Thom, and it is a consequence of Poincare
duality for manifolds with boundary. Hirzebruch’s original proof of (1.1) was a
systematic exploitation of

(1) the cobordism invariance of the signature,
(2) the multiplicative formula

sign(M ×N) = sign(M)sign(N)

and,
(3) Thom’s calculation of oriented cobordism [46].

That 〈L(M), [M ]〉 is a homotopy invariant though, seems to only follow from
the signature theorem; it does not have an independent explanation.

Are there any other combinations of Pontrjagin classes that integrate to a
homotopy invariant? This was considered by P.Kahn in his thesis [29], and there
is no other rational homotopy invariant cobordism invariant.1

Novikov, however, suggested that if we give our manifolds “polarizations” i.e.
continuous maps f : M → Bπ, then we can exploit the fundamental groups
to possibly obtain more homotopy invariants. (Here Bπ denotes the classifying
space of the group π; it is an Eilenberg space of type K(π, 1), a space with
fundamental group π and contractible universal cover.2)

1Note that all Stiefel-Whitney numbers are (mod 2) invariants of homotopy type that are
cobordism invariant. Indeed, it follows from the Wu formulae that Stiefel-Whitney classes are
themselves homotopy invariant.

2Spaces with contractible universal cover are called aspherical.
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More precisely, Novikov conjectured that if α is an element of H∗(Bπ;Q) then
〈f∗(α)∪L(M), [M ]〉 is an oriented homotopy invariant. Subsequent work of Mis-
chenko and Wall (independently) showed that polarizations into non-aspherical
spaces are useless: only cohomology classes that come from the induced map on
cohomology from M → Bπ1(M) have any chance of producing (polarized) ho-
motopy invariants, and as with Kahn’s theorem, there is no point in considering
characteristic polynomials other than L.

We recommend the survey by Jim Davis [17] for more about the foundations
of the Novikov conjecture. (Indeed, there are several volumes, and many surveys
of this problem - we shall avoid the temptation to give a survey of these surveys,
here.)

We shall return to the Novikov conjecture, but it is perhaps not to soon to
expand on the Novikov philosophy in other directions.

The Riemann-Roch theorem of Hirzebruch computes the arithmetic genus
pa(M) of a projective algebraic manifold3 in terms of another polynomial, the
Todd class Td(M).

(1.2) pa(M) = 〈Td(M), [M ]〉

The arithmetic genus is the alternating sum of the dimensions of the Dolbeault
cohomology groups of M,

pa(M) =
∑

i

(−1)idimH0,i(M)

=
∑

i

(−1)idimH i(M ;OM )
(1.3)

The Todd class is a polynomial in the chern classes of M, and we shall, again,
ignore its precise form.

Now, the analogue of the homotopy invariance consequence of (1.1) is that
Td(M) integrates to a birational invariant of a smooth variety M . The reason is
that the left hand side is a birational invariant; indeed, as a consequence of the
Hartog extension theorem, each of the individual cohomology groups arising in
the definition of the arithmetic genus are birational invariants (see [22]).

Then the Novikov philosophy of trying to couple with group cohomology to
extend a general result to a more precise one in the presence of a fundamental
group leads one (and in particular Rosenberg [37]4 ) to conjecture:

3Of course, the index theoretic proof [4] of the Riemann-Roch formula removes algebraic
hypotheses on M. We have also ignored, for now, the extension to χ(M, V ) where V is a holo-
morphic vector bundle over M.

4Actually, we had made the same conjecture some years ago, and verified in the case of
abelian fundametantal group using ideas of Lusztig [33], but then noticed the more general



1240 Jonathan Block and Shmuel Weinberger

Conjecture 1.1. (Birational invariance of higher Todd Genera) If M is a smooth
projective variety and f : M → Bπ is a continuous map and if α is an element
of H∗(Bπ;Q) then

〈f∗(α) ∪ Td(M), [M ]〉
is a birational invariant.

Note (see [22] or [37]) that the (topological) fundamental group is a birational
invariant, so the question makes sense. Rosenberg in fact showed that for many
π, this is true; it’s true whenever a certain approach to the Novikov conjecture
(the so called ”analytic approach”) works. We will see that it’s true in general
using resolution of singularities and the Riemann-Roch theorem of Baum-Fulton-
MacPherson [6]5, but again, we are rushing the story. Rosenberg also observed an
analogue of the theorems of Kahn-Mischenko-Wall, that no other combinations
of Chern numbers can be birationally invariant.

This philosophy has had another very notable success, in differential geometry,
regarding the problem of constructing complete metrics of positive scalar cur-
vature. In that case, the ”general theorem” is due to Lichnerowicz, as an early
consequence of the Atiyah-Singer index theorem for the Dirac operator (which
also implies Hirzebruch’s theorems) [4], and asserts:

Theorem 1.2. (Lichnerowicz’s theorem) If M is a spin manifold with a metric
of positive scalar curvature, then 〈Â(M), [M ]〉 = 0, where Â(M) is the Â-genus.

And again, there is the:

Conjecture 1.3. (Gromov-Lawson-Rosenberg) If M is a spin manifold with pos-
itive scalar curvature and and f : M → Bπ is a continuous map and if α is an
element of H∗(Bπ;Q) then 〈f∗(α) ∪ Â(M), [M ]〉 = 0.

The analogy between this problem and the Novikov conjecture was developed
in Rosenberg, [38]. Moreover, see [44] for an explanation of the ”converse theo-
rems”, based on a surgery theorem of Gromov-Lawson and Schoen-Yau, and spin
cobordism calculations of Stolz, as well as many more positive results.

Having mentioned the Atiyah-Singer theorem and elliptic operators, it is now
inevitable that we bring in K-theory . (The Grothendieck part of the story will
come in the next section.) In the original papers of Atiyah and Singer, they
associated a “symbol bundle” to any elliptic operator6 [D] in K∗(T ∗M), where

results described below so we let the matter of finding an analogue of the Novikov conjecture
drop. On reading [37], we decided to return to the problem.

5This follows from the preprint [13] as well. Moreover, the precise integral statement that
for smooth birational morphisms the derived pushforward of the structure sheaf is the structure
sheaf, which is the key point in our proof, also follows from [45]

6We do not distinguish between an elliptic operator and an elliptic complex, nor between a
sheaf or a complex of sheaves.
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T ∗M is the cotangent bundle of M . (For us K∗ denotes the topological K-
group.) However, T ∗M has a natural symplectic structure, ω hence is orientable
for K-theory, and we can thus associate to D an element of the dual homology
theory K∗(M). The index theorem then asserts that ind(D) = dim ker(D) −
dim cok(D) = p∗[D] in Z, where p is the constant map from M → pt a point.
We can also explain the index theorem for families easily in this framework, but
we shall not. (We might suggest that the reader consult [2] for an early approach
to the K-homology class associated to an elliptic operator, and [26] for a recent
text.)

In all the above examples there are operators, namely the “signature”, Dol-
beault, and Dirac operators, which give “symbol classes” in K∗(M). Now, in-
stead of considering p : M → pt, we consider f : M → Bπ. This then gives
us f∗[D] ∈ K∗(Bπ) and one can conjecture appropriate vanishing or invariance
properties of this invariant. We call this the integral Novikov conjecture.

By using the Chern character, rational K-homology is identified with ordinary
rational homology, and the conjectures discussed above are the vanishing of this
homology class by checking that its pairing with arbitrary cohomology classes
vanishes.

Moreover, this inclusion of torsion is extremely significant. For instance, if one
uses real K-theory, then KO∗(pt) has 2-torsion, and one obtains a more general
obstruction to positive scalar curvature [28], which can be used to show that
certain homotopy spheres do not have positive scalar curvature.

Nice as all of this is, it’s off in detail. The integral Novikov conjecture, as
we just stated it, is wrong for signature and Dirac. In both cases, it’s the same
counterexample. If one considers lens spaces of high dimensions with fundamental
group Z/p, p a large prime, it is easy to do calculations to give the non-homotopy
invariance of the K-theoretic signature class. (In defining lens spaces, one takes
the quotient of a sphere under a free linear action of a cyclic group: by varying the
linear representation of Z/p, one gets many examples of nondiffeomorphic, but
homotopy equivalent manifolds, see [35].) Similarly, all lens spaces have positive
scalar curvature, but the Dirac class is nontrivial. These classes are all torsion,
though, so this issue does not affect the (rational) Novikov conjecture.

Now, there is a very sensible way to formulate an integral Novikov conjecture,
even in the presence of torsion, and it boils down to what we said above for π
torsion free, but we shall not pursue it here. (See e.g. [5], [48] for some discussions:
essentially one studies the invariants of proper but perhaps non-free actions on
contractible spaces rather just free actions.)

In any case, the next result is not analogous to what occurs for the other
operators: it is too strong.
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Proposition 1.4. The higher Todd K-class f∗([Dolbeault]) ∈ K∗(Bπ) is always
a birational invariant.

In the next section we shall prove the proposition above and in the final section
give what we think are examples of phenomena which more closely follow the
Novikov philosophy.

2. Novikov conjectures and Novikov theorems

Let us recall the Grothendieck-Riemann-Roch theorem of Baum, Fulton and
MacPherson, [6]. For them, the novelty was to extend the Riemann Roch theorem
to singular spaces. We however only need it for smooth ones, but we like their
statement because it takes values in topological K-theory.

Let Ka
0 (X) denote the Grothendieck group of coherent sheaves on the alge-

braic variety X. Grothendieck realized that taking the Euler characteristic of
a coherent sheaf was a special case of pushing forward in algebraic K-theory.
Thus the Riemann-Roch problem is about passing from the algebraic/geometric
group Ka

0 (X) to receptacle theories which are presumably easier to compute with
and also understanding how this map behaves with respect to pushforward. For
example, the Todd genus is the correction needed to make the corresponding
map on chow groups (or singular homology) commute, [8]. Baum, Fulton and
MacPherson emphasized that there are other interesting targets, and in [6] they
used topological K-homology.

Recall how the pushforward in algebraic K-theory works. Given a proper map
f : X → Y between algebraic varieties, one defines

f∗ : Ka
0 (X) → Ka

0 (Y )

for A a coherent sheaf on X and [A] its class in Ka
0

f∗[A] =
∑

i

(−1)i[Rif∗(A)]

where Rif∗(A) denotes the ith higher pushforward. This is the sheafification of

U 7→ H i(f−1(U);A)

It is true that Rif∗(A) is a coherent sheaf and that the class of f∗(A) only depends
on the class of [A].

To be a suitable receiver, the theory needs to have pushforwards for proper
maps, so that one can compare them with the pushforwards in algebraic K-
theory. In topological K theory, the pushforward is defined using duality and
Gysin maps, [6].

We now recall
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Theorem 2.1. (Baum, Fulton, MacPherson) In the category of quasi-projective
schemes over C, there is a natural transformation

α : Ka
0 (X) → K0(X)

Furthermore, α is commutes with proper pushforwards.

Now for a complete variety X the pushforward of [OX ] ∈ Ka
0 to a point is

the arithmetic genus. On the other hand, we can take α([OX ]) ∈ K0(X) and
then pushforward. This is now some topologically computed number that equals
the arithmetic genus, by the Riemann Roch theorem. The Todd genus shows up
when one further takes the Chern character map from K0(X) → Heven(X;Q).

Some of the pleasing aspects of the K0-valued Riemann-Roch theorem are

(1) The Riemann-Roch map is quite easy to define and after the relevant
dualities boils down to the forgetful map on the cohomological K-theories:

K0
a(X) → K0(X)

where K0
a(X) is the Grothendieck group of algebraic vector bundles on

X and K0(X) is the K-group of topological vector bundles on X and the
map just forgets the algebraic structure.

(2) There is no correction term since they are both forms of K-theory.
(3) K0(X) can capture torsion information.

We note the following example of pushforward as a rather simple lemma. (This
appears as example 3, page 102 of [8].)

Lemma 2.2. Let f : X → Y be a morphism induced from blowing Y up along a
smooth center. That is f is a blow down morphism. Then

R0f∗(OX) = OY

Rif∗(OX) = 0 for i 6= 0
(2.1)

That is,
f∗([OX ]) = [OY ]

in Ka
0 (Y ).

Proof. This follows merely from the fact that the fibers of a blow up over a smooth
center are either points or Pn’s and that in both cases H i(−,O) = C if i = 0 and
0 otherwise. ¤

Proof. We now prove Proposition 1.4. Like Rosenberg, [37] we will use the weak
factorization theorem [1].



1244 Jonathan Block and Shmuel Weinberger

Theorem 2.3. Let ϕ : X 99K Y be a birational map between complete non-
singular algebraic varieties over an algebraically closed field of characteristic 0.
Let U be an open set where ϕ is an isomorphism. Then ϕ can be factored into a
sequence of birational maps

(2.2) X
ϕ199K X1

ϕ299K X2
ϕ399K · · · ϕk−199K Xk−1

ϕk99K Xk = Y

where

(1) ϕ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1

(2) ϕi are isomorphisms on U
(3) either ϕi : Xi−1 99K Xi or ϕ−1

i : Xi 99K Xi−1 is a morphism of alge-
braic varieties (in particular, everywhere defined) obtained by blowing up
a smooth irreducible center disjoint from U .

Given a birational map ϕ : X 99K Y , it induces an isomorphism of fundamental
groups

ϕ : π1(X) → π1(Y )
which we denote simply by π1. Choosing a polarization (in the sense above),
ρ : Y → Bπ1 induces a polarization for X. Now we apply the weak factorization
to the birational map ϕ to factor it as in (2.2). All the spaces Xi thus inherit
factorizations ρi : Xi → Bπ1 making all the maps to Bπ1 commute. Thus, in
order to prove the proposition it only remains to show that given a commutative
diagram

(2.3)
V

ψ→ W
ρV ↘↓ ρW

Bπ1

where ψ is a blowdown morphism along a smooth center, that

ρV (αV (OV )) = ρW (αW (OW )).

Consider the commutative diagram

(2.4)
Ka

0 (V ) αV→ K0(V ) ↘
ψ∗ ↓ ψ∗ ↓ K0(Bπ1)

Ka
0 (W ) αW→ K0(W )↗

According to the lemma above, we know that

(2.5) ψ∗([OV )] = [OW ] ∈ Ka
0 (W )

So we have

(2.6) ρW (αW (OW )) = ρW (αW (ψ∗(OV )))

But by the Riemann-Roch Theorem this is

(2.7) ρW (ψ∗(αV (OV ))).



Higher Todd Classes and Holomorphic Group Actions 1245

Now since ρW ◦ ψ is homotopic to ρV , we have that

(2.8) ρW (ψ∗(αV (OV ))) = ρV (αV (OV )))

which finishes the proof. ¤

If we examine the proof given above we now see why the birational invariance
of the higher Todd class is true generally: it is because birational equivalence is
hereditary, that is, it is a condition that is locally checkable on the image. As
such, it is more closely analogous to Novikov’s theorem that rational Pontrjagin
classes are topologically invariant than it is to the Novikov conjecture7 .

Let us amplify this point. If one has a homotopy equivalence h : M ′ → M ,
then one does not at all know that h restricts nicely to h−1(U) for subsets U ⊂ M .
The Novikov conjecture actually addresses this. If f : M → S1 is a map, and
if one is able to homotop h so that h restricted to h−1(N), for N = f−1(1), is
a homotopy equivalence, then by the Hirzebruch signature theorem, one would
have obtained a proof for the fundamental class of the circle. (A sort of converse
to this argument can be given via surgery theory.) In fact, this is essentially the
method used in [19] in the first proof for free abelian groups. However, it is deep,
and requires a homotopy to see any hereditary aspect.

However, homeomorphisms don’t present this problem: they are hereditary
homotopy equivalences! In fact for all open sets, they are proper homotopy equiv-
alences. (In fact, they are bounded homotopy equivalences on all open subsets,
when remetrized to be complete.) This is what leads to Novikov’s theorem.

In fact, Sullivan realized that all that Novikov used was the hereditary homo-
topy equivalence property, and as such, Novikov’s argument applies to CE maps,
i.e. maps with (Čech) contractible point inverses. This doesn’t give much more,
though, because Siebenmann [41] showed that all such maps are uniform limits of
homeomorphisms, but it does gain punch if one realizes that as rational homology
is all that’s ever used, one gets the same conclusion if the map were Q-CE, i.e.
had (Cech) rationally acyclic point inverse images.

Again the exact same reasoning shows that if h : X → Y is a small resolution
(see [21]) then h∗(L(X)) = L(Y ) where L here is the Goresky-MacPherson L-
homology class of a (suitable) stratified space. It is true on the characteristic class
level, because an appropriate statement is true on the sheaf level. This same line
of thought can lead one to the projection formulae in [15], which if rephrased
purely homologically (rather than geometrically, as something about “stratified
maps”) can be held to include Novikov’s theorem.

7See [20], [16] for a discussion of the Novikov conjecture and Novikov philosophy on noncom-
pact manifolds (as influenced most directly by Roe and Higson); in particular the first reference
explains how to prove Novikov’s theorem as a consequence of a the Novikov conjecture for the
metric manifold Rn.
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As a perhaps surprising negative example, positive scalar curvature should not
be thought of local! Certainly there is no local connection between the p.s.c.
assumption and characteristic classes: [31] show that any function φ : M → R,
which is negative somewhere, e.g. in a little ball, is the scalar curvature of a
metric on a compact manifold M. The negative scalar curvature set can be tiny
even if there’s a ”big” cohomological obstruction to positive scalar curvature8 .

Moreover, in truth, one cannot get any information from incomplete metrics -
and the restriction of a given metric to an open subset will be incomplete. Any
manifold has an open subset diffeomorphic to Tn−1×R, which does not have any
complete p.s.c. metric - so there is no hope of a deformation argument. In the
end, the p.s.c. condition is more like a global hypothesis than a local one!

3. Connections to Group Actions

In this section we review some connections between the Novikov philosophy and
group actions, and use this to suggest a holomorphic problem which does seem
tied to the Novikov philosophy. We shall also point out how the known “universal
results”, which apply to all fundamental groups, are essentially exploitations of
the hereditary nature of hypotheses, and so tend to be correct for connected
groups, but unavailable for disconnected ones.

Our story here starts off with another theorem about vanishing of the Â-genus
of spin manifolds, here in the presence of a circle action.

Theorem 3.1. (Atiyah-Hirzebruch [3]) If M is a spin manifold admitting a (non-
trivial!) smooth circle action, then 〈Â(M), [M ]〉 = 0.

There is actually a slight connection to Lichnerowicz’s result above. If one
had a compact nonabelian group action, rather than a circle action, then one
can produce [32] an invariant positive scalar curvature metric (essentially by
making the orbits have very small diameter). So, in that case one gets the
Atiyah-Hirzebruch vanishing from the Lichnerowicz. However, as there are many
manifolds (e.g. tori) with circle actions and no p.s.c. metrics, the results are
quite independent.

It is worth noting, moreover, that the above Atiyah-Hirzebruch theorem fails
for the torsion part of the index of the Dirac operator. It is tied just to the
rational part. (Conversely, one does obtains a deep interesting restriction on the
manifolds admitting smooth nonabelian connected Lie group actions from the
[32] construction combined with Hitchin’s refinement, [28] that does not seem to
have a purely differential topological proof.)

8This is not the case in the noncompact case, see [40], [7].
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One cannot go too far in guessing a nonsimply connected version of the above,
as the torus has a free circle action, but its higher signature (associated to the
fundamental class) is nontrivial. The way around this is to note that if a circle
acts on any space X, the orbit of the base point defines a loop, whose class
〈orbit〉 ∈ π1(X) is actually central in the fundamental group. (It is part of the
induced map on π1 by the map S1 ×X → X defining the action!) It thus makes
sense to work with the quotient group π1(M)/〈orbit〉.

The following theorem was conjectured by Reinhard Schultz, motivated by the
Novikov and Gromov-Lawson-Rosenberg conjectures.

Theorem 3.2. (Browder-Hsiang [12]) If M is a spin manifold, S1 acts nontriv-
ially on M , and f : M → Bπ classifies the fundamental group of M , then for
any α ∈ H∗(B(π/〈orbit〉;Q) one has 〈f∗(α) ∪ Â(M), [M ]〉 = 0.

The basic idea of their proof is this: essentially9 they build an equivariant map
from M → Bπ/〈orbit〉 (where that latter has a trivial action). If one believes this,
then theorem follows. Without loss of generality we can think of Bπ/〈orbit〉 as a
manifold, and a cohomology class on it as being dual to a submanifold with stably
trivial normal bundle10 . The transverse inverse image of this submanifold has Â-
genus exactly equal to the associated higher Â-genus of M , but this submanifold is
both spin and invariant under the circle action and hence has vanishing Â-genus.

The proof is thus a perfect example of the locality (not in M , but in the target
space B(π/〈orbit〉). Somewhat related, and simpler, is the following result (which
does have some torsion information, but which we shall not explain):

Theorem 3.3. ([49]) If M is an oriented manifold11 which admits a nontrivial
S1 action with nonempty fixed point set F , then there is a natural orientation on
F and the higher signatures of M and F agree in H∗(Bπ;Q).

Note that if F is nonempty, 〈orbit〉 is trivial. The proof is similarly local over
the quotient starting with a general result: The signature of the manifold equals
the signature of its fixed point set. This follows from the G-signature theorem.

Irrelevant but irresistible (to us) remark12 : This principle is very useful for
calculations. Here is a particularly amusing example. Consider a toric surface

9We are oversimplifying for convenience of exposition.
10Note that we are working rationally. The conventional argument assumes that the coho-

mology class is odd dimensional, and one then finds a submanifold with trivial normal bundle
using old results of Serre [42]. Then one uses tricks to reduce to this, because for even dimen-
sional classes cup square obstructs finding a dual class with trivial normal bundle. However,
even in the even case, there is a dual submanifold whose normal bundle is stably trivial, and
whose Euler class exactly accounts for the cup square.

11Rational homology manifold actually suffices.
12This was observed by Cappell and the second author many years ago as part of some

unwritten joint work.
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whose moment map has image a triangle in the plane. This manifold has many
different circle actions, as a torus contains many different circles. Ignoring the
three circles that define the sides of the triangle, all circles have the same three
fixed points = the vertices of the moment polygon. The sign of the fixed point is
determined by whether the line lies within the angle at the corresponding fixed
point a.k.a. vertex. Considering first a line at a tiny angle with one side and
then applying the observation that signature must be independent of this, we see
that (almost) every line is actually in exactly one vertex angle. This is Euclid’s
theorem that the sum of the angles of a triangle is 180 degrees, but phrased more
to his liking; the sum of the angles of a triangle is a straight angle.

However, the main point of [49] and more relevant to us is that there are
versions of the above theorem for certain finite cyclic group actions that are
equivalent to the Novikov conjecture.

Theorem 3.4. Suppose G is a finite cyclic group which acts smoothly and twisted-
homologically trivially on a smooth manifold M . Then the following formula for
characteristic classes

f∗(L(M) ∩ [M ]) = (fi)∗ ((L(F ) ∪ k(νF )) ∩ [F ]) ∈ H∗(Bπ1(M))

holds if the Novikov conjecture holds for π1(M). Here k is a certain characteristic
class (discussed below), νF denotes the equivariant normal to F and i : F → M
is the inclusion map. Conversely, if this formula holds for all such actions of
a specific finite cyclic group, and even only for free actions, one can deduce the
Novikov conjecture for π1M .

We shall describe the characteristic class in terms that makes its version for
other elliptic operators transparent. If D is an elliptic operator, and g is a self
map of M which preserves D, then there is a Lefshetz version of ind(D). One
considers L(g, D) = tr(g|kerD)− tr(g|cokD).

If g is part of a compact group, then Atiyah and Singer give a characteristic
class formula. L(g, D) is the result of integrating a characteristic class over F ,
the fixed set of g. For us, k is the result of averaging this local class for all of
the generators of the cyclic group generated by 〈g〉. (They all have fixed set F ,
of course.)

Now let us be a little more explicit about the homological triviality condition.
Firstly we assume that the G action lifts to the universal cover as part of a G×π
action. (This is like what happens when one has a circle action with nontrivial
fixed point set.) Then we can consider the action on the homology of the universal
cover or its compactly supported cohomology or its cohomology, it doesn’t much
matter. We assume this action is trivial.

That this formula should hold under a suitable Novikov conjecture hypothesis
is most easily seen using the ideas of [39], which gives a Lefshetz point of view
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on the analytic Novikov ideas. We should therefore be a bit more precise about
a formal aspect of the latter now,

At the core of this approach is the theory of C∗-algebras. It turns out that
when a an elliptic operator acts on sections of a bundle whose fibers are finitely
generated projective modules over a C∗-algebra A, its kernel and cokernel (after
perturbation) can be thought of as projective modules over that algebra. Thus
one has an index which lies in K0(A). For purposes of the Novikov conjecture
the relevant algebra C∗π is a completion of the integral group ring. One can
take an operator on M , and pass to the universal cover and keep track of the
π action. Equivalently, one is taking coefficients in the tautological C∗π-bundle
over M and taking its index.

In any case, one is lead to study a natural map K∗(Bπ) → K∗(C∗π) which
takes the higher symbol index to the difference between a kernel and a cokernel,
i.e. a real live analytic index. If this map is injective, then we say that the
analytic Novikov conjecture holds, and when the latter holds, one can deduce the
ordinary Novikov conjecture and the Gromov-Lawson-Rosenberg conjecture.

The homological triviality implies that g acts trivially on suitable modules, so
tr = dimension. So ind(D), which includes the higher signature, is related to
L(h,D) for each h which generates 〈g〉. We thus get many formulae for ind(D),
whose average is the one displayed.

The converse result relies on surgery ideas to construct enough actions to
contradict the formula if the Novikov conjecture fails. One also needs to give a
purely surgery theoretic proof of the formula on the assumption of the original
Novikov conjecture rather than the analytic one, which is why one needs exactly
the class k rather than any of its non-Galois invariant versions.

Note that this Lefshetz type localization formula is equivalent to the Novikov
conjecture and thus is at least at this time not something universally true. It
also doesn’t hold integrally (in general). The point is that its hypothesis is not at
all local. The homological triviality hypothesis is global. When one has a local
reason for homological triviality, then one can indeed prove a suitable vanishing
theorem. For instance if M had an equivariant map to Bπ (trivial action) so
that all point inverses were acted on homologically trivially, then indeed one
can directly prove that the higher signatures of M vanish. (See [50] for related
statements.)

However, we can now state and sketch a holomorphic statement which is also
non-local, and which follows from the Novikov conjecture.

Theorem 3.5. Suppose that M is a smooth compact Kähler manifold and G
is a cyclic group acting holomorphically on M with fixed set F and trivially on
the unreduced holomorphic L2 cohomology of its universal cover. If the analytic
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Novikov conjecture for π1(M) holds, then

f∗(Td(M) ∩ [M ]) = fi∗
(
(Td(F ) ∪ k′(νF )) ∩ [F ]

) ∈ H∗(Bπ1M)

for a suitable characteristic class k′ of the equivariant normal bundle of F .

The hypothesis again demands a lift of G×π to the universal cover of M . The
relevant L2 cohomology is the unreduced one (see e.g. [18]) By holomorphic part,
we mean the 0, ∗ part in the Hodge decomposition. The condition of homolog-
ical triviality means that if we take the differential forms and compress by the
idempotent

p = 1− 1
|G|

∑
g

the spectrum of the Laplacian does not contain 0. This implies the vanishing of
the relevant Lefschetz number is equal to the index of the Dolbeault.

It is worth noting that the topological hypothesis in Theorem 3.4 suffices, in
light of Hodge theory to imply the hypothesis of this theorem. (See [23], [43] for
some discussion of Hodge theory on the universal covers of Kähler manifolds.)
The reason is this: If the cohomology of the universal cover is a trivial G-module
when contracted by the idempotent p, then the chain complex is acyclic. Since
L2(π) is a module over Qπ, a fortiori that cohomology, when contracted by p
vanishes as well, i.e., the hypothesis of Theorem 3.5 holds as well. Consult [18]
or [34].

Note that the above argument shows that all the cohomology groups vanish
when contracted by p, and that therefore all the diagonals in the hodge diamond
have vanishing Euler characteristic. These diagonals are Dolbeault cohomology
with coefficients in a bundle, and hence, these are indices as well: the Hirzebruch
χy-genus encodes all of these. His theorem (which for varieties unifies Riemann
Roch and the signature theorem) asserts that

(3.1) χy(M) = 〈Ty(M), [M ]〉
for a suitable characteristic class. Combining all of the above we obtain:

Theorem 3.6. Suppose that M is a smooth algebraic variety and G is a cyclic
group acting holomorphically on M with fixed set F and trivially on the coho-
mology with compact supports of its universal cover, then if the analytic Novikov
conjecture for π1M holds, then

f∗(Ty(M) ∩ [M ]) = fi∗
(
(Ty(F ) ∪ k′y(νF )) ∩ [F ]

) ∈ H∗(Bπ1M)

for a suitable characteristic class k′y of the equivariant normal bundle of F (pro-
duced from the Atiyah-Singer integrand by the usual averaging procedure).

We close with a number of problems.
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(1) The results about circle actions held for both the L-genus and the Â-
genus. Presumably there is some simultaneous generalization that ap-
plies to higher elliptic genera. Some useful references that discuss elliptic
genera in the context of birational geometry are [47], [9], [10],[11],[13],
[45].

(2) Are there examples that show that our vanishing theorem for higher Todd
genera are false for finite π, if one does not rationalize?

(3) If f : M ′ → M is a holomorphic map which induces an isomorphism on
H∗ for π covers, do they have the same higher Ty-genus in H∗(Bπ)? For
the ordinary Novikov conjecture, such a generalization is possible, and is
part of the proof of the higher Lefshetz localization theorem.

(4) Is there a version of Nielsen theory for elliptic operators other than De
Rham?
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