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§1. The abstract Artin problem
(1.1) Let K be a global field, and let Σ′

K be the set of all finite places of K. Let P be a
countable indexing set. For each α ∈ P , let Kα be a finite Galois extension of K, and let Zα

be a union of conjugacy classes of Gal(Kα/K). Let Gα := Gal(Kα/K), nα := |Gal(Kα/K)|,
sα := |Zα|.

For each v ∈ Σ′
K , denote by

(
Kα/K

℘v

)
the set of all elements σ ∈ Gal(Kα/K) such that

there exists a place ṽ in Kα above v such that σ belongs to the decomposition group Dṽ and
induces the geometric Frobenii for the residue field extension κṽ/κv. Kα.

(1.1.1) Define a subset S ⊂ Σ′
K by

S =

{
v ∈ Σ′

K :

(
Kα/K

℘v

)
6⊆ Zα ∀α ∈ P

}
.

For every finite subset I ⊂ P, define a subset SI ⊂ Σ′
K by

SI =

{
v ∈ Σ′

K :

(
Kα/K

℘v

)
6⊆ Zα ∀α ∈ I

}
.

Also, define MI ⊂ Σ′
K by

MI =

{
v ∈ Σ′

K :

(
Kα/K

℘v

)
⊆ Zα ∀α ∈ I

}
.

It is clear that SI1 ⊆ SI2 if I1 ⊂ I2, and

S =
⋂
I

SI .

(1.1.2) It is easy to see from Chebotarev’s density theorem that the Dirichlet density of SI

exists for each finite I ⊂ P; the same holds for each subset MJ of Σ′
K , J finite. The density

of the subsets SI and MJ of Σ′
K are related by

d(SI) =
∑
J⊆I

(−1)|J | d(MJ) ,

as follows from the inclusion-exclusion principle.
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(1.2) The abstract Artin problem in the present context is to find a set of conditions on
(K, {Kα}α∈P , Zα) so that the Dirichlet density of S exists, and is equal to lim

I→∞
d(SI). Notice

that the limit lim
I→∞

SI exists because d(SI1) ≥ d(SI2) if I1 ⊆ I2.

(1.2.1) Remark Murty considered the case when K is a number field and each Zα consists
of the identity element of Gα; see [Mur2]. Clark and Kuwata treated, in [CK], the case
when K is a global function field and Zα consists of the identity element of Gα for each α.
They also stated, without proof, a result for more general Zα’s in [CK, Thm. 4.1]. That
statement does not seem to follow from the line of argument in [CK] though; see 3.7.1 for
more comments.

(1.2.2) We recall that, for any subset Z ⊆ Σ′
K , the upper and lower Dirichlet density, d+(Z)

and d−(Z) are defined by

d+(Z) = lim sup
s→1+

∑
v∈Z N−s

v∑
v∈Σ′K

N−s
v

= lim sup
s→1+

∑
v∈Z N−s

v

log ζK(s)

and

d−(Z) = lim inf
s→1+

∑
v∈Z N−s

v∑
v∈Σ′K

N−s
v

= lim inf
s→1+

∑
v∈Z N−s

v

log ζK(s)

respectively. The Dirichlet density of Z exists if and only if d+(Z) = d−(Z), and the common
value is the Dirichlet density d(Z) of Z. Since S ⊆ SI for each finite subset I ⊂ P, if follows
that d+(S) ≤ lim

I→∞
SI .

(1.3) A sufficient condition, perhaps too strong, for an affirmative answer to the abstract
Artin problem, is that there exists a positive real number s0 > 1 such that the infinite series∑

α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

converges uniformly for 1 < s ≤ s0. This statement is left as an exercise.

§2. The function field case: the setup
(2.1) In the rest of this talk, K is a global function field of the form K = κ(C), where
κ ∼= Fq is a finite field, and C is a smooth projective geometrically irreducible curve over κ.
Let P be a countable indexing set. For each α ∈ P , let Kα be a finite Galois extension of
K, with Galois group Gα. Let κα be the subfield of constants in Kα, so that Kα = κα(Cα),
where Cα is a smooth projective geometrically irreducible curve over κα.
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(2.1.1) For each α ∈ P , let Zα be a subset of Gα stable under conjugation, so that Zα is a

disjoint union of conjugacy classes: Zα =
∐

1≤r≤kα

Wα,r , where each Wα,r is a conjugacy class

in Gα. Pick an element σα,r each Wα,r.

(2.1.2) Let πα : Cα → C be the natural morphism corresponding to K ↪→ Kα. Denote by
Uα the largest open subscheme of C such that πα is smooth over Uα, and let ια : Uα ↪→ C
be the inclusion map.

(2.1.3) Let ` be a prime number prime to q. Let ρα,1, . . . , ρα,mα be the set of all irreducible
Q`-linear representations of Gα. The character of ρα,i will be denoted by χα,i, i = 1, . . . ,mα.
The orthogonality relation in representation theory of finite groups says that

|Wα,r|
|G|

·
mα∑
i=1

χα,i(σα,r) · χα,i(σ) =

{
1 σ ∈ Wα,r

0 σ /∈ Wα,r

(2.1.4) For any finite place v ∈ Σ′
K , any α ∈ P, a place ṽ in Kα above v, and any m ∈ Z,

let Frm
ṽ/v be the coset modulo the inertia subgroup Iṽ/v consisting of all elements of the

decomposition group Dṽ/v which induce the m-th power of the geometric Frobenius for the
residue field extension κṽ/κv. An unspecified element of Frm

ṽ/v is often written as Frm
ṽ/v. For

any character χ of a a finite dimensional linear representation of Gα, let

χ(Frm
v ) =

1

|Frm
ṽ/v|

∑
σ∈Frm

ṽ/v

χ(σ) =
1

|Iṽ/v|
∑

σ∈Frm
ṽ/v

χ(σ)

be the average of the values of χ over the subset Frṽ/v of Gα. We wrote χ(Frm
v ) instead of

χ(Frm
ṽ/v), since the latter is independent of the choice of ṽ.

(2.1.5) For each conjugacy class Wα,r in Zα, consider the following linear combination

|Wα,r|
|Gα|

mα∑
i=1

χα,r(σα,r) log L(s, χσ,i, Kα/K)
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of logarithms of Artin L-functions. We have, for any s ∈ C with Re(s) > 1,

|Wα,r|
|Gα|

mα∑
i=1

χα,r(σα,r) log L(s, χσ,i, Kα/K)

=
|Wα,r|
|Gα|

mα∑
i=1

χα,r(σα,r)
∑

v∈Σ′K

∑
m≥1

χσ,i(Frm
v )

m
· N−ms

v

=
|Wα,r|
|Gα|

∑
i,v

χα,r(σα,r) · χα,i(Frv) · N−s
v +

|Wα,r|
|Gα|

∑
i

χα,r(σα,r) ·
∑
m≥2

χα,i(Frm
v )

m
· N−s

v

=
∑

v

1∣∣Iv,Kα/K

∣∣ ·# {
u ∈ Iv,Kα/K : Frv,Kα/K · u ∈ Wα,r

}
· N−s

v

+
∑

v

∑
m≥2

1∣∣Iv,Kα/K

∣∣ · 1

m
·#

{
u ∈ Iv,Kα/K : Frm

v,Kα/K · u ∈ Wα,r

}
· N−ms

v

Hence

kα∑
r=1

|Wα,r|
|Gα|

mα∑
i=1

χα,r(σα,r) log L(s, χσ,i, Kα/K)

=
∑

v

1∣∣Iv,Kα/K

∣∣ ·# {
u ∈ Iv,Kα/K : Frv,Kα/K · u ∈ Zα

}
· N−s

v

+
∑

v

1∣∣Iv,Kα/K

∣∣ · ∑
m≥2

1

m
·#

{
u ∈ Iv,Kα/K : Frm

v,Kα/K · u ∈ Zα

}
· N−ms

v

Note that the term in the last line of the displayed formula above should be regarded as an
“error term”, but we do not give an explicit estimate of it here.

(2.2) We will use Grothendieck’s theory of `-adic cohomology and Weil’s conjectures proved
by Deligne in [Weil II]. Denote by Fα,i the smooth Q`-sheaf over Uα ⊆ C attached to the
irreducible representation ρα,i of Gα. It has the property that for every closed point x of Uα,
corresponding to a finite place v of K, the trace of the action of the geometric Frobenius of
x on the fiber Fx̄ is equal to χα,i(Frv). Let L(T,C, ια∗Fα,i) be the L-function attached to the
Q`-sheaf ια∗Fα,i on C; it is a formal power series in the variable T such that L(q−s, C, ια∗Fα,i)
is formally identical to the Artin L-function L(s, χα,i). The Lefschetz trace formula in `-adic
cohomology implies that

L(T, C, ια∗Fα,i) =
det(Id− T · Frq |H1(C, ια∗Fα,i)

det(Id− T · Frq |H0(C, ια∗Fα,i) · det(Id− T · Frq |H2(C, ια∗Fα,i)

for all α ∈ P and all i, 1 ≤ i ≤ mα. where C = C ×Spec κ Spec κ, and Frq denotes the
geometric Frobenius acting on sheaves over Spec κ. Choose and fix an embedding Q` ↪→ C,
then we can substitute T by q−s in the above displayed formula, and get an expression of
the C-valued Artin L-function L(s, χα,i, Kα/K) as a rational function in q−s.
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(2.3) Combining our previous discussions, we obtain the following inequality.∑
α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

ζK(s)

≤
∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H0(C, ια∗Fα,i)

)−1
∣∣∣) · log ζK(s)−1

+
∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H2(C, ια∗Fα,i)

)−1
)∣∣∣∣∣ · ζK(s)−1

+
∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H1(C, ια∗Fα,i)

))∣∣∣∣∣ · ζK(s)−1

Therefore we get an upper bound of∑
α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

as a sum of three terms, coming from contributions from H0, H2 and H1 respectively. Accord-
ing to 1.3, if we can get an upper bound for each of the three terms, uniformly for 1 < s ≤ s0

for some s0 > 1, we will get a solution, surely not optimal, to the abstract Artin problem.

(2.3.1) By [Weil II], every eigenvalue of Frq on H1(C, ια∗Fα,i) is an algebraic number in Q`,
all of whose complex absolute values are equal to

√
q. This is the only deep result used in

our estimates in the next section.

§3. Estimates
(3.1) We first estimate the contributions from H0 and H2. It is easy to see that the coho-
mology group H0(C, ια∗Fα,i) 6= (0) if and only if Fα,i is geometrically constant on Uα, i.e.
the restriction of ρα,i to the subgroup Gal(Kα/K·κα) of Gα is trivial. The above statement
also holds with H0(C, ια∗Fα,i) replaced by H0(C, ια∗Fα,i). Put it in another way, the sheaves
ια∗Fα,i with non-vanishing H0 or H2 over C are exactly those of the form Gξ, where ξ is
a one-dimensional Q`-valued character of Gal(κα/κ), and Gξ denotes the pull-back, from
Spec κ to C, of the Q`-sheaf on Spec κ attached to ξ.

(3.2) For each one-dimensional Q`-valued character ξ of Gal(κα/κ), H0(C,Gξ) is a Q` vector
space of dimension one; the action of Gal(κ/κ) factors through Gal(κα/κ) and acts by the
character ξ. For every α ∈ P and every σ ∈ Zα, define a positive integer aσ by

aσ = Min {r ∈ N>0 : σ|κα = (Frq|κα)r} .

5



Notice that 0 < aσ ≤ cα. Recall from 2.3 that the contribution, from H0 , to the upper
bound of ∑

α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

is ∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H0(C, ια∗Fα,i)

)−1
)∣∣∣∣∣ · log ζK(s)−1 .

For s > 1, we have the following inequality:∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H0(C, ια∗Fα,i)

)−1
)∣∣∣∣∣ · log ζK(s)−1

=
∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

∑
ξ

ξ(σ) · log
(
(1− ξ(Frq)q

−s)−1
)∣∣∣∣∣ · log ζK(s)−1

=
∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
n≥1

1

n
q−ns

∑
ξ

ξ(σ) · ξ(Frn
q ) · log ζK(s)−1

=
∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
n≥1, n≡aσ

(mod cα)

cα

n
· q−ns · log ζK(s)−1

=
∑
α∈P

1

|Gα|
∑
σ∈Zα

cα

aα

q−aσs · log ζK(s)−1

+
∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
m≥1

cα

aσ + mcα

q−(aσ+mcα)s · log ζK(s)−1

(3.2.1) Remark The above argument shows that∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H0(C, ια∗Fα,i)

)−1
)
≥ 0 ,

hence the absolute value symbols in the displayed formulae above can be omitted.

(3.2.2) Remark (i) Because

lim
s→1+

log ζK(s)

log ((1− q1−s)−1)
= 1 ,

one can replace log ζK(s) by log((1− q1−s)−1) in our considerations.
(ii) We have∑

α∈P

1

|Gα|
∑
σ∈Zα

∑
m≥1

cα

aσ + mcα

q−(aσ+mcα)s ≤
∑
α∈P

|Zα|
|Gα|

· log
(
(1− q−s)−1

)
∀ s ≥ 1 .
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(3.3) The contribution from H2 can be estimated by the same method used for H0. For
each one-dimensional Q`-valued character ξ of Gal(κα/κ), H2(C,Gξ) is one-dimensional; the
geometric Frobenius Frq operates on it as qξ(Frq . The contribution from H2 , to the upper
bound of ∑

α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

is

∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H2(C, ια∗Fα,i)

)−1
)∣∣∣∣∣ · log ζK(s)−1 .

The same method used in 3.2 gives the following inequality:

∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H2(C, ια∗Fα,i)

)−1
)∣∣∣∣∣ · log ζK(s)−1

=
∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

∑
ξ

ξ(σ) · log
(
(1− q ·ξ(Frq)q

−s)−1
)∣∣∣∣∣ · log ζK(s)−1

=
∑
α∈P

1

|Gα|
∑
σ∈Zα

cα

aα

qaσ(1−s) · log ζK(s)−1

+
∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
m≥1

cα

aσ + mcα

q(aσ+mcα)(1−s) · log ζK(s)−1

(3.3.1) Remark (i) Just as in 3.2,

∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H2(C, ια∗Fα,i)

)−1
)
≥ 0 ,

so the absolute value symbols in the displayed formulae above can be omitted.
(ii) We have∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
m≥1

cα

aσ + mcα

q(aσ+mcα)(1−s) ≤
∑
α∈P

|Zα|
|Gα|

· log
(
(1− q1−s)−1

)
∀ s > 1 .

(3.3.2) Remark (i) In 3.2 and 3.3, we used the basic character identity for finite abelian
groups, which takes care of the cancellation effect in the contributions from H0 and H2

respectively.
(ii) The contribution from H0 is dominated by the contribution from H2 . Each contri-

bution was written as a sum of a “dominant term” and an “error term”. The error term for
H0 is dominated by the error term for H2 .
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(3.4) In this section we estimate the contribution from H1 to the upper bound of∑
α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

in 2.3.

(3.5) A well-known fact from the character theory of finite groups tells us that

mα∑
i=1

χα,i(1) χα,i = χ
reg,Gα

where χ
reg,Gα

denotes the character of the regular representation of Gα. Therefore

⊕mα
i=1 ια∗F

⊕χα,i(1)
α,i

∼= ια∗Freg,Gα ,

where Freg,Gα denotes the smooth Q`-sheaf on Uα attached to the regular representation of
Gα. Since Freg,Gα is canonically isomorphic to (π−1

α (Uα) → Uα)∗Q`, it follows that

mα∑
i=1

χσ,i(1) · H1(C, ια,i∗Fα,i) = [κα : κ] · g(Cα)

where g(Cα) denotes the genus of Cα ×Spec κα Spec κ.

(3.6) The contribution from H1 to the upper bound of∑
α∈P

∑
v∈Σ′

K

(Kα/K
℘v )⊆Zα

N−s
v

log ζK(s)

in 2.3 is

∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H1(C, ια∗Fα,i)

)) ∣∣∣∣∣ · log ζK(s)−1 .

We use the conclusion in 3.5 and the argument in 3.2, 3.3 to estimate the contribution
from H1 . Let {ωα,i,j}1≤j≤dim(H1(C,ια∗Fα,i))

be the eigenvalues of Frq on H1(C, ια∗Fα,i), with

multiplicity. By [Weil II], the complex absolute values of any ωα,i,j is equal to
√

q. The same
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argument gives∑
α∈P

1

|Gα|

∣∣∣∣∣ ∑
σ∈Zα

mα∑
i=1

χα,i(σ) · log
(
det

(
Id− Frq · q−s |H1(C, ια∗Fα,i)

))∣∣∣∣∣ · log ζK(s)−1

=
∑
α∈P

1

|Gα|

∣∣∣∣∣∣∣
∑
σ∈Zα

∑
n≥1,n≡aσ

(mod cα)

∑
i,j

χα,i(σ) · 1

n
· ωn

α,i,j · q−ns

∣∣∣∣∣∣∣ · log ζK(s)−1

≤
∑
α∈P

1

|Gα|
∑
σ∈Zα

∑
n≥1,n≡aσ

(mod cα)

g(Cα) · cα ·
1

n
· qn( 1

2
−s) · log ζK(s)−1

≤ 1

1− q−
1
2

·
∑
α∈P

g(Cα) · cα

|Gα|
1

aσ

· qaσ( 1
2
−s) · log ζK(s)−1

for all s > 1. In the last inequality we used a geometric series to get a simple estimate.

Combining the estimates in 3.2, 3.3, 3.6, and Remarks in 3.2.2, 3.3.1, 1.3, we obtain the
following solution to the abstract Artin problem.

(3.7) Theorem Notation as in 2.1. Recall that nα = |Gα|, sα = |Zα|, cα = [κα : κ], for any
α ∈ P, and aσ = Min { r ∈ N>0 : σ|κα = (Frq)

r } , for σ ∈ Zα. Suppose that the following
conditions hold.

(1)
∑
α∈P

sα

nα

=
∑
α∈P

|Zα|
|Gα|

< ∞

(2) There exists a positive constant M such that g(Cα) ≤ Mα ·
nα

cα

for all α ∈ P.

(3) There exists a real number s0 > 1 such that the infinite series∑
α∈P

∑
σ∈Zα

1

nα

cα

aσ

qaσ(1−s)

|log(1− q(1−s))|

is uniformly convergent for 1 < s ≤ s0.

(4)
∑
α∈P

∑
σ∈Zα

1

aσ

q−
aσ
2 < ∞

Then the infinite series ∑
α∈P

∑
v∈Σ′

K

(Kα/K
℘v )∩Zα 6=∅

N−s
v · | log(1− q(1−s))|−1

is uniformly convergent for 1 < s ≤ s0. Consequently, the Dirichlet density d(S) exists, and

d(S) = lim
J→∞

|SJ | = lim
J→∞

∑
I⊆J

(−1)|I| d(MI) .
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(3.7.1) Remark (i) Thm. 3.7 specializes to [CK, Thm. 2.1] when Zα consists of the identity
element of Gα for every α, because aσ = cα for every σ ∈ Zα.

(ii) Thm. 3.7 is weaker than the the statement of [CK, Thm. 4.1] in two aspects. First,
condition (4) of 3.7 is stronger than condition (2) of [CK, Thm. 4.1], which in our notation

requires that
∑
α∈P

∑
σ∈Zα

1

cα

q−
aσ
2 < ∞. Second, condition (3) of 3.7 does not appear in [CK,

Thm. 4.1].
(iii) In [CK, 4.1], they defined a(ν), equal to aσ in our notation, to be any positive integer

r such that the restriction of Frr
q to κα is equal to the restriction of σ to κα, so that a(ν) is

uniquely determined only modulo c(ν), equal to c(σ) in our notation. That definition makes
condition (2) of [CK, 4.1] void, for one can increase each a(ν) by sufficiently large multiples
of c(ν) to make sure that convergence condition is satisfied.
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