HECKE ORBITS AND CANONICAL COORDINATES

Ching-Li Chai

chai@math.upenn.edu

University of Pennsylvania

k: an algebraically closed field, $k \supset \mathbb{F}_p$

k: an algebraically closed field, k ⊃ 𝔽_p
G: a reductive algebraic group over ℚ

- → k: an algebraically closed field, $k \supset \mathbb{F}_p$
- \blacksquare G: a reductive algebraic group over \mathbb{Q}

• $\widetilde{X} = (X_n)_{(n,p)=1}$: prime-to-p tower of modular variety of PEL-type, associated *G* over \mathbb{Q} , defined over *k*. Each X_n parametrizes abelian varieties of a fixed dimension, with pre-assigned endomorphisms and polarization type, and a level-*n* structure.

- → k: an algebraically closed field, $k \supset \mathbb{F}_p$
- G: a reductive algebraic group over \mathbb{Q}

• $\widetilde{X} = (X_n)_{(n,p)=1}$: prime-to-p tower of modular variety of PEL-type, associated *G* over \mathbb{Q} , defined over *k*. Each X_n parametrizes abelian varieties of a fixed dimension, with pre-assigned endomorphisms and polarization type, and a level-*n* structure.

RMK *Fine structures* occur only in char. *p*.

Some modular varieties

• (Siegel modular variety) $\widetilde{X} = (X_n)$, $X_n = \mathcal{A}_{g,n}$, (n, p) = 1, where $\mathcal{A}_{g,n}$ = the moduli space of *n*-dimensional principally polarized abelian varieties with symplectic level-*n* structure.

Some modular varieties

• (Siegel modular variety) $\widetilde{X} = (X_n), X_n = \mathcal{A}_{g,n},$ (n, p) = 1, where $\mathcal{A}_{g,n}$ = the moduli space of *n*-dimensional principally polarized abelian varieties with symplectic level-*n* structure.

(Hilbert modular variety) $X_n = \mathcal{M}_{E,n}$, where *E* is a product of totally real number fields, (n, p) = 1, $\mathcal{M}_{E,n}$ classifies $[E : \mathbb{Q}]$ -dimensional abelian varieties, with endomorphism by \mathcal{O}_E , and an \mathcal{O}_E -linear level-*n* structure.

Hecke symmetries

• The group $G(\mathbb{A}_f^{(p)})$ operates on the tower \widetilde{X} :

$$\widehat{X} = (\cdots \rightarrow \underbrace{X_n \rightarrow \cdots \rightarrow X_0}_{G(\mathbb{Z}/n\mathbb{Z})}) (n,p) = 1$$

Hecke symmetries

• The group $G(\mathbb{A}_{f}^{(p)})$ operates on the tower \widetilde{X} :

$$\widehat{X} = (\cdots \rightarrow \underbrace{X_n \rightarrow \cdots X_0}_{G(\mathbb{Z}/n\mathbb{Z})}) = 1$$

• On a fixed level, e.g. $X = X_0$, the symmetries from $G(\mathbb{A}_f^{(p)})$ induces *Hecke correspondences*.

Hecke orbits

DEF. $\mathcal{H}(x)$ = the prime-to-p Hecke orbits of $x, x \in X(k)$; it is a countable subset of X(k).

Hecke orbits

DEF. $\mathcal{H}(x)$ = the prime-to-*p* Hecke orbits of $x, x \in X(k)$; it is a countable subset of X(k).

EX 1. (Siegel) For $x = ([A_x, \lambda_x]) \in \mathcal{A}_g(k)$, $\mathcal{H}(x)$ consists of all $([A_y, \lambda_y])$ such that there exists a prime-to-p quasi-isogeny from A_x to A_y which preserves the polarizations. The group G is Sp_{2q} .

Hecke orbits

DEF. $\mathcal{H}(x)$ = the prime-to-p Hecke orbits of $x, x \in X(k)$; it is a countable subset of X(k).

EX 1. (Siegel) For $x = ([A_x, \lambda_x]) \in \mathcal{A}_g(k)$, $\mathcal{H}(x)$ consists of all $([A_y, \lambda_y])$ such that there exists a prime-to-p quasi-isogeny from A_x to A_y which preserves the polarizations. The group G is Sp_{2q} .

EX 2. (Hilbert) For $x = [(A_x, \lambda_x)] \in \mathcal{M}_E(k)$, A_x an \mathcal{O}_E -abelian variety, $\mathcal{H}(x)$ consists of all $[(A_y, \lambda_y)]$ s.t. \exists a prime-to- $p \mathcal{O}_E$ -linear quasi-isogeny $A_x \to A_y$ respecting the polarizations.

DEF. A *Barsotti-Tate* group (or, a *p*-divisible group) G over a scheme S of *height* h is a systems of finite locally free group schemes G_n over S, $n \ge 1$, together with inclusions

$$i_n:G_n\hookrightarrow G_{n+1},$$

such that

• G_n is killed by $p^n \forall n$

DEF. A *Barsotti-Tate* group (or, a *p*-divisible group) G over a scheme S of *height* h is a systems of finite locally free group schemes G_n over S, $n \ge 1$, together with inclusions

$$i_n:G_n\hookrightarrow G_{n+1},$$

such that

• G_n is killed by $p^n \forall n$

 \blacksquare G_n is locally free of rank hn over $S \forall n$

DEF. A *Barsotti-Tate* group (or, a *p*-divisible group) G over a scheme S of *height* h is a systems of finite locally free group schemes G_n over S, $n \ge 1$, together with inclusions

$$i_n:G_n\hookrightarrow G_{n+1},$$

such that

- \square G_n is killed by $p^n \forall n$
- \blacksquare G_n is locally free of rank hn over $S \forall n$

 $[p^m]: G_{n+m} \to G_n \text{ is faithfully flat, with } G_m \text{ as its kernel,} \\ \forall m, n$

p-divisible groups attached to abelian varieties

EX. Let $A \to S$ be an abelian scheme, $\dim(A/S) = g$. Then the p^n -torsion subgroups $A[p^n] := \operatorname{Ker}([p^n]_A)$ form a BT-group $A[p^{\infty}]$ of height 2g. p-divisible groups attached to abelian varieties

EX. Let $A \to S$ be an abelian scheme, $\dim(A/S) = g$. Then the p^n -torsion subgroups $A[p^n] := \operatorname{Ker}([p^n]_A)$ form a BT-group $A[p^{\infty}]$ of height 2g.

Can recover the formal group attached to $A \to S$ if S is over $\mathbb{Z}_{(p)}$ or \mathbb{F}_p .

 $A[p^{\infty}]$ is a form of the *p*-adic cohomology of *A*.

k: a perfect field, $k \supset \mathbb{F}_p$

k: a perfect field, k ⊃ 𝔽_p
G: a BT-group over k

k: a perfect field, k ⊃ 𝔽_p
G: a BT-group over k

PROP. (Manin-Dieudonné) Then *G* is isogenous to $G_1 \times \cdots \times G_m$, where each G_i is an *isoclinic* BT-group of slope μ_i , where

k: a perfect field, k ⊃ 𝔽_p
G: a BT-group over k

PROP. (Manin-Dieudonné) Then *G* is isogenous to $G_1 \times \cdots \times G_m$, where each G_i is an *isoclinic* BT-group of slope μ_i , where

$$0 \le \mu_i = \frac{\dim(G_i)}{\operatorname{ht}(G_i)} \le 1.$$

and

k: a perfect field, k ⊃ 𝔽_p G: a BT-group over k

PROP. (Manin-Dieudonné) Then *G* is isogenous to $G_1 \times \cdots \times G_m$, where each G_i is an *isoclinic* BT-group of slope μ_i , where

$$0 \le \mu_i = \frac{\dim(G_i)}{\operatorname{ht}(G_i)} \le 1.$$

and

$$\operatorname{Fr}_{p^{N}}: G_{i} \to G_{i}^{(p^{N})} \sim p^{N\mu_{i}} \cdot (\text{an isom.})$$

k: a perfect field, k ⊃ 𝔽_p G: a BT-group over k

PROP. (Manin-Dieudonné) Then *G* is isogenous to $G_1 \times \cdots \times G_m$, where each G_i is an *isoclinic* BT-group of slope μ_i , where

$$0 \le \mu_i = \frac{\dim(G_i)}{\operatorname{ht}(G_i)} \le 1.$$

and

$$\operatorname{Fr}_{p^{N}}: G_{i} \to G_{i}^{(p^{N})} \sim p^{N\mu_{i}} \cdot (\text{an isom.})$$

RMK.The slope sequence of G is the numbers μ_i , repeated with multiplicity $ht(G_i)$, i = 1, ..., m.

k: a perfect field, k ⊃ 𝔽_p G: a BT-group over k

PROP. (Manin-Dieudonné) Then *G* is isogenous to $G_1 \times \cdots \times G_m$, where each G_i is an *isoclinic* BT-group of slope μ_i , where

$$0 \le \mu_i = \frac{\dim(G_i)}{\operatorname{ht}(G_i)} \le 1.$$

and

$$\operatorname{Fr}_{p^{N}}: G_{i} \to G_{i}^{(p^{N})} \sim p^{N\mu_{i}} \cdot (\text{an isom.})$$

RMK.The slope sequence of G is the numbers μ_i , repeated with multiplicity $ht(G_i)$, i = 1, ..., m.

RMK. slope = $0 \Leftrightarrow \text{étale}$; slope = $1 \Leftrightarrow \text{multiplicative}$.

Dual BT-groups and abelian varieties

DEF. The Serre-dual G^t of a BT-group $G = (G_n)$ is (G_n^t) , where $G_n^t = \underline{Hom}(G_n, \mathbb{G}_m)$

Dual BT-groups and abelian varieties

DEF. The Serre-dual G^t of a BT-group $G = (G_n)$ is (G_n^t) , where $G_n^t = \underline{Hom}(G_n, \mathbb{G}_m)$

If $\xi_1 \leq \cdots \leq \xi_h$ is the slope sequence of G, with multiplicity, then the slope sequence of G^t is $1 - \xi_h \leq \cdots \leq 1 - \xi_1$.

Dual BT-groups and abelian varieties

DEF. The Serre-dual G^t of a BT-group $G = (G_n)$ is (G_n^t) , where $G_n^t = \underline{Hom}(G_n, \mathbb{G}_m)$

If $\xi_1 \leq \cdots \leq \xi_h$ is the slope sequence of *G*, with multiplicity, then the slope sequence of G^t is $1 - \xi_h \leq \cdots \leq 1 - \xi_1$.

If A is an abelian variety over a field $k \supset \mathbb{F}_p$, the A and its dual abelian variety A^t have the same slope sequence: $A^t[p^{\infty}] \cong A[p^{\infty}]^t$.

"Generic abelian" varieties in A_g have slopes 0 and 1. Such abelian varieties are called *ordinary*; they form an *open dense* subset of A_g .

"Generic abelian" varieties in A_g have slopes 0 and 1. Such abelian varieties are called *ordinary*; they form an *open dense* subset of A_q .

An abelian variety A is supersingular if $A[p^{\infty}]$ is isoclinic of slope $\frac{1}{2}$.

"Generic abelian" varieties in A_g have slopes 0 and 1. Such abelian varieties are called *ordinary*; they form an *open dense* subset of A_g .

An abelian variety A is supersingular if $A[p^{\infty}]$ is isoclinic of slope $\frac{1}{2}$.

More generally, the locus in A_g with a fixed slope sequence is called a *Newton polygon stratum*.

"Generic abelian" varieties in A_g have slopes 0 and 1. Such abelian varieties are called *ordinary*; they form an *open dense* subset of A_g .

An abelian variety A is supersingular if $A[p^{\infty}]$ is isoclinic of slope $\frac{1}{2}$.

More generally, the locus in A_g with a fixed slope sequence is called a *Newton polygon stratum*.

The other possible slope sequences for A_3 are $(0, 0, \frac{1}{2}, \frac{1}{2}, 1, 1)$, $(0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$ and $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3})$. The last NP-stratum in A_3 is 3-dimensional.

DEF. (Oort) For $x \in A_g(k)$, denote by C(x) the constructible subset of A_g , characterized by the following property:

DEF. (Oort) For $x \in A_g(k)$, denote by C(x) the constructible subset of A_g , characterized by the following property:

a geometric point $y \in A_g(k)$, is in C(x) iff \exists an isomorphism between $A_x[p^{\infty}]$ and $A_y[p^{\infty}]$ respecting the polarizations.

DEF. (Oort) For $x \in A_g(k)$, denote by C(x) the constructible subset of A_g , characterized by the following property:

a geometric point $y \in A_g(k)$, is in C(x) iff \exists an isomorphism between $A_x[p^{\infty}]$ and $A_y[p^{\infty}]$ respecting the polarizations.

We call $\mathcal{C}(x)$ the *leaf* on \mathcal{A}_g passing through x.

DEF. (Oort) For $x \in A_g(k)$, denote by C(x) the constructible subset of A_g , characterized by the following property:

a geometric point $y \in A_g(k)$, is in C(x) iff \exists an isomorphism between $A_x[p^{\infty}]$ and $A_y[p^{\infty}]$ respecting the polarizations.

We call C(x) the *leaf* on A_g passing through x.

RMK. Can define leaves in other PEL-type modular varieties.

DEF. (Oort) For $x \in A_g(k)$, denote by C(x) the constructible subset of A_g , characterized by the following property:

a geometric point $y \in A_g(k)$, is in C(x) iff \exists an isomorphism between $A_x[p^{\infty}]$ and $A_y[p^{\infty}]$ respecting the polarizations.

We call $\mathcal{C}(x)$ the *leaf* on \mathcal{A}_g passing through x.

RMK. Can define leaves in other PEL-type modular varieties.

RMK. Can define leaves for any (polarized) Barsotti-Tate group over a noetherian reduced base scheme over k.

First properties of leaves

First Properties

 $\square C(x)$ is a locally closed subscheme of A_g ,

First properties of leaves

First Properties

 $\square C(x)$ is a locally closed subscheme of A_g ,

 $\square C(x)$ is smooth over k.

First properties of leaves

First Properties

- $\square C(x)$ is a locally closed subscheme of A_g ,
- $\square C(x)$ is smooth over k.
- C(x) is stable under all prime-to-p Hecke correspondences.

Examples of leaves

The ordinary locus in A_g is open and dense in A_g ; it is a leaf.

Examples of leaves

- The ordinary locus in A_g is open and dense in A_g; it is a leaf.
- $\square \dim(\mathcal{C}(x)) = 0 \text{ iff } x \text{ is supersingular.}$

Examples of leaves

- The ordinary locus in A_g is open and dense in A_g; it is a leaf.
- $\square \dim(\mathcal{C}(x)) = 0 \text{ iff } x \text{ is supersingular.}$
- Every leaf in the NP-stratum with slope sequence (¹/₃, ¹/₃, ²/₃, ²/₃, ²/₃, ²/₃) is two-dimensional. So the leaves "have moduli".

The Hecke orbit conjecture

CONJ. (HO): $\mathcal{H}(x)$ is Zariski dense in $\mathcal{C}(x)$.

The Hecke orbit conjecture

CONJ. (HO): $\mathcal{H}(x)$ is Zariski dense in $\mathcal{C}(x)$.

CONJ. (HO)_{ct}: dim($\overline{\mathcal{H}(x)}$) = dim($\mathcal{C}(x)$);

CONJ. (HO): $\mathcal{H}(x)$ is Zariski dense in $\mathcal{C}(x)$.

CONJ. (HO)_{ct}: dim $(\overline{\mathcal{H}(x)}) = \dim(\mathcal{C}(x))$; equivalently, $\overline{\mathcal{H}(x)}$ contains the irreducible component of $\mathcal{C}(x)$ passing through x.

CONJ. (HO): $\mathcal{H}(x)$ is Zariski dense in $\mathcal{C}(x)$.

CONJ. (HO)_{ct}: dim $(\overline{\mathcal{H}(x)}) = \dim(\mathcal{C}(x))$; equivalently, $\overline{\mathcal{H}(x)}$ contains the irreducible component of $\mathcal{C}(x)$ passing through x.

Conj. (HO)_{dc}: The prime-to-*p* Hecke correspondences operate transitively on the set of geometrically irreducible components of C(x).

REMARKS

□ Clearly (HO) \iff (HO)_{ct} + (HO)_{dc}

REMARKS

■ Clearly (HO) \iff (HO)_{ct} + (HO)_{dc}

Conj. (HO) says that foliation structure on A_g is determined by the Hecke symmetries.

REMARKS

- Clearly (HO) \iff (HO)_{ct} + (HO)_{dc}
- Conj. (HO) says that foliation structure on A_g is determined by the Hecke symmetries.
- Previously known case: When A_x is an ordinary abelian variety (CLC, 1995)

REMARKS

- Clearly (HO) \iff (HO)_{ct} + (HO)_{dc}
- Conj. (HO) says that foliation structure on A_g is determined by the Hecke symmetries.
- Previously known case: When A_x is an ordinary abelian variety (CLC, 1995)
- Similarly, have Conj (HO) for other modular varieties. Known case: PEL-type C, A_x ordinary.

THM 1. The Hecke orbit conjecture (HO) holds for the Siegel modular variety A_g . In other words, every prime-to-*p* Hecke orbit is Zariski dense in the leaf containing it.

THM 1. The Hecke orbit conjecture (HO) holds for the Siegel modular variety A_g . In other words, every prime-to-*p* Hecke orbit is Zariski dense in the leaf containing it.

THM 2. The Hecke orbit conjecture (HO) holds for Hilbert modular varieties.

THM 1. The Hecke orbit conjecture (HO) holds for the Siegel modular variety A_g . In other words, every prime-to-*p* Hecke orbit is Zariski dense in the leaf containing it.

THM 2. The Hecke orbit conjecture (HO) holds for Hilbert modular varieties.

RMK. Thm 2 is used in the proof of Thm 1.

THM 1. The Hecke orbit conjecture (HO) holds for the Siegel modular variety A_g . In other words, every prime-to-*p* Hecke orbit is Zariski dense in the leaf containing it.

THM 2. The Hecke orbit conjecture (HO) holds for Hilbert modular varieties.

RMK. Thm 2 is used in the proof of Thm 1.

RMK. The discrete part of Thm 2 is due to Chia-Fu Yu.

THM 1. The Hecke orbit conjecture (HO) holds for the Siegel modular variety A_g . In other words, every prime-to-*p* Hecke orbit is Zariski dense in the leaf containing it.

THM 2. The Hecke orbit conjecture (HO) holds for Hilbert modular varieties.

RMK. Thm 2 is used in the proof of Thm 1.

RMK. The discrete part of Thm 2 is due to Chia-Fu Yu.

RMK. Proof of Thm 1 in planned monograph with F. Oort, proof of the cont. part of Thm 2 in preparation with C.-F. Yu.

PROP. The Barsotti-Tate group $A[p^{\infty}]$ over $\overline{\mathcal{C}(x)}$ admits a slope filtration

$$A[p^{\infty}] = G_0 \supset G_1 \supset \cdots \supset G_m \supset G_{m+1} = (0)$$

such that each graded piece $H_i = G_i/G_{i+1}$ is a Barsotti-Tate group over C(x) with a single slope λ_i , and $\lambda_0 < \ldots < \lambda_m$.

PROP. The Barsotti-Tate group $A[p^{\infty}]$ over $\mathcal{C}(x)$ admits a slope filtration

$$A[p^{\infty}] = G_0 \supset G_1 \supset \cdots \supset G_m \supset G_{m+1} = (0)$$

such that each graded piece $H_i = G_i/G_{i+1}$ is a Barsotti-Tate group over C(x) with a single slope λ_i , and $\lambda_0 < \ldots < \lambda_m$.

RMK. Due to Zink when C(x) is a "central stream".

PROP. The Barsotti-Tate group $A[p^{\infty}]$ over $\mathcal{C}(x)$ admits a slope filtration

 $A[p^{\infty}] = G_0 \supset G_1 \supset \cdots \supset G_m \supset G_{m+1} = (0)$

such that each graded piece $H_i = G_i/G_{i+1}$ is a Barsotti-Tate group over C(x) with a single slope λ_i , and $\lambda_0 < \ldots < \lambda_m$.

RMK. Due to Zink when C(x) is a "central stream".

KEY The *variation* of the slope filtration gives the *local moduli* of leaves.

PROP. The Barsotti-Tate group $A[p^{\infty}]$ over C(x) admits a slope filtration

 $A[p^{\infty}] = G_0 \supset G_1 \supset \cdots \supset G_m \supset G_{m+1} = (0)$

such that each graded piece $H_i = G_i/G_{i+1}$ is a Barsotti-Tate group over C(x) with a single slope λ_i , and $\lambda_0 < \ldots < \lambda_m$.

RMK. Due to Zink when C(x) is a "central stream".

KEY The *variation* of the slope filtration gives the *local moduli* of leaves.

Analogy: The variation of the Hodge filtration gives the local moduli of abelian varieties.

Motivation: Need to understand the *local structure* of leaves (i.e. the formal completion/jet space of a point) for the Hecke orbit problem.

- Motivation: Need to understand the *local structure* of leaves (i.e. the formal completion/jet space of a point) for the Hecke orbit problem.
- Leaves are *homogeneous*; the formal completion at any two points of a leaf are isomorphic.

- Motivation: Need to understand the *local structure* of leaves (i.e. the formal completion/jet space of a point) for the Hecke orbit problem.
- Leaves are *homogeneous*; the formal completion at any two points of a leaf are isomorphic.
- Phenomenon: The formal completion at a point of a leaf is built up from *p*-divisible formal groups by successive fibrations, each fiber is a *p*-divisible formal group.

- Motivation: Need to understand the *local structure* of leaves (i.e. the formal completion/jet space of a point) for the Hecke orbit problem.
- Leaves are *homogeneous*; the formal completion at any two points of a leaf are isomorphic.
- Phenomenon: The formal completion at a point of a leaf is built up from *p*-divisible formal groups by successive fibrations, each fiber is a *p*-divisible formal group.
- a perspective: Every leaf in a PEL-type modular variety is a char. p analog of a Shimura variety; it is "homogeneous", and has similar group-theoretic properties.

• X,Y: isoclinic BT-groups over a field $k\supset \mathbb{F}_p$, of slopes $\mu_{\scriptscriptstyle X} < \mu_{\scriptscriptstyle Y}$.

X, Y: isoclinic BT-groups over a field k ⊃ F_p, of slopes μ_x < μ_y.
Let Def(X, Y) =: Spf(R) = the local deformation space of X × Y.

- X,Y: isoclinic BT-groups over a field $k\supset \mathbb{F}_p,$ of slopes $\mu_{\scriptscriptstyle X} < \mu_{\scriptscriptstyle Y}.$
- Let $\mathcal{D}ef(X, Y) =: \operatorname{Spf}(R) =$ the local deformation space of $X \times Y$.

Let $\mathcal{DE}(X,Y) :=$ the extension part of the deformation space Spf(R), with a natural structure as a smooth formal group.

- X,Y: isoclinic BT-groups over a field $k\supset \mathbb{F}_p,$ of slopes $\mu_{\scriptscriptstyle X} < \mu_{\scriptscriptstyle Y}.$
- Let $\mathcal{D}ef(X, Y) =: \operatorname{Spf}(R) =$ the local deformation space of $X \times Y$.

• Let $\mathcal{DE}(X,Y) :=$ the extension part of the deformation space Spf(R), with a natural structure as a smooth formal group.

• Let $\mathcal{C}(\mathcal{D}ef(X,Y)) \subset \mathcal{D}\mathcal{E}(X,Y)$ be the leaf in $\mathcal{D}ef(X \times Y)$ through the closed point.

- X,Y: isoclinic BT-groups over a field $k\supset \mathbb{F}_p,$ of slopes $\mu_{\scriptscriptstyle X}<\mu_{\scriptscriptstyle Y}.$
- Let $\mathcal{D}ef(X, Y) =: \operatorname{Spf}(R) =$ the local deformation space of $X \times Y$.

• Let $\mathcal{DE}(X, Y) :=$ the extension part of the deformation space Spf(R), with a natural structure as a smooth formal group.

• Let $\mathcal{C}(\mathcal{D}ef(X,Y)) \subset \mathcal{D}\mathcal{E}(X,Y)$ be the leaf in $\mathcal{D}ef(X \times Y)$ through the closed point.

THM. $C(\mathcal{D}ef(X, Y))$ is the maximal *p*-divisible formal subgroup $\mathcal{D}\mathcal{E}(X, Y)_{pdiv}$ of $\mathcal{D}\mathcal{E}(X, Y)$; it is isoclinic, of slope $\mu_Y - \mu_X$, and height $ht(X) \cdot ht(Y)$.

• X, Y: isoclinic BT-groups over $k \supset \mathbb{F}_p$, of Frobenius slopes μ_X , $\mu_Y = 1 - \mu_X$, $\mu_X < \mu_Y$, $\operatorname{ht}(X) = \operatorname{ht}(Y)$.

X, Y: isoclinic BT-groups over k ⊃ F_p, of Frobenius slopes μ_X, μ_Y = 1 − μ_X, μ_X < μ_Y, ht(X) = ht(Y).
λ = a principal polarization of X × Y

X, Y: isoclinic BT-groups over k ⊃ F_p, of Frobenius slopes μ_X, μ_Y = 1 − μ_X, μ_X < μ_Y, ht(X) = ht(Y).
λ = a principal polarization of X × Y
Def(X × Y, λ) = local deform. space of (X × Y, λ)

• X, Y: isoclinic BT-groups over $k \supset \mathbb{F}_p$, of Frobenius slopes μ_X , $\mu_Y = 1 - \mu_X$, $\mu_X < \mu_Y$, ht(X) = ht(Y). • $\lambda = a$ principal polarization of $X \times Y$ • $\mathcal{D}ef(X \times Y, \lambda) = \text{local deform. space of } (X \times Y, \lambda)$ • $\mathcal{C}(\mathcal{D}ef(X \times Y, \lambda)) := \text{the leaf in } \mathcal{D}ef(X \times Y, \lambda) \text{ through the closed point.}$

THM. (i) The polarization λ induces an involution on $\mathcal{DE}(X, Y)_{pdiv}$, whose fixer subscheme $\mathcal{DE}(X, Y)_{pdiv}^{sym}$ is equal to $\mathcal{C}(\mathcal{D}ef(X \times Y, \lambda))$.

THM. (i) The polarization λ induces an involution on $\mathcal{DE}(X,Y)_{pdiv}$, whose fixer subscheme $\mathcal{DE}(X,Y)_{pdiv}^{sym}$ is equal to $\mathcal{C}(\mathcal{D}ef(X \times Y, \lambda))$.

(ii) $\operatorname{ht}(\mathcal{DE}(X,Y)^{\operatorname{sym}}_{\operatorname{pdiv}}) = \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$

THM. (i) The polarization λ induces an involution on $\mathcal{DE}(X,Y)_{pdiv}$, whose fixer subscheme $\mathcal{DE}(X,Y)_{pdiv}^{sym}$ is equal to $\mathcal{C}(\mathcal{D}ef(X \times Y, \lambda))$.

(ii) $\operatorname{ht}(\mathcal{DE}(X,Y)_{\text{pdiv}}^{\text{sym}}) = \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$ (iii) $\operatorname{dim}(\mathcal{DE}(X,Y)_{\text{pdiv}}^{\text{sym}}) = (1-2\mu_X) \cdot \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$

THM. (i) The polarization λ induces an involution on $\mathcal{DE}(X, Y)_{pdiv}$, whose fixer subscheme $\mathcal{DE}(X, Y)_{pdiv}^{sym}$ is equal to $\mathcal{C}(\mathcal{D}ef(X \times Y, \lambda))$.

(ii) $\operatorname{ht}(\mathcal{DE}(X,Y)_{\text{pdiv}}^{\text{sym}}) = \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$ (iii) $\operatorname{dim}(\mathcal{DE}(X,Y)_{\text{pdiv}}^{\text{sym}}) = (1-2\mu_X) \cdot \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$ (iv) If $x = [(A_x,\lambda_x)] \in \mathcal{A}_g(k)$, $(A_x[p^{\infty}], \lambda_x[p^{\infty}]) \cong (X \times Y, \lambda)$, then

 $\mathcal{C}(x)^{/x} \cong \mathcal{M}(\mathcal{DE}(X,Y)^{\text{sym}}_{\text{pdiv}}).$

- Cartier theory: An equivalence of categories between (comm. formal groups) and (modules over a certain non-comm. topological ring satisfying suitable conditions); it works over any commutative base ring.

- Cartier theory: An equivalence of categories between (comm. formal groups) and (modules over a certain non-comm. topological ring satisfying suitable conditions); it works over any commutative base ring.
- Assume that k is a perfect field of char. p. Then the Cartier ring $Cart_p(k)$ is the completion of W(k)[V, F] w.r.t. the right ideals $V^nW(k)[V, F]$.

- Cartier theory: An equivalence of categories between (comm. formal groups) and (modules over a certain non-comm. topological ring satisfying suitable conditions); it works over any commutative base ring.
- Assume that k is a perfect field of char. p. Then the Cartier ring $Cart_p(k)$ is the completion of W(k)[V, F] w.r.t. the right ideals $V^nW(k)[V, F]$.
- \blacksquare W(k) = Witt vectors over k

$\lor VF = FV = p$, $Fa = a^{\sigma}F$, $aV = Va^{\sigma} \forall a \in W(k)$

VF = FV = p, Fa = a^σF, aV = Va^σ ∀a ∈ W(k)
V ↔ Frob, F ↔ Ver.

VF = FV = p, $Fa = a^{\sigma}F$, $aV = Va^{\sigma} \forall a \in W(k)$

- $\checkmark V \leftrightarrow \mathsf{Frob}, F \leftrightarrow \mathsf{Ver}.$
- The Cartier module M(G) of a BT-group G over k is a free W(k)-module of rank ht(G).

- VF = FV = p, $Fa = a^{\sigma}F$, $aV = Va^{\sigma} \forall a \in W(k)$

 $\checkmark V \leftrightarrow \mathsf{Frob}, F \leftrightarrow \mathsf{Ver}.$

The Cartier module M(G) of a BT-group G over k is a free W(k)-module of rank ht(G).

For an arbitrary commutative ring R over $\mathbb{Z}_{(p)}$, $\operatorname{Cart}_p(R)$ is the *V*-adic completion of a ring generated by W(R), V and F. In general, $VF \neq p$, and M(G) is no longer a free W(R)-module.

- VF = FV = p, $Fa = a^{\sigma}F$, $aV = Va^{\sigma} \forall a \in W(k)$

 $\checkmark V \leftrightarrow \mathsf{Frob}, F \leftrightarrow \mathsf{Ver}.$

- The Cartier module M(G) of a BT-group G over k is a free W(k)-module of rank ht(G).
- For an arbitrary commutative ring R over $\mathbb{Z}_{(p)}$, $\operatorname{Cart}_p(R)$ is the V-adic completion of a ring generated by W(R), V and F. In general, $VF \neq p$, and M(G) is no longer a free W(R)-module.
- M(G) is the set of all *p*-typical formal curves in the smooth formal group *G*.

Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.

- Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.
- K := the fraction field of W = W(k).

- Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.
- K := the fraction field of W = W(k).
- $H := \operatorname{Hom}_W(\operatorname{M}(X), \operatorname{M}(Y)).$

- Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.
- K := the fraction field of W = W(k).
- $H := \operatorname{Hom}_W(\operatorname{M}(X), \operatorname{M}(Y)).$
- *H*⊗_W*K* is a *V*-isocrystal: (Fh)(m) = F(h(Vm)), $(Vh)(m) = V(h(V^{-1}m)) \forall h \in H, \forall m \in M(X)$. Note that $F(H) \subseteq H$.

- Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.
- K := the fraction field of W = W(k).
- $H := \operatorname{Hom}_W(\operatorname{M}(X), \operatorname{M}(Y)).$
- *H*⊗_W*K* is a *V*-isocrystal: (Fh)(m) = F(h(Vm)), $(Vh)(m) = V(h(V^{-1}m)) \forall h \in H, \forall m \in M(X)$. Note that $F(H) \subseteq H$.
- Let H_1 be the maximal W-submodule of H stable under F and V.

- Let M(X), M(Y) be the covariant Dieudonné module of X, Y respectively, over a perfect base field $k \supset \mathbb{F}_p$.
- K := the fraction field of W = W(k).
- $H := \operatorname{Hom}_W(\operatorname{M}(X), \operatorname{M}(Y)).$
- *H*⊗_W*K* is a *V*-isocrystal: (Fh)(m) = F(h(Vm)), $(Vh)(m) = V(h(V^{-1}m)) \forall h \in H, \forall m \in M(X)$. Note that $F(H) \subseteq H$.

Let H_1 be the maximal W-submodule of H stable under F and V.

THM. $M(\mathcal{DE}(X, Y)_{pdiv})$ is naturally isomorphic to H_1 .

Cartier theory of leaves, polarized

Notation as before. Let λ be a print pol. on $X \times Y$.

Cartier theory of leaves, polarized

Notation as before. Let λ be a prin. pol. on X × Y.
λ induces an involution on DE(X, Y)_{pdiv} and on its Cartier module.

Cartier theory of leaves, polarized

Notation as before. Let λ be a prin. pol. on X × Y.
 λ induces an involution on DE(X, Y)_{pdiv} and on its Cartier module.

THM. $M(\mathcal{DE}(X, Y)_{pdiv}^{sym})$ is naturally isomorphic to the maximal submodule H_1^{sym} of H_1 fixed by the involution; $\operatorname{rk}_W(H_1^{sym}) = \frac{\operatorname{ht}(X)(\operatorname{ht}(X)+1)}{2}$.

NOTATION

→ X: a *p*-divisible formal group over a field $k = k^{\text{alg}} \supset \mathbb{F}_p$.

- *X*: a *p*-divisible formal group over a field $k = k^{alg} \supset \mathbb{F}_p$.
- \mathbf{r}_X : the regular repr. of $\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$

- ∠ X: a *p*-divisible formal group over a field $k = k^{\text{alg}} \supset \mathbb{F}_p$.
- \mathbf{r}_X : the regular repr. of $\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$
- If H: a connected reductive group over \mathbb{Q}_p

- ✓ X: a *p*-divisible formal group over a field $k = k^{\text{alg}} \supset \mathbb{F}_p$.
- \mathbf{r}_X : the regular repr. of $\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$
- \blacksquare *H*: a connected reductive group over \mathbb{Q}_p
- $\rho: H(\mathbb{Q}_p) \to (\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\times} \text{ is a } \mathbb{Q}_p \text{-rational representation of } H$

- ✓ X: a *p*-divisible formal group over a field $k = k^{\text{alg}} \supset \mathbb{F}_p$.
- \mathbf{r}_X : the regular repr. of $\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$
- If H: a connected reductive group over \mathbb{Q}_p
- □ $U \subset H(\mathbb{Q}_p)$ is an open subgroup of $H(\mathbb{Q}_p)$ such that $\rho(U) \subseteq \operatorname{End}_k(X)^{\times}$, so that *U* operates on *X* via *ρ*.

NOTATION

- X: a *p*-divisible formal group over a field $k = k^{\text{alg}} \supset \mathbb{F}_p$.
- \mathbf{r}_{X} : the regular repr. of $\operatorname{End}(X) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$
- \blacksquare *H*: a connected reductive group over \mathbb{Q}_p
- $\rho: H(\mathbb{Q}_p) \to (\operatorname{End}(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\times}$ is a \mathbb{Q}_p -rational representation of H
- U ⊂ $H(\mathbb{Q}_p)$ is an open subgroup of $H(\mathbb{Q}_p)$ such that $\rho(U) \subseteq \operatorname{End}_k(X)^{\times}$, so that U operates on X via ρ .

Z is an irreducible closed formal subscheme of X which is stable under the action of U.

Rigidity, continued

THM. Assume that $\mathbf{r}_X \circ \rho$ does not contain the trivial representation as a subquotient. Then *Z* is a *p*-divisible formal subgroup of *X*.

Rigidity, continued

THM. Assume that $\mathbf{r}_X \circ \rho$ does not contain the trivial representation as a subquotient. Then *Z* is a *p*-divisible formal subgroup of *X*.

RMK. A basic case is when X is a formal torus $Spf(k[[x_1^{\pm 1}, \dots, x_d^{\pm 1}]])$. The Thm says that if an irreducible formal subvariety Z of a formal torus is stable under $[1 + p^n]$ for some $n \ge 1$, then Z is a formal subtorus.

Suppose that $x = [(A_x, \lambda_x)] \in \mathcal{A}_g(k)$ satisfies $A_x[p^{\infty}] \cong X \times Y$, with X, Y isoclinic, $\mu_X < \mu_Y = 1 - \mu_X$.

Suppose that $x = [(A_x, \lambda_x)] \in \mathcal{A}_g(k)$ satisfies $A_x[p^{\infty}] \cong X \times Y$, with X, Y isoclinic, $\mu_X < \mu_Y = 1 - \mu_X$. $\operatorname{End}_k(A_x) \otimes_{\mathbb{Z}} \mathbb{Z}_p \xrightarrow{\sim} \operatorname{End}_k(A_x[p^{\infty}])$

Suppose that $x = [(A_x, \lambda_x)] \in \mathcal{A}_g(k)$ satisfies $A_x[p^{\infty}] \cong X \times Y$, with X, Y isoclinic, $\mu_X < \mu_Y = 1 - \mu_X$. $\operatorname{End}_k(A_x) \otimes_{\mathbb{Z}} \mathbb{Z}_p \xrightarrow{\sim} \operatorname{End}_k(A_x[p^{\infty}])$

Then the Zariski closure $\mathcal{H}(x)$ of the Hecke orbit of x in \mathcal{A}_g contains an irreducible component of $\mathcal{C}(x)$, i.e. Conj. $(\mathrm{HO})_{\mathrm{dc}}$ holds for x.

Suppose that $x = [(A_x, \lambda_x)] \in \mathcal{A}_g(k)$ satisfies $A_x[p^{\infty}] \cong X \times Y$, with X, Y isoclinic, $\mu_X < \mu_Y = 1 - \mu_X$. $\operatorname{End}_k(A_x) \otimes_{\mathbb{Z}} \mathbb{Z}_p \xrightarrow{\sim} \operatorname{End}_k(A_x[p^{\infty}])$

Then the Zariski closure $\mathcal{H}(x)$ of the Hecke orbit of x in \mathcal{A}_g contains an irreducible component of $\mathcal{C}(x)$, i.e. Conj. $(HO)_{dc}$ holds for x.

PROOF. Step 1. (Local stabilizer subgroup principal) The completion $\overline{\mathcal{H}(x)}^{/x}$ of $\overline{\mathcal{H}(x)}$, smooth over k and closed in $\mathcal{C}(x)^{/x} = \mathcal{D}\mathcal{E}(X,Y)_{\text{pdiv}}^{\text{sym}}$, is stable under the action of (the closure of) the local stabilizer subgroup of x in prime-to-p Hecke correspondences.

STEP 2. The local stabilizer subgroup U_x at x is an open subgroup of the unitary group attached to $(\operatorname{End}_k(A_x[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \lambda_x[p^{\infty}])$, a semisimple algebra with involution.

STEP 2. The local stabilizer subgroup U_x at x is an open subgroup of the unitary group attached to $(\operatorname{End}_k(A_x[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \lambda_x[p^{\infty}])$, a semisimple algebra with involution.

STEP 3. By the rigidity result, $\overline{\mathcal{H}(x)}^{/x}$ is a *p*-divisible formal subgroup of $\mathcal{DE}(X, Y)_{pdiv}^{sym}$.

STEP 2. The local stabilizer subgroup U_x at x is an open subgroup of the unitary group attached to $(\operatorname{End}_k(A_x[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \lambda_x[p^{\infty}])$, a semisimple algebra with involution.

STEP 3. By the rigidity result, $\overline{\mathcal{H}(x)}^{/x}$ is a *p*-divisible formal subgroup of $\mathcal{DE}(X, Y)_{pdiv}^{sym}$.

STEP 4. U_x is an open subgroup of a \mathbb{Q}_p -form of GL_g .

STEP 2. The local stabilizer subgroup U_x at x is an open subgroup of the unitary group attached to $(\operatorname{End}_k(A_x[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \lambda_x[p^{\infty}])$, a semisimple algebra with involution.

STEP 3. By the rigidity result, $\overline{\mathcal{H}(x)}^{/x}$ is a *p*-divisible formal subgroup of $\mathcal{DE}(X, Y)_{pdiv}^{sym}$.

STEP 4. U_x is an open subgroup of a \mathbb{Q}_p -form of GL_g . STEP 5. The action of U_x on the Cartier module of $\mathcal{DE}(X,Y)_{\text{pdiv}}^{\text{sym}}$ is isomorphic to the second symmetric product of the standard representation of GL_g over K^{alg} , which is *absolutely irreducible*.

STEP 2. The local stabilizer subgroup U_x at x is an open subgroup of the unitary group attached to $(\operatorname{End}_k(A_x[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \lambda_x[p^{\infty}])$, a semisimple algebra with involution.

STEP 3. By the rigidity result, $\overline{\mathcal{H}(x)}^{/x}$ is a *p*-divisible formal subgroup of $\mathcal{DE}(X, Y)_{pdiv}^{sym}$.

STEP 4. U_x is an open subgroup of a \mathbb{Q}_p -form of GL_g . STEP 5. The action of U_x on the Cartier module of $\mathcal{DE}(X,Y)^{\mathrm{sym}}_{\mathrm{pdiv}}$ is isomorphic to the second symmetric product of the standard representation of GL_g over K^{alg} , which is *absolutely irreducible*.

STEP 6. Hence $\mathcal{H}(x)^{/x} = \mathcal{D}\mathcal{E}(X,Y)^{\text{sym}}_{\text{pdiv}} = \mathcal{C}(x)^{/x}$. Q.E.D.