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Abstract - Using the formalism of bicycles we present an excess intersection formula in Kasparov’s group

KKG(X,Y ).

Resumé - Dans le cadre de bicycles ( cycles bivariants ) nous donnons une formule d’intersection excessive.

1 Introduction

In [1], based on earlier work of [2], [4], the authors described Kasparov’s group

KKG(C0(X), C0(Y ))

in geometric terms when a compact Lie group G acts on stratified spaces X and Y , and showed how to carry

out the Kasparov product in the absence of transversality, using instead Bott periodicity. We proposed this

as an appropriate setting for the study of equivariant intersection theory. Here this program is continued by

presenting an excess intersection formula in the spirit of [7], [6] and showing how to perform the Kasparov

product in the case where the intersection is not transverse but has enough structure to define a bicycle.

We then show how in the case of a local complete intersection morphism of complex algebraic varieties

f : X → Y one can associate an f ! ∈ KKG(X,Y ). We then extend the excess intersection formula to this

context. The formula we obtain can be viewed as the topological analogue of the excess intersection formula

in algebraic geometry of Fulton and MacPherson [7].
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2 The excess intersection formula

Let G be a compact Lie group. By a stratified G-space we will mean a Thom-Mather stratified G-space

[8] such that G acts differentiably on each stratum and preserves the Thom-Mather data. Consider a fiber

square

X1
i1−→ Y1yψ yφ

X
i−→ Y

(1)

of stratified G-spaces. Assume i1 and i are Spinc normally non-singular inclusions, [8] and [1] and that φ

and ψ are proper. Then there exist normal bundles ν(i) and ν(i1) of rank d and d1 respectively which are

endowed with Spinc structures. ν(i1) canonically maps to ψ∗(ν(i)), and the fiber square (1) is called clean if

this map is an injection. Hence we may form η = ψ∗(ν(i))/ν(i1) and this is called the excess normal bundle

of the fiber square (1). This comes with a Spinc structure that it inherits from ν(i) and ν(i1). If the fiber

square is transversal, then the canonical map is an isomorphism and η = 0. Thus η measures the deviation

from transversality. Assume for convenience that η is of even rank. Consider the virtual G-vector bundle

S(η) = S+(η)−S−(η), where S±(η) denotes the plus and minus spinors for the bundle η. If X1 is compact,

then S(η) is an element in K0
G(X1). With no compactness assumption, S(η) is an element of KK0

G(X1, X1).

Then we have the following simple relationship between the Gysin maps of i and i1.

Lemma 2.1 Given a clean G-equivariant fiber square (1) in which i1 and i are Spinc normally non-singular

inclusions and φ and ψ are proper, then the following diagram is commutative.

Kl
G(X1) i1!−→ Kl+d

G (Y1)xS(η)ψ∗
xφ∗

Kl
G(X) i!−→ Kl+d

G (Y )

(2)

That is, φ∗ ◦ i! = i1!S(η)ψ∗.

Consider a general fiber square of stratified G-spaces

X1
g1−→ Y1yψ yφ

X
g−→ Y

(3)
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where g1 and g are Spinc normally non-singular maps, and φ and ψ are proper. Let X i−→Y ×Rn p−→Y be

a factorization of g where i is a Spinc normally non-singular inclusion. Then we may form the fiber square

X1
i1−→ Y1 ×Rnyψ yφ

X
i−→ Y ×Rn

(4)

and reduce to the previous case. Given the fiber square (3) we have the canonical map ν(i1) → ψ∗(ν(i)).

The fiber square (3) is called clean if the associated fiber square (4) is clean. In this case η = ψ∗(ν(i)/ν(i1)

is called the excess normal bundle of the fiber square (3).

Lemma 2.2 We have the following formula φ∗ ◦ g! = g1!S(η)ψ∗.

Finally we express this in terms of the Kasparov groups. Given the clean fiber square (3) we may construct

g! ∈ KKG(X,Y ) and g1! ∈ KKG(X1, Y1). We can also form [ψ] ∈ KKG(X,X1) , [φ] ∈ KKG(Y, Y1) and

S(η) ∈ KKG(X1, X1), see [1].

Theorem 2.3 One has the following excess intersection formula in KKG(X,Y1):

g!⊗Y [φ] = [ψ]⊗X1 S(η)⊗X1 g1!

Let Ξ0 = (Z0, E0, f0, g0) be a bicycle from X to Y and Ξ1 = (Z1, E1, f1, g1) a bicycle from Y to V . In

[4], [5] and [1] it was shown how to take the Kasparov product of Ξ0 and Ξ1 when they were transverse.

Furthermore, in [1], we showed how to multiply any two bicycles, even when they couldn’t be put in transverse

position. Here we present something of a compromise. In some cases, Ξ0 and Ξ1 won’t be transverse but

their intersection is well behaved enough to define an element of KKG(X,V ). Suppose our bicycles fit into

a clean fiber square

Z
g−→ Z1yf yf1

Z0
g0−→ Y

(5)

where Z is a stratified G-space and g is a normally non-singular Spinc map. Then form a new bicycle

Ξ = (Z, g∗E1 ⊗ f∗E0 ⊗ S(η), f0 ◦ f, g1 ◦ g).

Theorem 2.4 The product of the bicycles Ξ0 ◦ Ξ1 is given by the bicycle Ξ.
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3 Locally complete intersection morphisms

In this section, let GC be a complex reductive group. Let G be a maximal compact subgroup. Let GC act

on complex quasi-projective algebraic varieties X and Y in an algebraic manner. Then also G acts on X

and Y and one can find stratifications of X and Y and control data which is compatible with the action

of G. Define the group KGC
(X) to be KG(X). Given two maximal compact subgroups, the corresponding

K-groups are isomorphic by a unique isomorphism. A G-morphism f : X → Y is called an equivariant local

complete intersection morphism if there is a factorization of f as

X
i−→M × Y p−→Y

where i is an equivariant regular embedding [6] , M is a non-singular G-variety, and p is the projection. We

will now show how to associate to such a morphism an equivariant bicycle. The morphism p : M ×Y → Y is

normally non-singular so we already know how to define p! ∈ KKG(M × Y, Y ) so it remains to construct i!

for a regular embedding i : X → Y . We will in fact give two ways. The first applies only to K-theory and uses

clutching ideas and works completely generally needing no form of transversality.The second may generalize

to other homology theories but relies on transversality and uses a construction reminicent of MacPherson’s

graph construction.

Given such a regular embedding let ν(i) be its normal bundle defined as in algebraic geometry [7].

Contrary to the case of normally non-singular morphisms however, ν(i) is not necessarily homeomorphic to

a regular neighborhood of X in Y . Both constructions need the following data. As in [3], there exists an

algebraic G-vector bundle E and a G-invariant section s : Y → E so that X is the scheme theoretic zero set

of s. This follows from the basic constructions of [3] together with some results from [9] to guarantee that

they may be done equivariantly. Choose a G-invariant classical regular neighborhood such that Ū sits inside

Y as a π-fibered subset. Let r : Ū → X be the retraction of Ū to X. As in [3], choose a complex subbundle

C of E|Ū so that ν ⊕ C|X ∼= E|X . Let Q = E/C over Ū . Let s̄ : Ū → Q denote the natural quotient map

induced by s. By shrinking U is necessary we can arrange that

s̄ : (Ū , Ū −X)→ (Q,Q− {0}) (6)

Let S± denote the spinors on Q, π : Q → Ū the natural projection. There exists the natural Clifford
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multiplication homomorphism

π∗S+ → π∗S−

Now consider s̄∗π∗S+ → s̄∗π∗S− on Ū . Since s̄ satisfies (6), we may double Ū along its boundary obtaining

Z. Form a vector bundle F on Z by putting s̄∗π∗S+ on one copy of Ū and s̄∗π∗S− on the other copy and

gluing along the boundary where Clifford multiplication is an isomorphism due to (6). The natural map

g : Z → Y is normally non-singular since Ū was π-fibered. The retraction map r : Z → X is proper. Then

i! is defined by the bicycle (Z,F, r, g). We have chosen to use the spinors only because they provide a nice

“assembling” of the Koszul complex of vector bundles into its even and odd parts.

The second construction relies on the same data, E, s,Q, s̄. Replacing s̄ by one which approximates

it, we may assume that s̄ is controlled, relative to obvious control data on Q. Consider t0 : Ū → Q the

zero section. t0 is a Spinc normally non-singular inclusion, so according to [8], 5.3, there exists a cobordant

section t : Ū → Q so that s̄ and t are transverse. Consider the set

Xλ = {x ∈ Ū |t(x) = λs̄(x)}

Xλ is normally non-singularly included in Y for generic λ. For λ large, Xλ is contained in any particular

regular neighborhood of X in Y . Define i! to be given by the bicycle (Xλ,1, r, i) where 1 is the trivial

one-dimensional vector bundle, r is the retraction given by one of our regular neighborhoods, e.g. Ū .

For an lci morphism f : X → Y , factor it as above, f = p ◦ i. Then define f ! = i!⊗M×Y p!.

Proposition 3.1 Let f : X → Y be an equivariant locally complete intersection morphism of quasi-projective

G-varieties. Then

1. f ! ∈ KKG(X,Y ) is independent of all choices in its construction. In particular, the two constructions

define the same class in KKG(X,Y ).

2. If f1 : X → Y and f2 : Y → Z are two equivariant lci morphisms, then

(f2 ◦ f1)! = f1!⊗Y f2!

We now have the following analogue of the excess intersection formulas above.
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Theorem 3.2 Consider a fiber square

X1
g1−→ Y1yψ yφ

X
g−→ Y

(7)

which is Cartesian in the sense of algebraic geometry, where all the spaces are quasi-projective algebraic

G-varieties and the maps g and g1 are local complete intersection morphisms. Then one has the formula

g!⊗ [φ] = [ψ]⊗ S(η)⊗ g1!

in KKG(X,Y1).

Note that in the algebraic case, with the normal bundles defined as in algebraic geometry, the canonical map

of normal bundles is always injective [7].
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