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1. Introduction

We show here how to entirely control a single 2-parameter bundle of rays, in the sense that

given a target point on a surface assigned to each ray and a desired incident direction at each

such point, we can from this prescribed data design a system of four reflectors which will

optically realize the required correspondence. Put another way, we solve a basic problem

of geometric optics, namely the construction of optical system that maps a given input ray

bundle to a given output bundle, where each input ray is mapped to a pre-determined output

ray. We not only achieve a “shape to shape correspondence” between the bundles but also

realize a given correspondence at the ray level. This allows for a larger class of applications,

especially in the realm of imaging.
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Fig. 1. A schematic description of our problem - we wish to design an optical system consisting of

mirrors that maps a ray bundle to a ray bundle on the ray level.

Note that we do not assume any symmetry in the problem, which results in the solution

surfaces typically being freeform, i.e. those surfaces which are not a portion of a surface of

revolution. Additionally, without any assumptions of symmetry, it follows from the theory

of Exterior Differential Systems(EDS) that generically four surfaces is the exact number

needed to solve this problem.

Because we live in a golden age of fabrication, we also live in a golden age of optical design.

Problems that were previously not considered are now being examined with the result that

considerable interaction is taking place between multiple fields of mathematics and optics.

We will describe our viewpoint of optical design and delve briefly into the background below.

The fundamental problem of design in geometric optics is to control collections of light

rays. The light rays typically consist of bundles emanating from a collection of point sources,

with two parameters describing the rays emanating from each source. (One may consider

one-parameter families, or even a finite number of rays mixed in, but these problems are
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less common.) Extended sources may be approximated using multiple point sources. There

are at least two different manners in which one might want to control the rays emanating

from a single source.

In the first, the designer could be given a collection of prescribed target points, with

one target point assigned to each ray in the bundle, with the design problem then being to

produce an optical system through which each ray will pass and be directed to its prescribed

target point. When each individual ray is given a prescribed target point we refer to this as

an imaging problem. Generally the target points form a surface, which is usually a plane,

(but not always) and we refer to the associated correspondence between rays and target

points as the projection and the problem as the prescribed projection problem. It is

the fundamental problem of imaging. If there is one target point for each source, it is the

fundamental problem of photography.

In the second problem the goal is to achieve a bundle to bundle mapping, but without

having to follow a prescribed correspondence on the ray level. Thus, what the rays in the

interior of the bundle are doing is not of interest. In other words, the goal is to transform

the shape of the bundle into a prescribed shape, in a prescribed position.

The problem of interest in this paper is a combination of the first problem and second

problem. In addition to requiring that the output rays strike assigned target points, they

must strike their target points with prescribed incoming directions. This problem is thus the

general problem of mapping a given ray bundle in image space to an output ray bundle in

object space, but with a requirement on where the individual rays go. Put yet another way,

given an input bundle we require that the output bundle have a prescribed shape, and that

additionally the “internal assignment” of rays also follow a prescription. We view this as

an imaging problem because the control of individual rays is required. We test our designs

quite convincingly in the graphical ray tracing package POVRay.

The prescribed projection problem was first described by the second author and R. Perline

in 2000 [1] (although rotationally symmetric forms had been considered for laser beam

shaping e.g. [2, 3]). In this case the problem under consideration was to use a single mirror to

solve the single source problem and it was shown that this was equivalent to the mathematical

problem of integrating an over-constrained pair of partial differential equations. A sample

application of this problem is the design of a driver-side mirror for a motor vehicle, which

has no blind-spot and yet provides the observer with a perspective view of the scene [1, 4, 5].
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Note that this is an imaging case of the problem which is not photographic, i.e. the ray

bundle is not mapped to a single point but spread out on a plane. This work centers on

finding approximate solutions for the prescribed projection problem in the case of a single

source, since a single reflector generically does not suffice to solve this problem.

If one has a single source and two reflectors the problem is generally solvable, as was

shown by the authors in [6] using ideas from EDS. That work is the main predecessor of this

work.

A more demanding variant of the second problem is to prescribe the energy intensity on

a target surface. Then the rays must be guided to this surface from the source, but where

individual rays end up is still of no concern - one simply wants the total energy to match

the prescribed intensity. (Natural terminology, although not yet universal, would be to refer

to this as the prescribed intensity problem). Interestingly, the single source problem

in the illumination case was also not given a precise mathematical form and solved exactly

until the late 1990s by Oliker et al in [7, 8]. An interesting earlier analysis on this problem

was done by Schruben in 1972 [9].

All of these problems, and in particular the one of interest in this paper, are linked to

the fabrication and design of freeform surfaces. Historically, of course, it has been almost

impossible to machine freeform surface to optical quality. With the appearance of computer

controlled machining, it became possible to make a surface with any almost any profile on

a lathe. Early freeform designs include a progressive spectacle lens designed in the late

1950s by Kanolt [10] and the Polaroid SX-70 folding camera [11] whose key components

were mostly patented in the early 1970s, e.g. [12–14].

Only in the last fifteen years has technology existed that can produce optical quality

freeform surfaces. This technology was for the most part developed as part of the Defense

Advanced Research Projects Agency (DARPA) conformal optics program [15, 16]. Since it

was never possible to fabricate these surfaces until recently, little design theory was ever

developed; exceptions include [17, 18].

The work of Oliker et al on illumination is spiritually parallel to the problems consid-

ered by the authors in that it describes the fundamental mathematical theory of a basic

illumination problem. Other fundamental theory of illumination includes that of Rubinstein

and Wolansky in [19], which describes a means of designing freeform lenses to control the

intensity of a collimated beam.
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The reader should bear in mind though that the general engineering problem of designing

systems for illumination has a vast literature, which is well surveyed in [20]. In general the

problem of controlling multiple bundles simultaneously is unsolved, as is discussed in [20].

In particular the edge-ray principle is closely related to the problem of preserving bundle

shape. A recent and popular application of illumination optics has been due to the wide-

spread use of light emitting diodes. Note that illumination design has applications to areas

such as laser beam shaping [21] and solar collector design [22]. Regarding this last reference,

much of this work was heavily motivated by the interest in the 1970s in solar collectors, and

a classic work describing the state of the art circa 1978 is by Welford et al in [23].

2. The Design Algorithm

The mathematical theory of EDS developed by Cartan and Kähler [24] implies that four

reflectors are required to produce an exact solution to this problem. It also implies that

fewer than four will not typically suffice. The theory does not tell us though how to go

about constructing solutions to the problem, either in closed form or numerically. That is

partly our contribution here.

We model the reflectors as a system of first order partial differential equations. We

will label the rays in our bundle with points in the y − z plane (and so it is assumed

that no two rays intersect each other in this plane). We will use (s, t) to parameterize the

incoming rays so that R(s, t) is the unique ray that passes through the point (0, s, t) in the

y − z plane. (In our numerical examples R(s, t) will be parallel to the x-axis). This ray

will then successively reflect off of four reflectors M1, M2, M3, and M4 at points M1(s, t),

M2(s, t), M3(s, t), and M4(s, t). After the last reflection from M4 the ray will coincide with

a prescribed ray Rout(s, t). (Thus the target point information and the incident directions

are both encoded into Rout.) To summarize, our given data is a parameterized incoming ray

bundle, R(s, t) and a parameterized outgoing bundle, Rout(s, t), and are asked to determine

the four parameterized surfaces (mirrors) Mi(s, t) such that each ray R(s, t) will reflect in

sequence off the mirrors Mi at Mi(s, t) and end up as the ray Rout(s, t).

We point out that although our method applies to rather general ray bundles they must

satisfy certain conditions. As we mentioned above, the incoming bundle ray bundle must

intersect the x−y plane nicely. Similarly we need the outgoing bundle to intersect a smooth
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Fig. 2. The surfaces M1,M2,M3 and M4 must all be perpendicular to the ray path. This imposes

conditions on their derivatives.

embedded surface S nicely so that the induced map from the x − y plane to the surface S

is a diffeomorphism. Note that the fourth mirror might need to be huge for some choices of

output bundles.

There is a strong restriction though that the surfaces Mi must satisfy. Namely, that each

one must be perpendicular to the vector field defined by computing the sum of the incoming

and outgoing rays.

The Mi are surfaces parameterized by points in the y − z plane:

Mi : (s, t) 7→ (xi(s, t), yi(s, t), zi(s, t)).

Of course, in order for the final output ray to be Rout(s, t) we will need to satisfy the condition

that the point M4(s, t) lie on the ray Rout(s, t). The only other conditions we need are that

the surfaces Mi are normal to certain vectors Vi at the point Mi(s, t), which are naturally

determined by the ray path (see Fig. 2). We let V R(s, t) be the unit vector at the point

M1(s, t) in the direction of the ray R(s, t), and similarly V Rout(s, t) be the unit vector at

the point M4(s, t) in the direction of the ray Rout(s, t). Then the Vi are as follows:

V1(s, t) = −V R(s, t) +
M2(s, t)−M1(s, t)

|M2(s, t)−M1(s, t)|

V2(S, t) =
M1(s, t)−M2(s, t)

|M1(s, t)−M2(s, t)|
+

M3(s, t)−M2(s, t)

|M3(s, t)−M2(s, t)|
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V3(s, t) =
M2(s, t)−M3(s, t)

|M2(s, t)−M3(s, t)|
+

M4(s, t)−M3(s, t)

|M4(s, t)−M3(s, t)|

V4(s, t) = V Rout(s, t) +
M2(s, t)−M1(s, t)

|M3(s, t)−M4(s, t)|
.

Thus the problem is to find four parameterized surfaces Mi(s, t) that are perpendicular

to the vectors Vi(s, t), which we will refer to as condition 1, and further that M4(s, t) lies

on the required ray Rout(s, t), which we will refer to as condition 2.

It turns out to be useful to put the parameterized surfaces together as a single parame-

terized surface Γ in 12-dimensional space, R12, with the parametrization

Γ(s, t) = (x1(s, t), y1(s, t), z1(s, t), x2(s, t), y2(s, t), z2(s, t), x3(s, t), ..., z4(s, t))

We emphasize that Γ is a 2-dimensional object in 12-space whose 2-dimensional tangent

plane is spanned by the vectors Γs = ∂sΓ and Γt = ∂tΓ. Condition 1 requires that for all

(s, t) that Γs and Γt are perpendicular to four vector fields Ṽi in R12 that are derived from

the Vi. To define Ṽ2 suppose we are a given 12-tuple (x1, x2, x3, ...x12) ∈ R12. Then take

(X2, Y2, Z2) in R3 to be

(X2, Y2, Z2) =
(x1, x2, x3)− (x4, x5, x6)

|(x1, x2, x3)− (x4, x5, x6)|
+

(x7, x8, x9)− (x4, x5, x6)

|(x7, x8, x9)− (x4, x5, x6)|
.

Then we have

Ṽ2 = (0, 0, 0, X2, Y2, Z2, 0, 0, 0, 0, 0, 0).

The vector field Ṽ3 is defined similarly.

Since V1 and V4 depend on the given R(s, t) and Rout(s, t) the vector fields Ṽ1 and Ṽ4 are

a bit more complicated. We first will define functions s(x1, x2, x3) and t(x1, x2, x3) as the

values of (s, t) such that the ray R(s, t) (that by definition passes through the point (0, s, t))

passes through the point (x1, x2, x3). For the situations we will consider we assume that

such (s, t) is defined and unique. Now we can define at (x1, x2, x3, ...x12) ∈ R12

(X1, Y1, Z1) = −V R(s(x1, x2, x3), t(x1, x2, x3)) +
(x4, x5, x6)− (x1, x2, x3)

|(x4, x5, x6)− (x1, x2, x3)|
,

and

Ṽ1 = (X1, Y1, Z1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
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while

(X4, Y4, Z4) =
(x7, x8, x9)− (x10, x11, x12)

|(x7, x8, x9)− (x10, x11, x12)|
+ V Rout(s(x1, x2, x3), t(x1, x2, x3)),

and

Ṽ4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, X4, Y4, Z4).

In the examples below the incoming beam is parallel to the x-axis and the output beam

is (in most cases) collimated in the (1, 1, 1) direction, and hence things are much simpler

since s(x1, x2, x3) = x2, t(x1, x2, x3) = x3, V R(s, t) = (1, 0, 0), and V Rout(s, t) = 1√
3
(1, 1, 1)

(i.e. V R and V Rout are constant).

Thus our problem becomes to find a surface Γ(s, t) in R12 which is everywhere perpen-

dicular to the four vector fields Ṽi and also satisfies condition 2. Satisfying condition 2

means that the point lies in a subset M⊂ R12 which is a 10-dimensional constraint space.

(x1, x2, x3, ...x12) ∈M if the point (x10, x11, x12) lies on the rayRout(s(x1, x2, x3), t(x1, x2, x3)).

Note that the contraint that a point in 3-space lies on a given ray is in some sense two con-

straints, which is why the constraint space M is 12 − 2 = 10 dimensional. Another way

to see this 10 dimensionality explicitly is to observe that for each (x1, x2, ..., x9) ∈ R9

there is a one dimensional set of (x10, x11, x12) ∈ R3 (namely those points on the ray

Rout(s(x1, x2, x3), t(x1, x2, x3))) so that (x1, x2, x3, ..., x12) ∈ M. Thus M is 9 + 1 = 10

dimensional.

To summarize, our problem has become reframed as finding a surface Γ(s, t) which lies in

M and whose tangent space is everywhere perpendicular to the vector fields Ṽi. We propose

to find such a surface that passes through an initial curve

C(t) = (C1(t), C2, (t), C3(t), C4(t), ..., C12(t))

which lies inM and is perpendicular to the Ṽi. It turns out these are precisely the dimensions

and number of vector fields so that one expects unique solutions.

At this stage it is reasonable to mention some issues that arise is practice. For one, one

does not want two mirrors to cross one another. Thus we will stay away from the part of

R12 where this happens. In particular, we only care about points where the Ṽi are defined.

(Note they are linearly independent at x if all are defined at x.) Another issue that might

show up is that a ray path might unintentionally intersect one of the mirrors (perhaps even

the mirror it just intentionally hit). The model ignores this problem. One can often avoid
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this problem with a careful choice of initial curve. We will proceed under the assumption

that this does not happen.

In what follows next we make use of differential forms. The reader who would prefer a

presentation in terms of matrices should see the appendix to [6] for a description of how to

convert from one viewpoint to the other. It may be be adequate though for the reader to

consider a concise summary here: Below when θi(V ) is written it means the dot product of a

certain vector with V and that dθi(V,W ) corresponds to an expression V tAW for a certain

matrix A. The main geometric idea is to use these equations to determine the tangent

space to the surface in R12, and then use that information to create a slight extension

of the surface (on the tangent planes), and repeat this process, creating a sort of family

of extensions beginning with the initial curve. These curves lie on a surface which can

be projected into four different 3-dimensional subspaces to get the four different solution

surfaces. Thus, in a sense, the four different solution surfaces are “shadows” of a single

surface in R12.

We consider the one-forms θi that are dual to the Ṽi. That is, at a point in R12, θi is

the linear map from tangent vectors X defined by θi(X) = 〈Ṽi, X〉. We let E be the 8-

dimensional distribution in R12 which is the joint kernel of these four one forms. That is, at

each point x ∈ R12, E(x) is the subspace of tangent vectors at x which are perpendicular to

the 4 dimensional subspace spanned by the 4 vectors Ṽi(x) and hence E(x) is 8 dimensional.

A vector V with base point in M and lying in E is called Kähler-regular if the set of

8 linear equations for W

θi(W ) = θ2(W ) = θ3(W ) = θ4(W ) = 0

dθ1(V,W ) = dθ2(V,W ) = dθ3(V,W ) = dθ4(V,W ) = 0

has maximal rank = 8, hence the solution space (as the kernel of a 12 by 8 matrix of rank

8) is 4-dimensional. In addition we insist that this 4-dimensional solution space intersects

the 10-dimensional tangent space to M in a 2-dimensional (as expected) subspace T 2(V ).

This is a generic condition for such V .

Since θi will be zero on any tangent vector to a solution surface Γ, dθi(X, Y ) = 0 for any

two tangent vectors X and Y to Γ. Thus if V is tangent to Γ at Γ(s, t) and is Kähler-regular

then the tangent space to Γ at Γ(s, t) must be T 2(V ).
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C(t)

Fig. 3. Given a curve on our surface we use the known equations that it must satisfy to compute

the tangent space at a discrete set of points on the curve, and then extend the surface discretely

by moving out infinitesimally on the tangent spaces.

If all the data are reasonable, and if we start with an reasonable initial curve C(t) (where

reasonable means that they are real analytic) such that C ′(t) is Kähler-regular then the

Cartan-Kähler theorem (page 254 of [24]) guarantees that there exists a unique (locally

defined) analytic surface Γ solving our problem.

In practice (including the non analytic case), if we start with a Kähler-regular initial

curve we can compute the tangent space to the solution surface and use that to get a nearby

curve on the surface. The new curve should be approximately Kähler-regular so we can

iterate and (at least for a while) generate more curves on the surface. We of course work

with discrete approximations of the curves, and at each step generate a new discrete curve

by moving out on the tangent space by a small amount, as is schematically depicted in Fig.

3. In the next section we give explicit examples.

3. Examples

In this section we describe some examples and present the results. In our first examples

assume that the incoming bundle is collimated and has direction (1,0,0), i.e. parallel to

the x-axis, and the outgoing beam is a collimated beam with direction (1, 1, 1). We create

different cases by varying parameters of the problem. Our last two examples produce output

bundles which are portions of bundles that pass through a point.

We choose a parameter r which may expand (r > 1) or contract (r < 1) the ray bundle.

We also choose how to orient it, i.e. twist the bundle. We do this by choosing two orthogonal

unit vectors Yout and Zout and then for each (s, t) (near (0, 0)) we choose Rout(s, t) to be the
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ray in the direction (1, 1, 1) that passes through the point (x0, y0, z0) + rsYout + rtZout. Here

we choose the point (x0, y0, z0) rather arbitrarily (though it must be away from (0, 0, 0))

to be (40, 10, 0). We will give examples for various values of r and two different choices of

Yout and Zout. To begin we take r = 3 (i.e. we expand the beam by a factor of 3) with

Yout = 1√
6
(−2, 1, 1) and Zout = 1√

2
(0,−1, 1).

In general, the success of the numerical method is sensitive to choice of initial conditions.

We now describe a choice of initial curve that yielded some good results. The initial curve

in R12 consists of four separate parameterized curves in 3-space. We choose the first two

and the last one to be straight lines as follows:

(0, t, 0, 0, t, 10 + 0.05t, C7(t), C8(t), C9(t), 40 + rYout(1)t, 10 + rYout(2)t, rYout(3)t).

(The 0.05 in the sixth slot is some arbitrary small nonzero constant - its choice can affect the

results some.) Observe that the above choices guarantee that the initial curve will lie inM.

The other three components are determined by the fact that θ2,θ3, and θ4 are zero on the

initial curves. This gives us two algebraic equations and one first-order ordinary differential

equation to solve. Thus there is one more parameter to choose - the initial condition of this

differential equation. This allows us to choose C9(0) (i.e. the initial z value of the third

curve). Here we choose this to be 15. In the top of Fig. 4 we see such an initial curve (i.e.

four parameterized curves). The curves in numbered in Fig. 4 from 1-4, with curve 3 being

the one that must be solved for. In the lower half of Fig. 4 we see the paths taken by the

light rays between the curves. The incoming and outgoing rays are not shown in the figure.

Now that we have chosen a good initial curve we may generate the four surfaces. In Fig.

5 we see the four surfaces in their relative positions, although not plotted to scale.

We now address the question as to how one can graphically test our designs. Assuming

that one has an imaging system with the described reflectors, we consider a test pattern,

which is a photograph of a parking lot (see Fig. 6). We image this pattern to the plane

x = −100 using the orthographic projection induced by the four mirror system (since it

maps a collimated bundle to a collimated bundle) and observe how the reflectors change the

image that is formed and how the image changes with the placement of the test pattern.

With respect to Fig. 4, the arrow in that figure is pointed in the opposite direction of what

would be the physical path of the light in our simulated imaging system.

We consider three separate simulations with the test pattern centered at (240, 210, 200),
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Fig. 4. The above figure depicts the four initial curves in 3-space and below that we see the

trajectories of rays.
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Fig. 5. The four reflector system (not plotted to scale), numbered as in Fig. 4.
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Fig. 6. The test pattern (image) used in the test

(640,610,600), and (940,910,900), and perpendicular to the (1, 1, 1) direction - i.e. along the

output ray Rout(0, 0). If our design theory and numerics are correct we should see a rotated

portion of the test pattern. The size (i.e. fraction of the pattern) we see is proportional to

r. Since the output beam should be collimated we should get exactly the same result for all

three trials, despite the increase in distance to the test pattern. Fig. 7 depicts the results,

which are consistent with our model. In general this is how we tested if our mirror systems

preserved collimation, and we always found in all of our examples that collimation was well

preserved.

Variants of this example where r = 5 and r = 10 with the same rotation of the bundle

(i.e. same Yout and Zout) appear in Fig. 8 and Fig. 9. In the case of r = 10 the test pattern

does not fill the entire reflector, and we see the checkerboard test pattern behind it.

In another example, we again take r = 3, but let Yout = 1√
2
(−1, 1, 0) and Zout =

1√
1.5

(−0.5,−0.5, 1) so that the bundle is not twisted and as a result the test pattern does

not appear rotated. The results for two different placements of the test pattern appear in

Fig. 10. In the the bottom image of Fig. 10 we see for the first time some problems in the

image quality. Here we suspect we are seeing either artifacts of the numerical method for

solving the partial differential equations, not due to the ray tracer. We do not pursue this

point further here, but include it to demonstrate that there are subtle numerical issues that

need to be handled sometimes regarding the solution scheme and the data structures that

represent a smooth surface.

Fig. 11 depicts results in the case of r = 0.5, hence obtaining a narrower output bundle

than the incoming bundle.
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Fig. 7. Three tests with the test pattern at (240,210,200), (640,610,600), and (940,910,900) re-

spectively. They should be very similar due to the collimation of the output beam. Note that the

mirrors are simulated in a virtual room with checkerboard walls of various colors and some sample

text.
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Fig. 8. An image of the test pattern via rotated collimated bundle with r = 5.

Fig. 9. An image of the test pattern via a rotated collimated bundle with r = 10.

Fig. 10. Images of the test pattern (placed at different positions) via collimated bundle with r = 3

and no twist. We can see from from the distortion in the lower image that the bundle is not

perfectly collimated.

Fig. 11. An image of the test pattern via rotated collimated bundle with r = 0.5.
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Fig. 12. Here the y scaling is 4 and z scaling is 8 with the image plane at (240, 210, 200)(top) and

(940, 910, 900) (bottom).

If we scale the y direction by 4 and the z direction by 8 before twisting the bundle, then

one obtains the images depicted in Fig. 12.

Finally, we present two examples where the output beam is not collimated. Both have

the output rays that all pass through a single virtual point. The central output ray in both

cases still points in the (1, 1, 1) direction and passes through (40, 10, 0). The virtual point in

the first case is (40, 10, 0)− 20√
3
(1, 1, 1) while in the second case it is at (40, 10, 0)+ 700√

3
(1, 1, 1).

In the first case the output beam seems to emanate from a point source at the virtual

point. We show a sequence of POVRay trials with the test pattern (which is twice as big

as in previous trials) centered at various points along the central output ray in Fig. 13. We

should (and do) get images where the test pattern appears progressively smaller (i.e. we see

imaging a progressively portion of it).

In the second case the output beam should focus to a point (approximately (444, 414, 404))

and then invert through that point. The sequence of images from POVRay tests should see

progressively smaller pieces of the test pattern until (444, 414, 404) and then the images

should invert the test pattern and see more and more of it. We see a sequence of such

results in Fig. 14. An image depicting the catastrophic nature of passing through the focus

is included.
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Fig. 13. From top left to bottom right: taking r = 3, a series of POVRay tests with the test

pattern centered at (140,110,100), (240,210,200), (640,610,600) and (840,810,800) respectively for

the output beam from virtual point source at (40, 10, 0)− 20√
3
(1, 1, 1).

Fig. 14. From top to bottom: taking r = 3, a series of POVRay tests with the test pattern centered

at (140,110,100), (440,410,400), which is near the focal point, and (940,910,900) respectively for

the output beam from virtual point source at (40, 10, 0) + 700√
3

(1, 1, 1).

4. Conclusions

We have described a theoretical framework for the control of a single ray bundle based on

the theory of EDS. In earlier work we had used EDS as a basis of a design technique for two

17



reflector systems that controlled a single ray bundle to a lesser extent. Here, using simulated

four reflector systems, we performed numerical experiments that demonstrate not only that

the ray bundle passes through the required points, but also in the required directions.
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