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Abstract. This is the second in a series of papers intended to set up a framework to
study categories of modules in the context of non-commutative geometries. In [3] we asso-
ciated to each curved dga A the basic DG category PA, which in the case where A is the
Dolbeault dga on a complex manifold is equivalent to the derived category of sheaves with
coherent cohomology. In this paper we enlarge this category to include objects which corre-
spond to quasi-coherent sheaves. We then apply this framework to proving an equivalence
of categories between derived categories on the noncommutative complex torus and on a
holomorphic gerbe on the dual complex torus.
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1. Introduction

This is the second in a series of papers. Its purpose is twofold. First, we continue to set up
a framework to study categories of modules in the context of noncommutative geometries,
which are integrable in some sense. This integrability we encode in a (curved) differential
graded algebra A = (A•, d, c). The second is to apply our framework to an interesting non-
trivial example. In particular, we prove an extension of Mukai duality from the classical case
of complex tori, to that of noncommutative tori.

In [3] we introduced the basic DG category PA, of A, which corresponded to the category
of coherent sheaves on a complex manifold.

One of the purposes of this paper is to develop more of the apparatus. In particular, we
show how to get some of the six operations of Grothendieck in our context. They are all
some version of tensoring with a bimodule. However, in order to do this, we need to enlarge
our basic category of modules PA to a larger category qPA, the quasi-perfect category of
A•. This corresponds to the category of quasi-coherent sheaves on a complex manifold. The
category of quasi-coherent sheaves on a complex manifold is less well known for complex
manifolds than it is for algebraic schemes.

There are at least two reasons for enlarging the category. Most pressingly, the derived
pushforward is most naturally defined into the quasi-perfect category. For example, in com-
plex geometry, to define the derived pushforward, one performs the following steps:

(1) Resolve by injective sheaves, which can only be done in the quasi-coherent category,
(2) Push forward. This remains a quasi-coherent complex of sheaves.
(3) Prove that the direct image is equivalent to a complex of coherent sheaves, i.e.

Grauert’s direct image theorem.

If we don’t care to end up back in the coherent category, we can stop after step (2). This
is what we do in this paper. Finiteness conditions and Grauert’s direct image theorem are
the subject of the third paper in the series, [4].

The second reason for introducing this larger category is that on a complex manifold, there
can potentially be very few coherent sheaves. Certainly, not nearly enough to determine the
manifold up to isomorphism. Quasi-coherent sheaves provides a larger category where more
invariants of complex manifolds might be found.

Most of the paper is concerned with an application of our framework: to formulate and
prove a deformed version of Mukai duality, which we now explain. let X be a complex torus.
Thus X = V/Λ where V is a g-dimensional complex vector space and Λ ∼= Z2g is a lattice in
V . Let X∨ denote the dual complex torus. This can be described in a number of ways:

(1) as Pic0(X), the variety of holomorphic line bundles on X with first Chern class 0
(i.e., they are topologically trivial);

(2) as the moduli space of flat unitary line bundles on X. This is the same as the space
of unitary representations of π1(X), but it has a complex structure that depends on
that of X;

(3) and most explicitly as V
∨
/Λ∨ where Λ∨ is the dual lattice,

Λ∨ = {v ∈ V ∨ | Im < v, λ >∈ Z ∀λ ∈ Λ}.

Here V
∨

consists of conjugate linear homomorphisms from V to C.
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We now describe Mukai duality. On X × X∨ there is a canonical line bundle, P , the
Poincaré bundle which is uniquely determined by the following universal properties:

(1) P|X × {p} ∼= p where p ∈ X∨ and is therefore a line bundle on X.
(2) P|{0} ×X∨ is trivial.

Now Mukai duality says that there is an equivalence of derived categories of coherent sheaves

Db(X)→ Db(X∨)

induced by the functor

F 7→ p2∗(p
∗
1F ⊗ P)

where pi are the two obvious projections. The relation of this statement with the Baum-
Connes conjecture is discussed in [3].

Besides the usual deformations of a complex manifold X as a complexmanifold, there are
interesting extra deformations that are derived from the philosophy expounded by Bondal,
Drinfeld and Kontsevich: The most general way to deform a space X is by deforming the
derived category Db(X) of sheaves or a DG enhancement (such as PA0,•(X)) as a DG category.
The infinitesimal deformations of Db(X) are given by the second Hochschild cohomology of
X:

HH2(X) := Ext2
X×X(O∆,O∆).

There is a ‘Hodge type’ decomposition:

HH2(X) = H0(X;∧2TX)⊕H1(X;TX)⊕H2(X;OX)

(1) The term H1(X;TX) corresponds to the classical deformations of X as a complex
manifold.

(2) H0(X;∧2TX) consists of global holomorphic Poisson structures and correspond to
deformations of X as a noncommutative space.

(3) The most mysterious term H2(X;OX) corresponds to deformations of the trivial O×
gerbe to a non-trivial O×-gerbe.

In the case above, where X = V/Λ is a complex torus and X∨ = V
∨
/Λ∨ its dual torus,

the equivalence of categories implemented by the Poincaré bundle establishes the following
identification of the terms of the Hochschild cohomology:

(1.1)

H0(X;∧2TX) ∼= ∧2V ∼= H2(X∨;O)

H1(X;TX) ∼= V ⊗ V ∨ ∼= H1(X∨;TX∨)

H2(X;O) ∼= ∧2V
∨ ∼= H2(X∨;∧2TX∨)

What this suggests, is that if we deform X to a holomorphic noncommutative torus, then
the dual will deform to a holomorphic gerby torus, and vice versa. This is where one should
look for a derived equivalence of categories.

This derived equivalence was carried out in the context of deformation quantizations by
Ben-Bassat, Block and Pantev, [1]. Here we will prove this derived equivalence in our context
which has the advantage over [1] of applying to informal (i.e. non-formal) deformations.

The author would like to thank Oren Ben-Bassat, Andrei Caldararu, Calder Daenzer,
Anton Kapustin, Tony Pantev and Betrand Toen for conversations and suggestions during
this work.
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2. The quasi-perfect category of modules over a differential graded
algebra

In this section we make our extension of the perfect category of a (curved) DGA.

2.1. Review of the perfect DG category of a curved DGA. Here we briefly review
the DG-category that we assigned to a curved DGA. See [3] for more details. Also, see [6],
[19], [10] for facts about DG-categories.

Definition 2.1. A curved DGA [24] (Schwarz calls them Q-algebras) is a triple (A•, d, c)
where A• is a (non-negatively) graded algebra over k with a derivation

d : A• → A•+1

which satisfies the usual Leibnitz relation but

d2(a) = [c, a]

where c ∈ A2 is a fixed element (the curvature). Furthermore we require the Bianchi identity
dc = 0.

We will always set A = A0.
A DGA is the special case where c = 0. Note that c is part of the data and even if d2 = 0,

that c might not be 0, and gives a non DGA example of a curved DGA. This is in fact the
case for our gerby complex torus described in the introduction. The prototypical example of
a curved DGA is (A•(M,End(E)), Ad∇, F ) of differential forms on a manifold with values
in the endomorphisms of a vector bundle E with connection ∇ and curvature F .

Let (A•, d, c) be a curved DGA. Let E• be a Z-graded (bounded in both directions) right
A-module which is finitely generated and projective.

Definition 2.2. A Z-connection A is a k-linear map

A : E• ⊗A A• → E• ⊗A A•

of total degree one, which satisfies the usual Leibnitz condition

A(eω) = (A(e))ω + (−1)eedω

Such a connection is determined by its value on E•. Let Ak be the component of A such
that Ak : E• → E•−k+1⊗AAk, thus A = A0 +A1 +A2 + · · · . It is clear that A1 is a connection
on E• in the ordinary sense and that Ak is A-linear for k 6= 1.

Definition 2.3. For a curved DGA (A•, d, c), an object in the perfect DG-category PA•
(called a perfect twisted complex, or a module) is a Z-graded (but bounded in both directions)
right module E• over A which is finitely generated and projective, a Z-connection

E : E• ⊗A A• → E• ⊗A A•

that satisfies the integrability condition

E ◦ E(e) = −e · c

The minus appears because we are dealing with right modules.
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The morphisms between two such objects E1 = (E•1 ,E1) and E2 = (E•2 ,E2) of degree k are

Homk
P•A

(E1, E2) = {φ : E•1 ⊗A A• → E•2 ⊗A A• | φ(ea) = (−1)k|a|φ(e)a}
with differential defined in the standard way

d(φ)(e) = E2(φ(e))− (−1)|φ|φ(E1(e))

Again, such a φ is determined by its restriction to E•1 and if necessary we denote the
component of φ that maps

(2.1) E•1 → E•+k−j2 ⊗A Aj

by φj.

Proposition 2.4. For a curved DGA (A•, d, c) the category PA• is a DG-category.

This is clear from the following lemma.

Lemma 2.5. Let E1, E2 be modules over the curved DGA (A•, d, c). Then the differential
defined above

d : Hom•PA• (E1, E2)→ Hom•+1
PA• (E1, E2)

satisfies d2 = 0.

Proof. This is a simple check, and follows because the curvature terms from E1 and E2

cancel. �

Definition 2.6. A morphism f : X → Y in PA• which is closed and of degree 0 is a quasi-
isomorphism if and only if for all objects A of PA• the morphism induced by post-composing
with f ,

f# : Hom•PA• (A,X)→ Hom•PA• (A, Y )

is a quasi-isomorphism of complexes.

In the case of the Dolbeault algebra, it is classical that this recovers the usual notion of a
morphism of complexes of holomorphic vector bundles being a quasi-isomorphism.

In [3] we proved the following criterion for being a quasi-isomorphism.

Proposition 2.7. Under the additional assumption that each Ap is flat as an A-module, a
closed morphism φ ∈ Hom0

PA• (E1, E2) is a quasi-isomorphism if φ0 : (E•1 ,E
0
1) → (E•2 ,E

0
2) is

a quasi-isomorphism of complexes of A-modules.

We also discussed how to construct functors between categories of the form PA• . Let
(A•1, d, c1) and (A•2, d, c2) be two curved DGAs. Consider the following data, X = (X•,X)
where

(1) X• is a graded finitely generated projective right-A2-module,
(2) X : X• → X• ⊗A2 A•2 is a Z-connection,
(3) A•1 acts on the left of X• ⊗A2 A•2 satisfying

a · (x · b) = (a · x) · b
and

X(a · (x⊗ b)) = da · (x⊗ b) + a · X(x⊗ b)
for a ∈ A•1, x ∈ X• and b ∈ A•2,
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(4) X satisfies the following condition

X ◦ X(x⊗ b) = c1 · (x⊗ b)− (x⊗ b) · c2

on the complex X• ⊗A2 A•2.

Let us call such a pair X = (X•,X) an A•1 −A•2-twisted bimodule.
Given a A•1 −A•2-twisted bimodule X = (X•,X), we can then define a DG-functor

X∗ : PA•1 → PA•2
by X∗(E•,E) is the twisted complex

(E• ⊗A1 X
•,E2)

where E2(e⊗ x) = E(e) · x + e⊗ X(x), where the · denotes the action of A•1 on X• ⊗A1 A•2.
One easily checks that X∗(E) is an object of PA•2 . We will write E#X for E2.

(1) Given an A•1 −A•2-twisted bimodule X = (X•,X) and an A•2 −A•3-twisted bimodule
Y = (Y •,Y) we can form an A•1 −A•3-twisted bimodule

X ⊗A2 Y = (X• ⊗A2 Y
•,X#Y)

in the same way that we defined the functor X∗. Moreover, it is clear that the functors
Y∗ ◦ X∗ and (X ⊗A2 Y)∗ are naturally isomorphic.

(2) Given two curved DGA’s, (A•1, d1, c1) and (A•2, d2, c2) a homomorphism from A•1 to
A•2 is a pair (f, ω) where f : A•1 → A•2 is a morphism of graded algebras, ω ∈ A1

2 and
they satisfy
(a) f(d1a1) = d2f(a1) + [ω, f(a1)] and
(b) f(c1) = c2 + d2ω + ω2.

To such a homomorphism we associate the twisted bimodule Xf where X•f = A2 in
degree 0. A•1 acts by the morphism f and the Z-connection is

Xf (a2) = d2(a2) + ω · a2.

(3) As a special case of the previous example, when φ : X → Y is a holomorphic map
between complex manifolds and f = φ∗ : A0,•(Y )→ A0.•(X) is the induced map on
the Dolbeault DGAs, then the DG-functor

Xf∗ : PA0,•(Y ) → PA0.•(X)

is just the pullback functor of coherent sheaves.

2.2. The Quasi-perfect category. The need to define analogues of derived pushforwards
of coherent sheaves drives us to introduce the larger quasi-perfect category qP . Let X and Y
be complex manifolds. Let p1 (resp. p2) denote the projection from X × Y to X (resp. Y ).
We will start by describing the twisted bimodule that should implement the pushforward

p2∗ : PA0,•(X×Y ) → PA0.•(Y )

Let

M• = Γ(X × Y ;∧•p∗1T 0,1X)
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be the space of smooth forms along the fiber of the projection p2. This has a natural right
action of A(Y ). Define a Z-connection

(2.2) M : M• →M• ⊗A(Y ) A0,•(Y ) ∼= A0,•(X × Y )

by M = M0 +M1 where M0 = ∂X is the ∂-operator along the fiber and M1 = ∂Y . Note that M0

is A(Y )-linear. To complete the construction of a twisted bimodule we need to construct an
action of A0,•(X × Y ) on M• ⊗A(Y )A0,•(Y ). Using the isomorphism in (2.2) this is just left
multiplication of A0,•(X × Y ) on itself. All this is perfectly fine and this defines a twisted
bimodule structure M = (M•,M), except that M• is not finitely generated over A(Y ).

Let us see what the functor M∗ does on PA0,•(X×Y ) If E is the smooth sections of a

holomorphic vector bundle, equipped with its E = ∂-operator, then M∗(E) is the twisted
A0,•(Y )-module E (considered only as a A(Y )-module). The Z-connection M#E = (M#E)0+
(M#E)1 where (M#E)0 is the ∂-operator along the fiber and (M#E)1 is the ∂-operator along
the base. If the cohomology of E with respect to (M#E)0 were of locally constant dimension,
then it would define a complex of vector bundles on Y and (M#E)1 would provide a Z-
connection over Y and we would have an object in PA0,•(Y ). In general we would have
to resolve after we take the fiberwise cohomology or perturb before we take the fiberwise
cohomology so that we get a complex of vector bundles. A pastiori, Grauert’s direct image
theorem tells us that we will get something coherent. In this paper, we will merely leave
the answer as the “quasi”-perfect object M∗(E) and deal with when the answer lies in the
smaller perfect category in part III.

While the bimodule M• is not finitely generated over A(Y ) it is still projective the sense
of homological algebra over topological algebras. We are thus in a relative homological
situation.

We now set up the general framework. We will work with Fréchet algebras to make things
simpler. The correct generalization beyond Fréchet algebras will be bornological algebras
as in [14] and has been used recently by [21] and [18]. The generalization to this context
is straightforward. Fix a ground field k, either R or C. A Fréchet space is a locally convex
topological vector space over k which is defined by a metric invariant under vector space
addition and which is complete. Equivalently, it is a complete locally convex topological
vector space which is defined by a countable collection of semi-norms p ∈ Λ. A Fréchet
algebra is a Fréchet space A which is endowed with a C-bilinear map

A×A → A

which is continuous. A Fréchet algebra is multiplicatively convex if for every continuous
semi-norm p ∈ Λ we have

p(ab) ≤ p(a)p(b)

This notion becomes important when using perturbation techniques as in the proof of
Grauert’s theorem. A module over a Fréchet algebra A is a module (for us, usually a right
module) M which is a Fréchet space such that the module action is continuous. For two
modules M and N over A, a morphism T : M → N is a continuous A-linear homomorphism.
The space LA(M,N) is a complete locally convex topological vector space, though no longer
Fréchet in general. We will usually consider LA(M,N) just as an abstract vector space. A
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complex of A-modules is a complex of Fréchet spaces (M•, d) such that d is continuous and
A-linear. If (M•, d) and (N•, d) are complexes of A-modules then

L •
A(M•, N•)

is a complex with differential

(dφ)(m) = d(φ(m))− (−1)|φ|φ(d(m)).

From now on, when considering Fréchet modules we will write

HomA = LA and Hom•A = L •
A.

This is consistent with our previous notation since for finitely generated projective modules
every A-linear homomorphism is continuous.

We will use ⊗ for the completed projective tensor product of Fréchet spaces. (This is usu-
ally denoted ⊗̂.) Again, this is consistent with our previous usage since for finitely generated
projective modules, the algebraic tensor product and the topological tensor product agree.

For a right A-module M and a left A-module N , we define M ⊗A N to be the quotient
by the closure of the image of the map

(2.3) M ⊗ A⊗N →M ⊗N defined by m⊗ a⊗ n 7→ ma⊗ n−m⊗ an
This has the universal property that Homk(M ⊗AN,L) is naturally isomorphic to the space
of continuous k-bilinear maps T : M × N → L such that T (ma, n) = T (m, an). One often
defines the tensor product over A without taking closures. In our case this won’t change
anything as will be explained below.

Proposition 2.8. Given a Fréchet A-module of the form V ⊗A, where V is a Fréchet space,
and any other Fréchet module M there is a canonical isomorphism

HomA(V ⊗k A,M) ∼= Homk(V,M)

An A-module of the form V ⊗kA is called relatively free. A module P is relatively projective
if it is a direct summand of a relatively free module. That is, there is a surjection

V ⊗k A → P

that admits an A-linear continuous section. From now one, we use simply free (resp. pro-
jective) instead of relatively free (resp. projective).

The following is standard.

Proposition 2.9. Let P be a projective right A-module and E any Fréchet left A-module.
Then P ⊗A E is equal to what one would get by taking the quotient in (2.3) without taking
the closure of the image.

The category of bounded complexes of projective A-modules and continuous maps forms a
DG-category, CA. ForA = k is just the category of bounded complexes of Fréchet spaces with
continuous maps. As per usual terminology, a module over the category CA is a contravariant
functor, that is a functor from the opposite category M : C◦A → Ck. The category of
modules over CA itself forms a DG-category, [6], C◦ADG−Mod. The category CA embeds in
C◦ADG−Mod via the Yoneda embedding

M• 7→ Hom•(·,M•)
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Even for bounded complexes of Fréchet modules M• which are not projective, we can define
an object in C◦ADG − Mod using the same formula as the Yoneda embedding. We note
the following obvious proposition that relates the notion of quasi-isomorphism in our DG-
category C◦ADG−Mod to relative homological algebra.

Proposition 2.10. Let

0→ E1 → E2 → E3 → 0

be an exact sequences of not necessarily projective A-modules and consider it as a complex
in C◦ADG −Mod. Then it is quasi-isomorphic to 0 if and only if it is split as a sequence of
topological vector spaces.

Finally we come to the definition of the quasi-perfect category.

Definition 2.11. Let (A•, d, c) (or just A• for short) be a curved DGA, which is Fréchet as
an algebra and such that d is continuous in the Fréchet topology. We associate to A• the
DG-category qPA• of quasi-perfect twisted complexes whose objects are E = (E•,E) where
E• is a bounded Z-graded right Fréchet A-module which is projective (but not necessarily
finitely generated) and

E : E• → E• ⊗A A•

is a Z-connection, which is continuous in the respective Fréchet topologies, and it satisfies

E ◦ E(e) = −e · c

The morphisms between two such objects E1 = (E•1 ,E1) and E2 = (E•2 ,E2) of degree k are

Homk
qP•A

(E1, E2) = {φ : E•1 ⊗A A• → E•2 ⊗A A• | φ(ea) = (−1)k|a|φ(e)a}

where now the morphisms are required to be continuous. The morphisms are equipped with
a differential defined by

d(φ)(e) = E2(φ(e))− (−1)|φ|φ(E1(e))

When considering cohomology of the Hom-complex, we always consider the ordinary coho-
mology of complexes of vector spaces. That is, we do not quotient out by the closure of the
boundaries and we do not consider any topology on the cohomology spaces. Of course, the
topology of the modules enters when defining what Hom is.

Clearly, PA• is a full subcategory of qPA• since a homomorphisms between finitely gener-
ated A-modules is automatically continuous.

Proposition 2.12. For a curved DGA (A•, d, c) the category qPA• is a DG-category.

We also have the following generalization of a perfect twisted bimodule. Let (A•1, d, c1)
and (A•2, d, c2) be two curved DGAs.

Definition 2.13. A quasi-perfect twisted bimodule is the data X = (X•,X) where

(1) X• is a bounded Z-graded projective right Fréchet A2-module, (not necessarily
finitely generated)

(2) X : X• → X• ⊗A2 A•2 is a continuous Z-connection,
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(3) A•1 acts continuously on the left of X• ⊗A2 A•2 satisfying

a · (x · b) = (a · x) · b
and

X(a · (x⊗ b)) = da · (x⊗ b) + a · X(x⊗ b)
for a ∈ A•1, x ∈ X• and b ∈ A•2,

(4) X satisfies the following condition

X ◦ X(x⊗ b) = c1 · (x⊗ b)− (x⊗ b) · c2

on the complex X• ⊗A2 A•2.

Since tensoring a relatively projective right A1-module by a A1-A2 bimodule which is a
relatively project right A2-module yields a relatively projective right A2-module, we have,
as before, that a quasi-perfect twisted bimodule X = (X•,X) defines a DG-functor

X∗ : qPA•1 → qPA•2
Proposition 2.14. For two complex manifolds X and Y and p2 : X×Y → Y the projection
map, the pair M = (M•,M) defined at the beginning of this section defines a A0,•(X × Y )-
A0,•(Y ) quasi-perfect twisted bimodule, and thus defines a DG functor

M∗ : qPA0,•(X×Y ) → qPA0,•(Y )

Remark 2.15. (1) For an arbitrary holomorphic map f : X → Y it is possible to define
the pushforward using the techniques at hand. Namely, by factoring the map as an
embedding and a projection, we can resolve the graph of f , and compose with the
quasi-perfect twisted bimodule for the projection. We leave the details as an exercise.

(2) The pushforward defined by M is the derived pushforward since we always stay in
the category qP , which (for the case of the Dolbeault algebra) corresponds to fine
sheaves of projectives.

By enlarging the category from PA• to qPA• we have potentially changed (made more
strict) the notion of quasi-isomorphism between to objects in qPA• , even if they are both in
PA• . However, in the case of a complex manifold, the notion of quasi-isomorphism between
complexes of coherent sheaves is still preserved in the quasi-perfect category because of the
following result which is an extension of the result for the perfect category.

Proposition 2.16. Let E1 and E2 be two quasi-perfect twisted complexes. If for each p, Ap
is flat as an A-module, a closed morphism φ ∈ Hom0

qPA• (E1, E2) is a quasi-isomorphism if

φ0 : (E•1 ,E
0
1)→ (E•2 ,E

0
2) is a quasi-isomorphism of complexes of A-modules.

2.3. DG-equivalences. We would like to establish a criteria for when two quasi-perfect
twisted bimodules determine a DG-equivalence. Let (A•, d, cA) and (B•, d, cB) be two curved
DGAs. Let us note that in the curved DGA case, the module (A, d) is not a perfect twisted
complex over A•, since it does not satisfy the correct curvature conditions. It is however, a
perfect twisted bimodule and it is clear that the functors it induces on PA• and qPA• are
the identity functors.
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Let (P•,P) be a B•-A• quasi-perfect twisted bimodule and (Q•,Q) an A•-B• quasi-perfect
twisted bimodule. Let us write X • = Q• ⊗B P• and Y• = P• ⊗A Q•. Furthermore, let
X = Q#P and Y = P#Q. Suppose we have two maps

α : X • ⊗A A• → A•

and

β : Y•⊗•B → B•

such that α is a surjective map of A•-bimodules and β is a surjective map of B•-bimodules
and both α and β intertwine the Z-connections:

α(X(x)) = d(α(x))

and

β(Y(y)) = d(β(y))

Under these circumstances, there are natural transformations of functors

α : X∗ → 1qPA•

and

β : Y∗ → 1qPB•

defined, for example, for E = (E•,E) ∈ qPA•

αE : E• ⊗A X • ⊗A A• → E• ⊗A A•

by

αE(e⊗ x) = e⊗ α(x)

Now according to (2.16), to show that P• and Q• induce DG-quasi-equivalences, we need to
see that for each E = (E•,E) that we have an isomorphism

α0
E : H∗(E• ⊗A X •, (E#X)0)→ H∗(E•,E0)

and similarly for Y∗. We would like to have a condition that we can check about X • and Y•
themselves. We have the following criterion.

Note first, that in the case when the curvature is not zero, that X is not a differential.
It is not even true that (X0)2 is necessarily zero. One has (X0)2 = cA. Suppose there is
an endomorphism Φ : X • → X • of degree one, which is A-linear on the right and the left.
Suppose further, that Φ satisfies

(2.4) [X0,Φ] + Φ ◦ Φ = −cA
Then of course we can form X0 + Φ which now has square zero and our criterion is

Lemma 2.17. If α0 induces an isomorphism

H∗(X •,X0 + Φ)
α0

−→ A
then the natural transformation α : X∗ → 1PA• is a DG-isomorphism of functors.

Remark 2.18. As we will see below, one way to interpret the endomorphism Φ is as a trivi-
alization of a “gerbe” on the product (A•, d, cA)⊗ (B•, d, cB).
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3. Mukai duality for non-commutative tori

In this section we state and prove the duality between a noncommutative complex torus
and a gerby complex torus.

3.1. The Complex noncommutative torus. We start by describing the noncommutative
tori. We will describe them in terms of twisted group algebras. Let V be a real vector space,
and Λ ⊂ V a lattice subgroup. The we can form the group ring S ∗(Λ), the Schwartz space
of complex valued functions on Λ which decrease faster than any polynomial. Let B ∈ Λ2V ∨,
and form the biadditive, antisymmetric group cocycle σ : Λ× Λ→ U(1) by

σ(λ1, λ2) = e2πiB(λ1,λ2)

In our computations, we will often implicitly make use of the fact that σ is biadditive and
anti-symmetric. Now we can form the twisted group algebra A(Λ;σ) consisting of the same
space of functions as S ∗(Λ) but where the multiplication is defined by

[λ1] ◦ [λ2] = σ(λ1, λ2)[λ1 + λ2]

This is a ∗-algebra where f ∗(λ) = f(λ−1). This is one of the standard ways to describe the
(smooth version) of the noncommutative torus. Given ξ ∈ V ∨ it is easy to check that

ξ(f)(λ) = 2π
√
−1〈ξ, λ〉f(λ)

defines a derivation on A(Λ;σ). Note that the derivation ξ is “real” in the sense that
ξ(f ∗) = −ξ(f). Finally define a (de Rham) DGA

A•(Λ;σ) = A(Λ;σ)⊗ Λ•V

where the differential d is defined on functions φ ∈ A(Λ;σ) by

〈df, ξ〉 = ξ(f)

for ξ ∈ V ∨. In other words, for λ ∈ λ one has dλ = 2π
√
−1λ⊗D(λ) where D(λ) denotes λ

as an element of Λ1V . Extend d to the rest of A•(Λ;σ) by Leibnitz. Note that d2 = 0.
We are most interested in the case where our torus has a complex structure and in defining

the analogue of the Dolbeault DGA for a noncommutative complex torus. So now let V will
be a vector space with a complex structure J : V → V , J2 = −1. Let g be the complex
dimension of V . Set VC = V ⊗R C. Then J ⊗ 1 : VC → VC still squares to −1 and so VC
decomposes into

√
−1 and −

√
−1 eigenspaces, V1,0 ⊕ V0,1. The dual V ∨

C
also decomposes as

V ∨
C

= V 1,0 ⊕ V 0,1. Let D′ : VC ⊗ C→ V 1,0 and D′′ : V ⊗ C→ V 0,1 denote the corresponding
projections. Explicitly

D′ =
J ⊗ 1 + 1⊗

√
−1

2
√
−1

and

D′′ =
−J ⊗ 1 + 1⊗

√
−1

2
√
−1

and D = D′ +D′′ where D denotes the identity. This also established a decomposition

ΛkVC = ⊗p+q=•Λp,qV
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where Λp,qV = ΛpV1,0 ⊗ ΛqV0,1. Complex conjugation on VC defines an involution and
identifies V with the v ∈ VC such that v = v.

Now let X = V/Λ, a complex torus of dimension g, and X• = V
∨
/Λ∨ its dual torus. Let

B ∈ Λ2V ∨ be a real (constant) two form on X. Then B will decompose in to parts

B = B2,0 +B1,1 +B0,2

where Bp,q ∈ Λp,qV , B0,2 = B2,0 and B1,1 = B1,1. Now B0,2 ∈ Λ2V 0,1 ∼= H0,2(X). Then it
also represents a class in Π ∈ Λ2V 0,1 ∼= H0(X∨; Λ2T1,0X). Let σ : Λ ∧ Λ→ U(1) denote the
group 2-cocycle given by

σ(λ1, λ2) = e2π
√
−1B(λ1,λ2).

and form as above A(Λ;σ) the twisted group algebra based on rapidly decreasing functions.
Define the Dolbeault DGA A0,•(Λ;σ) to be

A(Λ;σ)⊗ Λ•V1,0

where for λ ∈ A(Λ;σ) we define

∂λ = 2π
√
−1λ⊗D′(λ) ∈ A(Λ;σ)⊗ V1,0

We can then extend ∂ to the rest of A0,•(Λ;σ) by the Leibnitz rule.

Remark 3.1. Let us make a comment about this definition. Even though we are defining the
∂ operator, we are using the (1, 0) component of VC. This is because of the duality. In the
case of the trivial cocycle σ, this definition is meant to reconstruct the Dolbeault algebra on
X∨. In this case, A0,•(X∨) ∼= A(X∨)⊗ Λ•T 0,1

0 X∨. But

T 0,1
0 X∨ = V

∨∨ ∼= V1,0.

To check the reasonableness of this definition we have

Proposition 3.2. If σ = 1 is the trivial cocycle, then the DGA (A0,•(Λ;σ), ∂) is isomorphic
to the Dolbeault DGA (A0,•(X∨), ∂).

3.2. The holomorphic gerby torus. The other side of the duality involves a holomorphic
O× gerbe over the dual of X∨, that is, over X. A gerbe is usually described in terms of a 2-
cocycle with values in O×. Our gerbes are topologically trivial, though not holomorphically
so. Using this topological trivializtion, we can express it in terms of a very simple curved
DGA. See [5] for the precise relationship between a holomorphic gerbe defined in terms of a
cocycle and the curved DGA we now describe.

Consider B ∈ Λ2V ∨ decomposed as B = B0,2 + B1,1 + B2,0 as above. Let A0,•(X;B)
denote the curved DGA (A0,•(X), ∂, 2π

√
−1B0,2). (We write A0,•(X;B) even though we

have only used the (0, 2) component. If we had constructed the bigraded Dolbeault algebra,
A•,•(X;B), we would have used all the components of B.) While the underlying DGA
(non-curved) of A0,•(X,B) is the same as the Dolbeault algebra of X, the existence of the
curvature changes the notion of a module and thus the category P and qP .

We will show there is a DG-quasi-equivalence of categories between qPA0,•(Λ;σ) and qPA0,•(X;B).
This will be implemented by a pair of quasi-perfect twisted bimodules which are deformed
versions of the Poincare sheaves.
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3.3. The deformed Poincare line bundles. A reader familiar with C∗-algebraK-theoretic
techniques will notice the similarity of the constructions in this section with the Kasparov
bimodules that implement the Baum-Connes assembly map. On the other hand, our con-
structions are also deformations of the Poincare sheaves on X×X∨ realized as a line bundle
with a ∂-connection.

We define an A(X)-A(Λ;σ) bimodule P by setting P to be the vector space of Schwartz
functions S (V ) with the left action of A(X) to be just pulling back a function from X to V
and multiplying. The right action of A(Λ;σ) is defined for λ ∈ Λ ⊂ A(Λ;σ) and for p ∈ P
by

p · λ(v) = σ(λ, v)p(λ+ v)

Here σ has been extended to map from Λ × V → U(1) using the same formula: σ(λ, v) =

e2π
√
−1B(λ,v). This extension still satisfies the obvious “cocycle” relation

δσ(λ1, λ2, v) = 1

where

δσ(λ1, λ2, v) = σ(λ2, v)σ(λ1 + λ2, v)−1σ(λ1, λ2 + v)σ(λ1, λ2)−1

One checks easily that this makes P into an A(X)-A(Λ;σ) bimodule.

Lemma 3.3. The module P is projective as a right A(Λ;σ) module. It is also projective as
a left A(X)-module.

Proof. The proof of this is rather standard and uses a “partition of unity” h : V → R a
compactly supported nonnegative C∞ function such that∑

γ∈Λ

h(γ + v) = 1

for all v ∈ V . Then we use it to split the map P ⊗A(Λ;σ)→ P given by the action. Define
the A(Λ;σ)-module map ι : P → P ⊗A(Λ;σ) (a free A(Λ;σ) module)

(3.1) ιp =
∑
g∈Λ

(p · (−g))(v)h(v)⊗ g

It is easy to check this is a splitting. We check, for p ∈ P and µ ∈ Λ that

ι(p · µ)(v) =
∑
g∈Λ

((p · µ) · (−g))(v)h(v)⊗ g

=
∑
g∈Λ

σ(µ,−g)(p · (µ− g))(v)h(v)⊗ g
(3.2)

using the fact that (p · µ) · g) = σ(µ, g)(p · (µ + g)). Letting −τ = µ− g so g = τ + µ (3.2)
becomes

(3.3) =
∑
τ∈Λ

(p · (−τ))(v)h(v)⊗ σ(µ+ τ, µ)(τ + µ) = (ι(p) · µ)(v)

Thus ι is a module homomorphism.
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The projectivity as a left A(X)-module is even easier. P is the global C∞ sections of an
infinite dimensional Fréchet space bundle over X,

P ∼= Γ(X;V)

where the total space of this bundle is

V = V ×Λ S ∗Λ

Then the standard fact that sections of a bundle (albeit infinite dimensional) is projective
still holds. �

To define our quasi-perfect twisted bimodule we set

P• = P ⊗ Λ•V 0,1

The actions extend in an obvious way. The projectivity follows from Lemma 3.3.
B0,2 defines a ∂-closed (0, 2) form on X. Its pullback to V is ∂ exact. In fact, B0,2 = ∂ω

where ω is a (0, 1) form on V which can be described as follows. In coordinates, using the
reality of B we have (always use the summation convention)

B = bijdzidzj + bijdzidzj + cijdzidzj

where cij is a skew Hermitian matrix, and we may (and do) assume that bij is skew symmetric.
Set

(3.4) ω = bijzidzj + cijzidzj

Then ∂ω = B0,2. We now observe the following relationships between ω and σ. Let λ ∈ Λ.
Then

∂(σ(λ, ·)) = ∂(e2π
√
−1(bijλizj+bijλizj+cij(λizj−ziλj))

= 2π
√
−1(bijλidzj + cijλidzj)σ(λ, z)

(3.5)

On the other hand, one easily calculates

2π
√
−1(ω − r∗λω)σ(λ, ·) = 2π

√
−1(bijzidzj + cijzidzj − bij(zi + λi)dzj − cij(zi + λi)dzj)σ(λ, ·)

= −∂σ(λ, ·)

(3.6)

where rλ(v) = v + λ. Similarly, letting lλ(v) = v − λ we have

(3.7) 2π
√
−1(ω − l∗λω)σ(λ, ·) = ∂σ(λ, ·).

Define a Z-connection P on P•,
P : P• → P• ⊗A(Λ;σ) A0,•(Λ;σ) ∼= P• ⊗C Λ•V1,0

as P = P0 + P1 where

P0(p)(v) = ∂V (p)(v) + 2π
√
−1ω(v) ∧ p(v)

and
P1p(v) = −2π

√
−1p(v)D′(v)

Let us check that this is indeed a Z-connection. There are two things to check.
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First we check that P0 is A(Λ;σ) linear: For λ ∈ Λ ⊂ A(Λ;σ) and p ∈ P• we have

P0(p · λ) =∂V (p · λ) + 2π
√
−1ω ∧ (p · λ)

=∂V (r∗λp · σ(λ, ·)) + 2π
√
−1ω ∧ r∗λp · σ(λ, ·)

=∂V (r∗λp)σ(λ, ·) + r∗λp∂V (σ(λ, ·)) + 2π
√
−1ω ∧ r∗λp · σ(λ, ·)

=r∗λ∂V p · σ(λ, ·) + r∗λp ∧ 2π
√
−1(r∗λω − ω)σ(λ, ·) + 2π

√
−1ω ∧ r∗λp · σ(λ, ·)

=r∗λ(∂V (p) + 2π
√
−1ω ∧ p)σ(λ, ·)

=P0(p) · λ

(3.8)

Second we need that P1 satisfies Leibnitz with respect to A(Λ;σ): Again, for λ ∈ Λ ⊂
A(Λ;σ) and p ∈ P• we have

P1(p · λ)(v) =− 2π
√
−1(p · λ)D′(v)

=− 2π
√
−1r∗λp(v)D′(v)σ(λ, v)

(3.9)

while

P1(p) · λ(v) + p∂(λ)(v)

=(−2π
√
−1pv)D′(v)) · λ+ 2π

√
−1p · λD′(λ)

=− 2π
√
−1r∗λp(v)D′(v + λ)σ(λ, v) + 2π

√
−1r∗λp(v)D′(λ)σ(λ, v)

=− 2π
√
−1r∗λp(v)D′(v)σ(λ, v)

(3.10)

Now, A0,•(X;B) acts on the left of P• ⊗A0,•(Λ;σ) through its action on P•. The fact that
for η ∈ A0,•(X;B) and p ∈ P• satisfies

P(η · p) = ∂Xη · p+ η · P(p)

is easy to verify.
Finally, let us note that

P(P(p)) =P(∂V p+ 2π
√
−1ω ∧ p− 2π

√
−1p⊗D′

=∂V (∂V p+ 2π
√
−1ω ∧ p− 2π

√
−1p⊗D′)

+2π
√
−1ω ∧ (∂V p+ 2π

√
−1ω ∧ p− 2π

√
−1p⊗D′)

−2π
√
−1(∂V p+ 2π

√
−1ω ∧ p− 2π

√
−1p⊗D′) ∧D′

=∂
2

V p+ 2π
√
−1∂V ω ∧ p− 2π

√
−1ω ∧ ∂V p− 2π

√
−1∂V p⊗D′ − 2π

√
−1p⊗ ∂VD′

+2π
√
−1ω ∧ (∂V p+ 2π

√
−1ω ∧ p− 2π

√
−1p⊗D′)

−2π
√
−1(∂V p+ 2π

√
−1ω ∧ p− 2π

√
−1p⊗D′) ∧D′

After the obvious cancellations we are left with

2π
√
−1 ∂V ω ∧ p− 2π

√
−1p⊗ ∂VD′
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Now ∂V ω = B0,2 and as a map from V → Λ1V1,0, D′ is holomorphic, so ∂VD
′ = 0. Thus,

(3.11) P(Pp) = 2π
√
−1B0,2 ∧ p

We thus arrive at the

Proposition 3.4. (P•,P) forms a A0,•(X;B)−A0,•(Λ;σ)quasi-perfect twisted bimodule.

We define a bi-twisted complex that implements a DG-functor in the opposite direction.
Set Q• = S (V ; Λ•V1,0). In this case we define a left A(Λ;σ)-action by defining for λ ∈ Λ ⊂
A(Λ;σ) and q ∈ Q• the action

λ · q(v) = σ(λ,−λ+ v)q(−λ+ v)

Note that in our case σ(λ,−λ + v) = σ(λ, v) but we have written it as above because it is
the correct formula, and it works in more general situations. It is straightforward to check
that this is indeed a left action. The action extends to the rest of the DGA A0,•(Λ;σ) in
the obvious way. A(X) acts again by pull pulling a function on X up to V and multiplying.
Exactly as for the case of P•, Q• is also projective on both sides.

Define a Z-connection Q = Q0 + Q1 where

(Q0q)(v) = 2π
√
−1q(v)D′(v)

and

(Q1q)(v) = ∂V q − q ∧ 2π
√
−1ω

Calculations similar to the ones for P show that Q is a Z-connection and that

Q(Qq) = q ∧ (−2π
√
−1B0,2)

Hence

Proposition 3.5. The pair (Q•,Q) forms a A0,•(Λ;σ) − A0,•(X;B) quasi-perfect twisted
bimodule.

Define a homomorphism of A(Λ;σ)−A(Λ;σ) bimodules

(3.12) α : Q⊗A(X;B) P → A(Λ;σ)

by

α(q ⊗ p) =
∑
λ

[∫
V

q(v + λ)p(v)σ−1(λ, v)dv

]
[λ]

Clearly, α(qφ ⊗ p) = α(q ⊗ φp) for φ ∈ A(X;B). We check that this is a map of A(Λ;σ)
bimodules. We check the compatibility with the right action. The left action is slightly
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simpler.

α(q ⊗ p · µ) =
∑
λ

[∫
V

q(v + λ)(p · µ)(v)σ−1(λ, v)dv

]
[λ]

=
∑
λ

[∫
V

q(v + λ)p(v + µ)σ(µ, v)σ−1(λ, v)dv

]
[λ]

Setting w = v + µ we get
∑
λ

[∫
V

q(w + λ− µ)p(w)σ(µ,w − µ)σ−1(λ,w − µ)dw

]
[λ]

Substituting τ = λ− µ we get
∑
τ

[∫
V

q(w + τ)p(w)σ(µ− λ,w)σ−1(λ,−µ)dw

]
[τ + µ]

=
∑
τ

[∫
V

q(w + τ)p(w)σ−1(τ, w)dw

]
[τ + µ]σ(τ, µ)

=α(q ⊗ p) · µ

(3.13)

3.4. The duality. Our main theorem is

Theorem 3.6. The quasi-perfect twisted bimodules P and Q define DG functors

P∗ : qPA0,•(X;B) � qPA0,•(Λ,σ) : Q∗
which implement DG-quasi-equivalences of DG-categories.

The rest of this section will be devoted to proving this theorem. We prove it by calculating
the composition of the twisted bimodules and showing that in each direction they induce
functors equivalent to the identity functor (shifted by g).

Write X for the composed Z-connection Q#P on the quasi-perfect twisted bimodule X • =
Q• ⊗A(X;B) P•. We calculate the zero component X0 = (Q#P)0 = Q⊗ 1+ 1⊗ P0.
We have (Q⊗ 1+ 1⊗ P0)(q ⊗ p) =

(3.14) 2π
√
−1 qD′ ⊗ p+ ∂V (q)⊗ p− 2π

√
−1 q ∧ ω ⊗ p+ q ⊗ ∂V (p) + 2π

√
−1 q ⊗ ω ∧ p

Now X • ∼= S (V × Λ; Λ•V1,0 ⊗ Λ•V 0,1) via the isomorphism from S (V ) ⊗A(X;B) S (V ) ∼=
S (V ×X V ) ∼= S (V × Λ) sending (v1, v2) 7→ (v1, v2 − v1). Under this isomorphism, the left
and right A(Λ;σ)- actions can be written as

(µ · φ)(z, λ) = σ(µ, z + λ)φ(z − µ, λ+ µ)

(φ · µ)(z, λ) = σ(µ, z)φ(z, λ+ µ)
(3.15)

Furthermore, using this isomorphism and writing (3.39) in coordinates we can rewrite for
φ ∈ S (V × Λ; Λ•V1,0 ⊗ Λ•V 0,1)

(3.16)

X0(φ)(z, λ) =

g∑
j=1

[
2π
√
−1 zjdζj ∧ φ+ dzj ∧

∂

∂zj
φ+ 2π

√
−1

∑
i

(λibij + cijλi)dzj ∧ φ

]
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Here we are writing D′ : V → ΛV1,0 in coordinates as

D′(z) =
∑
j

zjdζj

where the notation dζj is a basis for V1,0. We write it this way since they are really anti-

holomorphic basis of V
∨∨

. If we write

(3.17) Bj(λ) =
∑
i

λibij + λicij

then (3.39) can be written

(3.18) X0(φ)(z, λ) =
∑
j

2π
√
−1 zjdζj ∧ φ+ dzj ∧

∂

∂zj
φ+ 2π

√
−1Bj(λ)dzj ∧ φ

Now we equip X • with an inner product. First, define on Λ•V1,0 ⊗ Λ•V 0,1 a Hermitian

product by declaring dzj, dζk to be orthonormal. Then for φ1, φ2 ∈ X • set

(3.19) 〈φ1, φ2〉 =

∫
V×Λ

〈φ1, φ2〉dv

where dv is Lebesgue measure on V times counting measure on Λ. We calculate the corre-
sponding Laplacian with respect to this inner product, (X0)∗X0 + X0(X0)∗. The adjoint

(X0)∗(φ)(z, λ) =
∑
j

−2π
√
−1 zjι ∂

∂ζj

φ− ∂

∂zj
ι ∂
∂zj

φ− 2π
√
−1Bj(λ)ι ∂

∂zj

φ

(ιξ denotes contraction with respect to the vector field ξ.) We first calculate (X0)∗X0 on
functions. It follows from (3.18) that for φ a function that
(3.20)

(X0)∗X0φ(z, λ) =
∑
j

(
− ∂2

∂zj∂zj
− 2π

√
−1Bj(λ)

∂

∂zj
− 2π

√
−1Bj(λ)

∂

∂zj
+ 4π2(|zj|2 + |Bj(λ)|2)

)
φ

Write Yj(λ) for the first order differential operator

Yj(λ)(φ) = Bj(λ)
∂

∂zj
φ+Bj(λ)

∂

∂zj
φ

We can then rewrite (3.20) as

(3.21) (X0)∗X0φ(z, λ) =
∑
j

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(λ) + 4π2(|zj|2 + |Bj(λ)|2)

)
φ

Note that Yj(λ)(z) = Bj(λ) and Yj(λ)(z) = Bj(λ). Define the deformed Gaussian, for µ ∈ Λ

bµ(z, λ) =

{
exp

(
−2π(|z|2 +

∑
j

√
−1Bj(λ)zj +

∑
j

√
−1Bj(λ)zj)

)
if λ = µ

0 if λ 6= µ
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We calculate

− ∂2

∂zj∂zj
bµ(z, λ) = − ∂

∂zj
(−2πbµ(z, µ)(zj +

√
−1Bj(µ)))

= −4π2bµ(z, µ)(zj +
√
−1Bj(µ))(zj +

√
−1Bj(µ)) + 2πbµ

= −4π2bµ(z, µ)(|zj|2 +
√
−1Bj(µ)zj +

√
−1Bj(µ)zj − |Bj(µ)|2) + 2πbµ

(3.22)

if λ = µ and is 0 for λ 6= µ. And we see that

−2π
√
−1Yj(λ)bµ(z, λ) = −2π

√
−1 (−2πbµ)Yj(λ)

(
|zj|2 +

√
−1Bj(µ)zj +

√
−1Bj(µ)zj

)
= 4π2

√
−1bµ(z, µ)

(
Bj(µ)zj +Bj(µ)zj +

√
−1Bj(µ)Bj(µ) +

√
−1Bj(µ)Bj(µ)

)
= 4π2bµ(z, µ)

(√
−1Bj(µ)zj +

√
−1Bj(µ)zj − 2|Bj(µ)|2

)

(3.23)

if λ = µ and is 0 for λ 6= µ. Adding (3.22) and (3.23) together we get

−4π2bµ(z, µ)
(
|zj|2 + |Bj(µ)|2

)
+ 2πbµ(z, µ)

if λ = µ and is 0 for λ 6= µ. And finally we get that

(X0)∗X0bµ(z, λ) =

g∑
j=1

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(λ) + 4π2(|zj|2 + |Bj(λ)|2)

)
bµ

=
∑
j

−4π2
(
|zj|2 + |Bj(λ)|2

)
bµ + 2πbµ + 4π2

(
|zj|2 + |Bj(λ)|2)

)
bµ

= 2πgbµ

(3.24)

The full Laplacian �0 = (X0)∗X0 +X0(X0)∗ can be calculated in a straightforward manner
as

(3.25)

�0φ(z, λ) =

g∑
j=1

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(λ) + 4π2(|zj|2 + |Bj(λ)|2)− 2π

√
−1 (dzj ◦ ι ∂

∂ζj

+ ι ∂
∂zj

◦ dζj)
)
φ.

Let us call Lj = dzj ◦ ι ∂
∂ζj

+ ι ∂
∂zj

◦dζj. Then we can find a basis of eigenvectors for L =
∑

j Lj

acting on Λ•V1,0 ⊗ Λ•V 0,1. Set

e±j = dzj ±
√
−1dζj

Then

L(e±j ) = ±
√
−1e±j

And more generally, for I = (i1 < i2 < · · · < ik) and J = (j1 < j2 < · · · < jl) we have

L(e+
I ∧ e

−
J ) = (k − l)

√
−1(e+

I ∧ e
−
J )
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Hence we have the eigenvector decomposition

Λ•V1,0 ⊗ Λ•V 0,1 = ⊕I,J span e+
I ∧ e

−
J

and on the e+
I ∧ e

−
J component, we have �0φ(z, λ)

(3.26) =

{∑
j

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(λ) + 4π2(|zj|2 + |Bj(λ)|2)

)
+ 2π(k − l)

}
φ.

We now solve this deformed Harmonic oscillator. Indeed the solution is a deformation
of the classical solution of the Harmonic oscillator by Hermite functions, constructed using
creation and annihilation operators. We will carry out the details in the case of one complex
dimension, the higher dimensional case following easily because the variables in our equation
are all separable.

Thus, consider the operator

(3.27) Hφ =

(
− ∂2

∂z∂z
− 2π

√
−1 (B(λ)

∂

∂z
+B(λ)

∂

∂z
) + 4π2(|z|2 + |B(λ)|2)

)
φ

defined on the Schwarz space S (C × Λ). We calculate the eigenvalues and eigenvectors of
H. Define operators

Aφ(z, λ) =

(
∂

∂z
+ 2π(z +

√
−1 B(λ))

)
φ

A∗φ(z, λ) =

(
− ∂

∂z
+ 2π(z −

√
−1B(λ))

)
φ

Bφ(z, λ) =

(
∂

∂z
+ 2π(z +

√
−1B(λ))

)
φ

B∗φ(z, λ) =

(
− ∂

∂z
+ 2π(z −

√
−1 B(λ))

)
φ

(3.28)

These operators satisfy the following commutation relations.

[H,A] = −2πA, [H,A∗] = 2πA∗

[H,B] = −2πB, [H,B∗] = 2πB∗

[A,A∗] = 4π, [B,B∗] = 4π

[A,B] = 0, [A,B∗] = 0

[A∗,B] = 0, [A∗,B∗] = 0

(3.29)

Set b0,0
µ (z, λ) = bµ(z, λ) from above. Define recursively,

bi+1,j
µ (z, λ) = A∗bi,jµ (z, λ), bi,j+1

µ (z, λ) = B∗bi,jµ (z, λ)(3.30)

This is well defined since A∗ and B∗ commutate. Moreover, Ab0,0
µ = Bb0,0

µ = 0. The following
follows from well-known techniques as in [27].
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Theorem 3.7. The functions bi,jµ ∈ S (C × Λ) form an orthogonal complete basis of the

closure L2(C× Λ) of S (C× Λ). Furthermore, we have

Hbi,jµ = 2π(i+ j + 1)bi,jµ

It follows that in g-dimensions, that the ground states bµ satisfy

Hbµ = 2πgbµ

Thus we see that there is a kernel for �0 only for k − l = −g.

Theorem 3.8. (1) The kernel of �0 on X • is zero except in dimension g where it has
an orthogonal basis consisting of η0

µ for µ ∈ Λ where

η0
µ =bµ(z, λ)e−1 ∧ · · · ∧ e−g

=bµ(z, λ)(dz1 −
√
−1dζ1) ∧ · · · ∧ (dzg −

√
−1dζg)

(3.31)

(2) The cohomology of (X •,X0) is zero except in dimension g where it has an orthogonal
basis consisting of η0

µ.

Now one should note that bµ is nothing other than b0 · (−µ). Moreover, X0 is linear with
respect to the right action of A(Λ;σ). Hence

Corollary 3.9. The cohomology of (X •,X0) is zero except in dimension g where it is a free
A(Λ;σ) module of rank one, with generator η0

0.

It is now time to get the rest of X (not just X0) into the picture. Recall X = Q#P and
we see that X = X0 + X1 where for φ ∈ (Q• ⊗A(X;B) P•) ⊗A(Λ;σ) A0,•(Λ;σ) and using the
isomorphisms described above of this with S (V × Λ; Λ•V1,0 ⊗ Λ•V 0,1 ⊗ Λ•V1,0) we have

X1φ(z, λ) = (1⊗ P1)φ(z, λ) =

g∑
j=1

−2π
√
−1 (zj + λj)dτj ∧ φ(z, λ)

Here dτj is the same basis of V1,0 as dζj but considered in the second copy of V1,0. Now

X(η0
µ) = X(η0

0 · (−µ))

= X(η0
0) · (−µ) + η0

0∂(−µ)

=
∑
j

−2π
√
−1 zjdτj ∧ η0

0 · (−µ)− 2π
√
−1 η0

0µjdτj

(3.32)

So none of the η0
µ are closed in the complex (X • ⊗A(Λ;σ) A0,•(Λ;σ),X).

X(η0
0)(z, λ) = X0η0

0(z, λ) + X1η0
0(z, λ)

= X1η0
0(z, λ)

=
∑
j

−2π
√
−1 zjdτj ∧ η0

0(z, 0)
(3.33)

for λ = 0 and is zero for λ 6= 0. Therefore, letting

η =b0(z, λ)(e−1 +
√
−1dτ 1) ∧ · · · ∧ (e−g +

√
−1dτ g)

=b0(z, λ)(dz1 −
√
−1dζ1 +

√
−1dτ 1) ∧ · · · ∧ (dzg −

√
−1dζg +

√
−1dτ g)

(3.34)
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one sees after a somewhat lengthy but simple computation that

X(η) = 0

Corollary 3.10. The cohomology of the complex (X [g]•⊗A(Λ;σ)A0,•(Λ;σ),X) is zero, except
in dimension 0 where it is one (complex) dimensional.

Proof. Define a map of complexes

(A(Λ;σ)⊗A(Λ;σ) A0,•(Λ;σ), ∂)→ (X [g]• ⊗A(Λ;σ) A0,•(Λ;σ),X)

by

1 7→ η

Now we use the natural spectral sequence for the complex. According to the previous
corollary, 3.9, map above induces an isomorphism on the E1 term of this spectral sequence.
and so the cohomology identifies with H∗(A0,•(Λ;σ)). �

As a result of the two corollaries, 3.9 and 3.10 we have

Proposition 3.11. (X [g]•,X) viewed as an object in qPA0,•(Λ;σ) (i.e. just as a right module)

is quasi-isomorphic to (A, ∂).

Unfortunately, this is not quite enough to see that it induces quasi-equivalence of cate-
gories. We need a map of quasi-perfect twisted bimodules.

We now show that the quasi-perfect twisted bimodule (X [g]•,X) induces a functor which
is naturally quasi-equivalent to the identity functor. It is clear that the identity functor is
implemented by the perfect twisted bimodule (A(Λ;σ), ∂). Using α from (3.12), we define a
morphism (also called α

(3.35) α ∈ Hom0
qPA0,•(Λ;σ)

(X [g]•,A(Λ;σ))

where for q ⊗ p ∈ X [g]• ⊗A(Λ;σ) A0,•(Λ;σ) = (Q• ⊗A(X;B) P•)⊗A(Λ;σ) A0,•(Λ;σ)

(3.36) α(q ⊗ p) =
∑
λ

1

(2
√
−1)g

)

[∫
V

q(z + λ)p(z)σ−1(λ, z) ∧ dz1 ∧ · · · ∧ dzg
]

[λ]

Here the dz’s in the integrand combine with the dz’s and are integrated. Only the top
degree in dz’s contribute to the integral and thus α indeed maps X [g]• → A(Λ;σ). We also
note that dζj and dτ j are both mapped to dτ j in A0,•(Λ;σ). In terms of the isomorphism
of (Q• ⊗A(X;B) P•) ⊗A(Λ;σ) A0,•(Λ;σ) with S (V × Λ; Λ•V1,0 ⊗ Λ•V 0,1 ⊗ Λ•V1,0) we have for
φ(z, λ) ∈ S (V × Λ; Λ•V1,0 ⊗ Λ•V 0,1 ⊗ Λ•V1,0)

(3.37) α(φ) =
∑
λ

1

(2
√
−1)g

[∫
V

φ(z + λ,−λ)σ−1(λ, z) ∧ dz1 ∧ · · · ∧ dzg
]

[λ]

We now show that

(3.38) α(X(φ)) = ∂(α(φ))

and thus A is a map of twisted bimodules. We compute
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α(X(φ)) =
∑
λ

1

(2
√
−1)g

[∫
V

X(φ)(z + λ,−λ)σ−1(λ, z) ∧ dz1 ∧ · · · ∧ dzg
]

[λ]

=
∑
λ,i

[
1

(2
√
−1)g

∫
V

{
2π
√
−1 dζ i ∧ (z + λ)iφ(z + λ,−λ)

+ dzi ∧
∂φ

∂zi
(z + λ,−λ)

+ 2π
√
−1 dzi ∧ (Bi(−λ)φ(z + λ,−λ))

− 2π
√
−1 (z + λ− λ)i dτ iφ(z + λ,−λ)}σ−1(λ, z) ∧ dz1 ∧ · · · ∧ dzg

]
[λ]

(3.39)

Now we send both dζ i and dτ i to dτ i

=
∑
λ,i

[
1

(2
√
−1)g

∫
V

{2π
√
−1 dτ i ∧ (z + λ)iφ(z + λ,−λ)

− 2π
√
−1 (z + λ− λ)idτ iφ(z + λ,−λ)

+ dzi ∧
∂φ

∂zi
(z + λ,−λ)

+ 2π
√
−1 dzi ∧ (Bi(−λ)φ(z + λ,−λ))}σ−1(λ, z) ∧ dz1 ∧ · · · ∧ dzg][λ]

(3.40)

which is equal to∑
λ,i

[
1

(2
√
−1)g

∫
V

{2π
√
−1λidτ i ∧ φ(z + λ,−λ)σ−1(λ, z)

+ dzi ∧
∂φ

∂zi
(z + λ,−λ)σ−1(λ, z)

+ 2π
√
−1 dzi ∧ (Bi(−λ)φ(z + λ,−λ))σ−1(λ, z)} ∧ dz1 ∧ · · · ∧ dzg][λ]

(3.41)

And finally we have∑
λ,i

[
1

(2
√
−1)g

∫
V

{2π
√
−1λidτ i ∧ φ(z + λ,−λ)σ−1(λ, z)

+ dzi ∧
∂(σ−1(λ, z)φ(z + λ,−λ))

∂zi
} ∧ dz1 ∧ · · · ∧ dzg][λ]

= ∂(α(φ)) +
∑
λ,i

1

(2
√
−1)g

∫
V

dzi ∧
∂(σ−1(λ, z)φ(z + λ,−λ))

∂zi
) ∧ dz1 ∧ · · · ∧ dzg

= ∂(α(φ)) +
∑
λ

1

(2
√
−1)g

∫
V

∂(σ−1(λ, z)φ(z + λ,−λ)) ∧ dz1 ∧ · · · ∧ dzg

= ∂(A(φ))

(3.42)
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This last equality holds since for any differential form f ∈ S (V ; Λ•V 0,1) it follows that∫
V

∂(f)dz1 ∧ · · · ∧ dzg =

∫
V

∂(fdz1 ∧ · · · ∧ dzg)

=

∫
V

(d− ∂)(fdz1 ∧ · · · ∧ dzg)

=

∫
V

d(fdz1 ∧ · · · ∧ dzg)

= 0

(3.43)

by Stokes theorem and since f is Schwartz. Thus we may apply our criterion (2.17) to
conclude that (X •,X) implements a functor equivalent to the identity functor. (Since there
is no curvature on this side of the equivalence, Φ = 0.)

In the classical case of Mukai duality on tori, the proof that the composition one direction
gives the identity is exactly the same calculation as the other, since both are tori. In our
case, one is a noncommutative torus and the other is a gerby torus and things are not quite
as symmetric, though as we carry the details out below, one will see a significant overlap.

Write Y for the composed Z-connection P#Q on the quasi-perfect twisted bimodule

Y• = P• ⊗A(Λ;σ) Q•.
We calculate the zero component Y0 = (P#Q)0 = P⊗ 1+ 1⊗ Q0.
We have (P⊗ 1+ 1⊗ Q0)(p⊗ q) =

(3.44) ∂V (p)⊗ q + 2π
√
−1ω ∧ p⊗ q − 2π

√
−1D′p⊗ q + 2π

√
−1 p⊗D′q

Now we would like to write down more explicitly quasi-perfect twisted bimodule (Y•,Y).

Y• ≡ P• ⊗A(Λ;σ) Q•

∼= S (V ; Λ•V 0,1)⊗A(Λ;σ) S (V ; Λ•V1,0)
(3.45)

This last expression is the quotient of S (V ; Λ•V 0,1) ⊗C S (V ; Λ•V1,0) by the closure of the
relation pλ⊗q = p⊗λq or what is the same thing, pλ⊗λ−1q = p⊗q. This is the coinvariants
by the right action of Λ on

S (V × V ; Λ•V 0,1 ⊗ Λ•V1,0)

given by
(φ · λ)(z, w) = φ(z + λ,w + λ)σ(λ, z − w)

where φ ∈ S (V ×V ; Λ•V 0,1⊗Λ•V1,0), λ ∈ Λ. Let us emphasize that here by the coinvariants
we mean

S (V × V ; Λ•V 0,1 ⊗ Λ•V1,0)/(closure of span (φ− φ · λ))

Proposition 3.12. (1) Y• ∼= (S (V × V ; Λ•V 0,1 ⊗ Λ•V1,0))Λ

∼= {φ ∈ C∞(V × V ; Λ•V 0,1 ⊗ Λ•V1,0)Λ| φ satisfies the Schwartz estimates in z − w}.
That is, φ is invariant and satisfies

(z − w)α
∂β,γφ

∂zβwγ
∈ L∞(V × V ; Λ•V 0,1 ⊗ Λ•V1,0)

for all multi-indices α, β and γ.
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(2) Under this isomorphism, Y0 is

Y0φ(z, w) = ∂zφ(z, w) + 2π
√
−1ω(z) ∧ φ− 2π

√
−1D′(z)φ(z, w) + 2π

√
−1D′(w)φ(z, w)

and using the same conventions as before (in particular, (3.17)) this can be expressed
as

Y0φ(z, w) =
∑
j

dzj ∧
∂φ

∂zj
(z, w) + 2π

√
−1 dzj ∧Bj(z)φ(z, w) + 2π

√
−1 dζj ∧ (wj − zj)φ(z, w)

Proof. Let us call the space of invariants described in the proposition W . The map imple-
menting the isomorphism is τ : (S (V × V ; Λ•V 0,1 ⊗ Λ•V1,0))Λ → W is

τ(φ)(z, w) =
∑
λ

φ(z + λ,w + λ)σ(λ, z − w)

Clearly this map is well defined on the coinvariants and injective and one checks that the
image is in W . One defines a section ρ : W → (S (V × V ; Λ•V 0,1 ⊗ Λ•V1,0)) by

ρ(ψ)(z, w) = h(z)ψ(z, w)

where h is a function as in the proof of 3.3. The image of this in the coinvariants is a section.
The computation of Y under this isomorphism is clear. �.

Remark 3.13. It seems to be a general phenomenon that the space of coinvariants of a space
of functions under a proper group action can be expressed as a space of invariants. One can
also write W as the sections of an infinite dimensional vector bundle over X. From now on,
when we talk about Y•, we will implicitly use the isomorphism with W .

We will be applying the criterion(2.17) to conclude that Y∗ is naturally DG-quasi-equivalent
to the identity functor. Unlike the situation for X, our connection Y has curvature. In par-
ticular (Y0)2 = 2π

√
−1B0,2 We define an endomorphism

Φ : Y• → Y•

of degree one by

Φ(φ)(z, w) = 2π
√
−1

∑
j

Bj(w − z)dzj ∧ φ(z, w)

Then Φ ◦ Φ = 0 and we have [Y0,Φ] = −2π
√
−1B0,2. Now we need to calculate

H∗(Y•,Y0 + Φ).

We have (Y0 + Φ)φ(z, w)

=
∑
j

dzj ∧
∂φ

∂zj
(z, w) + 2π

√
−1 dzj ∧Bj(w)φ(z, w) + 2π

√
−1 dζj ∧ (wj − zj)φ(z, w)

We calculate the Laplacian of Y0 + Φ. The adjoint

(Y0+Φ)∗(φ)(z, w) =
∑
j

− ∂

∂zj
ι ∂
∂zj

φ(z, w)−2π
√
−1Bj(w)ι ∂

∂zj

φ(z, w)−2π
√
−1 (wj − zj)ι ∂

∂ζj

φ(z, w)
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Write Yj(w) for the first order differential operator

Yj(w)(φ)(z, w) = Bj(w)
∂

∂zj
φ+Bj(w)

∂

∂zj
φ(z, w)

Then the Laplacian ��0(φ)(z, w) = ((Y0 + Φ)∗(Y0 + Φ) + (Y0 + Φ)(Y0 + Φ)∗) (φ)(z, w)
(3.46)

=

g∑
j=1

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(w) + 4π2(|zj − wj|2 + |Bj(w)|2) + 2π

√
−1 (dzj ◦ ι ∂

∂ζj

+ ι ∂
∂zj

◦ dζj)
)
φ(z, w)

=

g∑
j=1

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(w) + 4π2(|zj − wj|2 + |Bj(w)|2) + 2π

√
−1Lj)

)
φ(z, w)

where we recall that Lj = dzj ◦ ι ∂
∂ζj

+ ι ∂
∂zj

◦ dζj and that we have for I = (i1 < i2 < · · · < ik)

and J = (j1 < j2 < · · · < jl)

L(e+
I ∧ e

−
J ) = (k − l)

√
−1(e+

I ∧ e
−
J )

where L =
∑

j Lj and

e±j = dzj ±
√
−1dζj

Hence we have the eigenvector decomposition for L

Λ•V1,0 ⊗ Λ•V 0,1 = ⊕I,J span e+
I ∧ e

−
J

Thus we have that on the e+
I ∧ e

−
J component, ��0φ(z, w)

(3.47)

=

{∑
j

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(w) + 4π2(|zj − wj|2 + |Bj(w)|2)

)
− 2π(k − l)

}
φ(z, w).

Now we solve this equation. First, note that in the definition of the 2-cocycle σ, we may
insert elements from V into both arguments. Thus σ(z, w) is a well defined function on
V × V . One has the following formulae:

∂

dzj
σ(z, w) = −2π

√
−1Bj(w)σ(z, w)

∂

dzj
σ(z, w) = −2π

√
−1Bj(w)σ(z, w)

(3.48)

Define

(3.49) a(z, w) = σ(z, w) exp(−2π(|z − w|2)

Then

a(z + λ,w + λ)σ(λ, z − w) = σ(z + λ,w + λ) exp(−2π|(z + λ)− (w + λ)|2)σ(λ, z − w)

= σ(λ,w)σ(z, λ)σ(z, w) exp(−2π|z − w|2)σ(λ, z − w)

= a(z, w)

(3.50)

so a ∈ Y0.
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Let’s write L for the operator

Lφ(z, w) =
∑
j

(
− ∂2

∂zj∂zj
− 2π

√
−1Yj(w) + 4π2(|zj − wj|2 + |Bj(w)|2)

)
φ(z, w)

defined on Y0.
We now show that a is an eigenvector for L. We have from (3.48) the following formulae

(1) ∂a
∂zj

(z, w) = −2π((zj − wj) +
√
−1 Bj(w))a(z, w)

(2) ∂a
∂zj

(z, w) = −2π((zj − wj) +
√
−1Bj(w))a(z, w)

(3) ∂2a
∂zj∂zj

(z, w) = −2πa(z, w)

+ 4π2
(
|zj − wj|2 +

√
−1(zj − wj)Bj(w) +

√
−1 (zj − wj)Bj(w)− |Bj(w)|2

)
a(z, w)

(4) Yj(z)a(z, w) = −2πBj(w)((zj − wj) +
√
−1 Bj(w))a(z, w)

+−2πBj(w)((zj − wj) +
√
−1 Bj(w))a(z, w)

So

La(z, w) =
∑
j

2πa(z, w)−
∑
j

4π2|zj − wj|2

−
∑
j

4π2
√
−1
(
Bj(w)(zj − wj) + Bj(w)(zj − wj)

)
a(z, w)

+
∑
j

4π2
(
|Bj(w)|2

)
a(z, w)

+
∑
j

4π2
√
−1(Bj(w)((zj − wj) +

√
−1 Bj(w))

+ 4π2
√
−1 Bj(w)((zj − wj) +

√
−1Bj(w))a(z, w)

+
∑
j

4π2(|zj − wj|2 + |Bj(x)|2)a

= 2πga(z, w)

(3.51)

We calculate the eigenvalues and eigenvectors of L. As before, we do this in the one
dimensional case. Define operators

Aφ(z, w) =

(
∂

∂z
+ 2π((z − w) +

√
−1B(w))

)
φ

A∗φ(z, w) =

(
− ∂

∂z
+ 2π((z − w)−

√
−1B(w))

)
φ

Bφ(z, w) =

(
∂

∂z
+ 2π((z − w) +

√
−1B(w))

)
φ

B∗φ(z, w) =

(
− ∂

∂z
+ 2π((z − w)−

√
−1B(w))

)
φ

(3.52)
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These operators satisfy the following commutation relations.

[L,A] = −2πA, [L,A∗] = 2πA∗

[L,B] = −2πB, [L,B∗] = 2πB∗

[A,A∗] = 4π, [B,B∗] = 4π

[A,B] = 0, [A,B∗] = 0

[A∗,B] = 0, [A∗,B∗] = 0

(3.53)

Set a0,0(z, w) = a(z, w) from above. Define recursively,

ai+1,j(z, w) = A∗ai,j(z, w), ai,j+1(z, w) = B∗ai,j(z, w)(3.54)

This is well defined since A∗ and B∗ commutate. Moreover, Aa0,0 = Ba0,0 = 0. Then as
before we have

Theorem 3.14. For each w ∈ V , the functions ai,j(·, w) ∈ S (C) form an orthogonal
complete basis of the closure L2(C) of S (C). Furthermore, we have

Lai,j = 2π(i+ j + 1)ai,j

It follows that in g-dimensions, that the ground states a satisfy

La = 2πga

Thus we see that there is a kernel for ��0 only for k − l = g.

Theorem 3.15. The cohomology of (Y•,Y0 + Φ) is zero except in dimension g where it is a
free A(Λ;σ) module of rank one, with generator a.

Finally, define a map of A0,•(X;B)-bimodules

β : Y• ⊗A(X;B) A0,•(X;B)→ A0,•(X;B)

by

β(φ)(z) = ιΞ(φ)(z, z)

As before, this needs a little explaining. We have that

Y• ⊗A(X;B) A0,•(X;B) ∼= Y• ⊗ Λ•V 0,1.

In this last factor of Λ•V 0,1 we denote the basis by dwj. Also, Ξ is the alternating multivector
∂
∂ζ1
∧ · · · ∧ ∂

∂ζg
. Then the map β does the following. It picks off any factor containing

dζ1 ∧ · · · ∧ ddζg, it sends both dzj and dwj to dzj in A0,•(X;B) and it restricts this to the
diagonal.

Proposition 3.16. The map β is a map for A0,•(X;B)-bimodules and it commutes with the
Z-connections.

This completes the proof of theorem 3.6.
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