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Modular varieties of PEL-type in char. p

� k: an algebraically closed field, k ⊃ Fp

� G: a reductive algebraic group over Q

� X̃ = (Xn)(n,p)=1: prime-to-p tower of modular variety of
PEL-type, associated G over Q, defined over k. Each
Xn parametrizes abelian varieties of a fixed dimension,
with pre-assigned endomorphisms and polarization
type, and a level-n structure.

RMK Fine structures occur only in char. p.
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Some modular varieties

� (Siegel modular variety) X̃ = (Xn), Xn = Ag,n,
(n, p) = 1, where Ag,n= the moduli space of
n-dimensional principally polarized abelian varieties
with symplectic level-n structure.

� (Hilbert modular variety) Xn =ME,n, where E is a
product of totally real number fields, (n, p) = 1,ME,n

classifies [E : Q]-dimensional abelian varieties, with
endomorphism by OE, and an OE-linear level-n
structure.
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Hecke symmetries

� The group G(A
(p)
f ) operates on the tower X̃:

x G(A
(p)
f )

X̃ = (· · · → Xn → · · ·X0 = X
︸ ︷︷ ︸

G(Z/nZ)

)(n,p)=1

� On a fixed level, e.g. X = X0, the symmetries from
G(A

(p)
f ) induces Hecke correspondences.
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Hecke orbits

DEF. H(x) = the prime-to-p Hecke orbits of x, x ∈ X(k); it
is a countable subset of X(k).

EX 1. (Siegel) For x = ([Ax, λx]) ∈ Ag(k), H(x) consists of
all ([Ay, λy]) such that there exists a prime-to-p
quasi-isogeny from Ax to Ay which preserves the
polarizations. The group G is Sp2g.

EX 2. (Hilbert) For x = [(Ax, λx)] ∈ ME(k), Ax an OE-

abelian variety, H(x) consists of all [(Ay, λy)] s.t. ∃ a prime-

to-p OE-linear quasi-isogeny Ax → Ay respecting the po-

larizations.
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Barsotti-Tate groups

DEF. A Barsotti-Tate group (or, a p-divisible group) G over
a scheme S of height h is a systems of finite locally free
group schemes Gn over S, n ≥ 1, together with inclusions

in : Gn ↪→ Gn+1 ,

such that
� Gn is killed by pn ∀n

� Gn is locally free of rank hn over S ∀n

� [pm] : Gn+m → Gn is faithfully flat, with Gm as its kernel,
∀m, n
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p-divisible groups attached to abelian varieties

EX. Let A→ S be an abelian scheme, dim(A/S) = g.
Then the pn-torsion subgroups A[pn] := Ker([pn]A) form a
BT-group A[p∞] of height 2g.

Can recover the formal group attached to A→ S if S is
over Z(p) or Fp.

A[p∞] is a form of the p-adic cohomology of A.
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Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and

FrpN : Gi → G
(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Slopes of BT-groups

� k: a perfect field, k ⊃ Fp

� G: a BT-group over k

PROP. (Manin-Dieudonné) Then G is isogenous to
G1 × · · · ×Gm, where each Gi is an isoclinic BT-group of
slope µi, where

0 ≤ µi = dim(Gi)
ht(Gi)

≤ 1.

and
FrpN : Gi → G

(pN )
i ∼ pNµi · (an isom.)

RMK.The slope sequence of G is the numbers µi, repeated
with multiplicity ht(Gi), i = 1, . . . , m.

RMK. slope = 0⇔ étale; slope = 1⇔ multiplicative.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.8/29



Dual BT-groups and abelian varieties

DEF. The Serre-dual Gt of a BT-group G = (Gn) is (Gt
n),

where Gt
n = Hom(Gn, Gm)

If ξ1 ≤ · · · ≤ ξh is the slope sequence of G, with multiplicity,
then the slope sequence of Gt is 1− ξh ≤ · · · ≤ 1− ξ1.

If A is an abelian variety over a field k ⊃ Fp, the A and its
dual abelian variety At have the same slope sequence:
At[p∞] ∼= A[p∞]t.
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Stratification by slopes

“Generic abelian” varieties in Ag have slopes 0 and 1.
Such abelian varieties are called ordinary ; they form an
open dense subset of Ag.

An abelian variety A is supersingular if A[p∞] is isoclinic
of slope 1

2 .

More generally, the locus in Ag with a fixed slope
sequence is called a Newton polygon stratum.

The other possible slope sequences for A3 are
(0, 0, 1

2 ,
1
2 , 1, 1), (0, 1

2 ,
1
2 ,

1
2 ,

1
2 , 1) and (1

3 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3). The last

NP-stratum in A3 is 3-dimensional.
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Leaves in Siegel modular varieties

DEF. (Oort) For x ∈ Ag(k), denote by C(x) the
constructible subset of Ag, characterized by the following
property:

a geometric point y ∈ Ag(k), is in C(x) iff ∃ an
isomorphism between Ax[p

∞] and Ay[p
∞] respecting the

polarizations.

We call C(x) the leaf on Ag passing through x.

RMK. Can define leaves in other PEL-type modular
varieties.

RMK. Can define leaves for any (polarized) Barsotti-Tate
group over a noetherian reduced base scheme over k.
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First properties of leaves

First Properties
� C(x) is a locally closed subscheme of Ag,

� C(x) is smooth over k.

� C(x) is stable under all prime-to-p Hecke
correspondences.
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Examples of leaves

� The ordinary locus in Ag is open and dense in Ag; it is
a leaf.

� dim(C(x)) = 0 iff x is supersingular.
� Every leaf in the NP-stratum with slope sequence

(1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3) is two-dimensional. So the leaves “have

moduli”.
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The Hecke orbit conjecture

CONJ. (HO): H(x) is Zariski dense in C(x).

CONJ. (HO)ct: dim(H(x)) = dim(C(x));
equivalently, H(x) contains the irreducible component of
C(x) passing through x.

Conj. (HO)dc: The prime-to-p Hecke correspondences
operate transitively on the set of geometrically irreducible
components of C(x).
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Remarks on HO

REMARKS
� Clearly (HO)⇐⇒ (HO)ct + (HO)dc

� Conj. (HO) says that foliation structure on Ag is
determined by the Hecke symmetries.

� Previously known case: When Ax is an ordinary
abelian variety (CLC, 1995)

� Similarly, have Conj (HO) for other modular varieties.
Known case: PEL-type C, Ax ordinary.
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Confirmed Cases of HO

THM 1. The Hecke orbit conjecture (HO) holds for the
Siegel modular variety Ag. In other words, every
prime-to-p Hecke orbit is Zariski dense in the leaf
containing it.

THM 2. The Hecke orbit conjecture (HO) holds for Hilbert
modular varieties.

RMK. Thm 2 is used in the proof of Thm 1.

RMK. The discrete part of Thm 2 is due to Chia-Fu Yu.

RMK. Proof of Thm 1 in planned monograph with F. Oort,

proof of the cont. part of Thm 2 in preparation with C.-F. Yu.
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The slope filtration over a leaf

PROP. The Barsotti-Tate group A[p∞] over C(x) admits a
slope filtration

A[p∞] = G0 ⊃ G1 ⊃ · · · ⊃ Gm ⊃ Gm+1 = (0)

such that each graded piece Hi = Gi/Gi+1 is a
Barsotti-Tate group over C(x) with a single slope λi, and
λ0 < . . . < λm.

RMK. Due to Zink when C(x) is a “central stream”.

KEY The variation of the slope filtration gives the local
moduli of leaves.
Analogy: The variation of the Hodge filtration gives the
local moduli of abelian varieties.
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Canonical coordinates on leaves

� Motivation: Need to understand the local structure of
leaves (i.e. the formal completion/jet space of a point)
for the Hecke orbit problem.

� Leaves are homogeneous; the formal completion at
any two points of a leaf are isomorphic.

� Phenomenon: The formal completion at a point of a
leaf is built up from p-divisible formal groups by
successive fibrations, each fiber is a p-divisible formal
group.

� a perspective: Every leaf in a PEL-type modular
variety is a char. p analog of a Shimura variety; it is
“homogeneous”, and has similar group-theoretic
properties.
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Two-slope case: unpolarized

• X, Y : isoclinic BT-groups over a field k ⊃ Fp, of slopes
µ

X
< µ

Y
.

• Let Def(X, Y ) =: Spf(R) = the local deformation space
of X × Y .
• Let DE(X, Y ) := the extension part of the deformation
space Spf(R), with a natural structure as a smooth formal
group.
• Let C(Def(X, Y )) ⊂ DE(X, Y ) be the leaf in
Def(X × Y ) through the closed point.

THM. C(Def(X, Y )) is the maximal p-divisible formal sub-

group DE(X, Y )pdiv of DE(X, Y ); it is isoclinic, of slope

µ
Y
− µ

X
, and height ht(X) · ht(Y ).
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Two-slope case: polarized

NOTATION.

• X, Y : isoclinic BT-groups over k ⊃ Fp, of Frobenius
slopes µ

X
, µ

Y
= 1− µ

X
, µ

X
< µ

Y
, ht(X) = ht(Y ).

• λ = a principal polarization of X × Y

• Def(X × Y, λ) = local deform. space of (X × Y, λ)

• C(Def(X × Y, λ)) := the leaf in Def(X × Y, λ) through
the closed point.
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Polarized two-slope case, continued

THM. (i) The polarization λ induces an involution on
DE(X, Y )pdiv, whose fixer subscheme DE(X, Y )sym

pdiv is
equal to C(Def(X × Y, λ)).

(ii) ht(DE(X, Y )sym
pdiv) = ht(X)(ht(X)+1)

2

(iii) dim(DE(X, Y )sym
pdiv) = (1− 2µX) · ht(X)(ht(X)+1)

2

(iv) If x = [(Ax, λx)] ∈ Ag(k), (Ax[p
∞], λx[p

∞]) ∼= (X × Y, λ),
then

C(x)/x ∼= M(DE(X, Y )sym
pdiv).
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Cartier-Dieudonne theory

� BT-groups with slopes > 0←→ finite dimensional
commutative smooth formal groups

� Cartier theory: An equivalence of categories between
(comm. formal groups) and (modules over a certain
non-comm. topological ring satisfying suitable
conditions); it works over any commutative base ring.

� Assume that k is a perfect field of char. p. Then the
Cartier ring Cartp(k) is the completion of W (k)[V, F ]
w.r.t. the right ideals V nW (k)[V, F ].

� W (k) = Witt vectors over k

� σ ∈ Aut(W (k)) is the canonical lifting of Frobenius,
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Cartier theory continued

� V F = FV = p, Fa = aσF , aV = V aσ ∀ a ∈ W (k)

� V ↔ Frob, F ↔ Ver.
� The Cartier module M(G) of a BT-group G over k is a

free W (k)-module of rank ht(G).

� For an arbitrary commutative ring R over Z(p), Cartp(R)

is the V-adic completion of a ring generated by W (R),
V and F . In general, V F 6= p, and M(G) is no longer a
free W (R)-module.

� M(G) is the set of all p-typical formal curves in the
smooth formal group G.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.23/29



Cartier theory continued

� V F = FV = p, Fa = aσF , aV = V aσ ∀ a ∈ W (k)

� V ↔ Frob, F ↔ Ver.

� The Cartier module M(G) of a BT-group G over k is a
free W (k)-module of rank ht(G).

� For an arbitrary commutative ring R over Z(p), Cartp(R)

is the V-adic completion of a ring generated by W (R),
V and F . In general, V F 6= p, and M(G) is no longer a
free W (R)-module.

� M(G) is the set of all p-typical formal curves in the
smooth formal group G.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.23/29



Cartier theory continued

� V F = FV = p, Fa = aσF , aV = V aσ ∀ a ∈ W (k)

� V ↔ Frob, F ↔ Ver.
� The Cartier module M(G) of a BT-group G over k is a

free W (k)-module of rank ht(G).

� For an arbitrary commutative ring R over Z(p), Cartp(R)

is the V-adic completion of a ring generated by W (R),
V and F . In general, V F 6= p, and M(G) is no longer a
free W (R)-module.

� M(G) is the set of all p-typical formal curves in the
smooth formal group G.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.23/29



Cartier theory continued

� V F = FV = p, Fa = aσF , aV = V aσ ∀ a ∈ W (k)

� V ↔ Frob, F ↔ Ver.
� The Cartier module M(G) of a BT-group G over k is a

free W (k)-module of rank ht(G).

� For an arbitrary commutative ring R over Z(p), Cartp(R)

is the V-adic completion of a ring generated by W (R),
V and F . In general, V F 6= p, and M(G) is no longer a
free W (R)-module.

� M(G) is the set of all p-typical formal curves in the
smooth formal group G.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.23/29



Cartier theory continued

� V F = FV = p, Fa = aσF , aV = V aσ ∀ a ∈ W (k)

� V ↔ Frob, F ↔ Ver.
� The Cartier module M(G) of a BT-group G over k is a

free W (k)-module of rank ht(G).

� For an arbitrary commutative ring R over Z(p), Cartp(R)

is the V-adic completion of a ring generated by W (R),
V and F . In general, V F 6= p, and M(G) is no longer a
free W (R)-module.

� M(G) is the set of all p-typical formal curves in the
smooth formal group G.

Hecke Orbits and Canonical Coordinates, Academia Sinica, Taipei, December 2004 – p.23/29



Cartier module for leaves

� Let M(X), M(Y ) be the covariant Dieudonné module of
X, Y respectively, over a perfect base field k ⊃ Fp.

� K := the fraction field of W = W (k).

� H := HomW (M(X), M(Y )).

� H⊗W K is a V-isocrystal: (Fh)(m) = F (h(V m)),
(V h)(m) = V (h(V −1m)) ∀h ∈ H, ∀m ∈ M(X). Note
that F (H) ⊆ H.

� Let H1 be the maximal W -submodule of H stable
under F and V .

THM. M(DE(X, Y )pdiv) is naturally isomorphic to H1.
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Cartier theory of leaves, polarized

� Notation as before. Let λ be a prin. pol. on X × Y .

� λ induces an involution on DE(X, Y )pdiv and on its
Cartier module.

THM. M(DE(X, Y )sym
pdiv) is naturally isomorphic to the

maximal submodule H sym
1 of H1 fixed by the involution;

rkW (Hsym
1 ) = ht(X)(ht(X)+1)

2 .
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Rigidity of subgroups of p-divisible formal groups

NOTATION

� X: a p-divisible formal group over a field k = kalg ⊃ Fp.

� r
X

: the regular repr. of End(X)⊗Zp
Qp

� H: a connected reductive group over Qp

� ρ : H(Qp)→ (End(X)⊗Zp
Qp)

× is a Qp-rational
representation of H

� U ⊂ H(Qp) is an open subgroup of H(Qp) such that
ρ(U) ⊆ Endk(X)×, so that U operates on X via ρ.

� Z is an irreducible closed formal subscheme of X
which is stable under the action of U .
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Rigidity, continued

THM. Assume that r
X
◦ ρ does not contain the trivial

representation as a subquotient. Then Z is a p-divisible
formal subgroup of X.

RMK. A basic case is when X is a formal torus
Spf(k[[x±1

1 , . . . , x±1
d ]]). The Thm says that if an irreducible

formal subvariety Z of a formal torus is stable under
[1 + pn] for some n ≥ 1, then Z is a formal subtorus.
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Proof of a special case of Conj. (HO)

Suppose that x = [(Ax, λx)] ∈ Ag(k) satisfies

� Ax[p
∞] ∼= X × Y , with X, Y isoclinic, µ

X
< µ

Y
= 1− µ

X
.

� Endk(Ax)⊗Z Zp
∼
−→ Endk(Ax[p

∞])

Then the Zariski closure H(x) of the Hecke orbit of x in Ag

contains an irreducible component of C(x), i.e. Conj.
(HO)dc holds for x.

PROOF. STEP 1. (Local stabilizer subgroup principal) The

completion H(x)
/x

of H(x), smooth over k and closed in
C(x)/x = DE(X, Y )sym

pdiv, is stable under the action of (the
closure of) the local stabilizer subgroup of x in prime-to-p
Hecke correspondences.
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Proof continued

STEP 2. The local stabilizer subgroup Ux at x is an open
subgroup of the unitary group attached to
(Endk(Ax[p

∞])⊗Zp
Qp, λx[p

∞]), a semisimple algebra with
involution.

STEP 3. By the rigidity result, H(x)
/x

is a p-divisible formal
subgroup of DE(X, Y )sym

pdiv.

STEP 4. Ux is an open subgroup of a Qp-form of GLg.
STEP 5. The action of Ux on the Cartier module of
DE(X, Y )sym

pdiv is isomorphic to the second symmetric

product of the standard representation of GLg over Kalg,
which is absolutely irreducible.

STEP 6. Hence H(x)/x = DE(X, Y )sym
pdiv = C(x)/x. Q.E.D.
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