Conference on Arithmetic Algebraic Geometry In honor of *Gerd Faltings* on the occasion of his 60th birthday

六十而耳順

(I knew the truth in all I heard when I turned sixty. Confucious) (Your hearing gets better when you turn 60. modern translation, Shouwu Zhang.) SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

) ist abelsche Gruppe X(Q) endlich $\cong \mathbb{Z}^{n}$ endlic mation

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

・ロト・日本・日本・日本・日本

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲ロト ▲理 ト ▲ 臣 ト ▲ 臣 - の へ @ ト

Ching-Li Chai

Department of Mathematics University Pennsylvania

Bonn, June 13, 2014

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Outline

1 A scheme-theoretic definition of leaves

2 Hom-schemes for p-divisible groups

3 How to build sustained p-divisible groups

4 Differential analysis of leaves

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

・ロト・日本・日本・日本・日本・日本

Leaves in PEL moduli spaces

The notion of leaves, due to F. Oort, was announced in 1999 (Texel).

p= a prime number

 \mathcal{M} = a moduli space of PEL type over a field $k = k^a \supset \mathbb{F}_p$, assumed (for simplicity) to have good reduction at *p*.

 $\mathscr{A} \to \mathscr{M}$: universal abelian scheme with additional structure

Definition. The leaf $\mathscr{C}(x_0) \subset \mathscr{M}$ through a point $x_0 \in \mathscr{M}(k)$ is the locus (with reduced structure) in \mathscr{M} where the *p*-divisible group $\mathscr{A}[p^{\infty}]$ (with additional structure) is isomorphic to the fiber over x_0 .

Fact: $\mathscr{C}(x_0)$ is a *locally closed smooth* subscheme of \mathscr{M} .

Remark. (a) Leaves are "complementary" to Rapoport-Zink spaces. (b) They are stable under prime-to-*p* Hecke corresp.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Geometrically fiberwise constant *p*-divisible groups

The definition of leaves was based on:

Definition. A *p*-divisible group *X* over a scheme S/\mathbb{F}_p is geometrically fiberwise constant if any two fibers X_{s_1}, X_{s_2} are isomorphic when based-changed to a common algebraically closed field *K* which contains both $\kappa(s_1)$ and $\kappa(s_2)$.

Remark: (i) The above notion results in reasonable properties when the base scheme *S* is *normal*. (Zink, Oort-Zink) (ii) A disadvantage: cannot use it to study differential properties of leaves.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

An update (with Frans Oort)

Goals.

1. Find a *scheme-theoretic substitute* of the notion of "geometrically fiberwise constant" *p*-divisible groups.

2. Perform "differential analysis" to study the local structure of leaves. The big picture that emerged is:

locally every leaf is "built up from p-divisible groups" via dévissage.

(These are "local Serre-Tate coordinates on leaves"—but only in equi-characteristic p > 0 in general.)

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Goals, continued

3. The above local structure on leaves vary algebraically over the base (e.g. a moduli space).

The resulting "global Serre-Tate coordinates" allows one to prove some weak rigidity statement of the following sort:

(weak rigidity) Let $Z \subset \mathscr{C}$ be a connected irreducible closed subscheme of a leaf \mathscr{C} . Suppose that $Z^{/z_0}$ is Tate-linear at a closed point z_0 of a leaf \mathscr{C} , in the sense that it is built up from *p*-divisible subgroups of those involved in the local structure of $\mathscr{C}^{/z_0}$. Then *Z* is Tate-linear at every point of *Z*.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Strongly κ -sustained *p*-divisible groups

 $\kappa \supset \mathbb{F}_p$: a field of char. p > 0 S/κ : a κ -scheme X_0/κ : a p-divisible group

Definition. A *p*-divisible group $X \rightarrow S$ is strongly κ -sustained modeled on X_0 if $\forall n > 0$, the Isom-scheme

$$\mathscr{I}_{\mathrm{SOM}_S}(X_0[p^n] \times_{\mathrm{Spec}(\kappa)} S, X[p^n]) \longrightarrow S$$

is faithfully flat.¹

Motivation: Manin's thesis (1963)

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

¹A sustained note feels constant, but isn't really so $\Rightarrow \langle \exists \rangle \land \exists \rangle \land \exists \rangle \land \Diamond \land \bigcirc$

κ -sustained *p*-divisible groups

 S/κ : as before

Definition. A *p*-divisible group $X \rightarrow S$ is κ -sustained if either of the following two equivalent conditions hold.

(1) \exists extension field L/κ and a *p*-divisible group Y_0/L such that

 $X \times_{\operatorname{Spec} \kappa} \operatorname{Spec} L \longrightarrow S \times_{\operatorname{Spec} \kappa} \operatorname{Spec} L$

is strongly *L*-sustained modeled on Y_0/L .

(2) $\forall n > 0$, the Isom-scheme

$$\mathscr{I}_{\mathrm{SOM}_{S \times_{\mathrm{Spec}\,\kappa}S}}(\mathrm{pr}_1^*X[p^n], \mathrm{pr}_2^*X[p^n]) \longrightarrow S \times_{\mathrm{Spec}\,\kappa}S$$

is faithfully flat.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Existence of slope filtration

(an indication that the definition is reasonable)

Proposition. Let $X \to S/\kappa$ be a κ -sustained *p*-divisible group. There exists a unique slope filtration²

$$X = X_0 \supset X_1 \supset \cdots \supset X_{m-1} \supset X_m = (0)$$

of X be p-divisible subgroups such that

(1) X_i/X_{i+1} is a κ -sustained *p*-divisible group, isoclinic of slope $\lambda_i \forall i = 0, 1, \dots, m-1$

(2)
$$0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_{m-1} \leq 1.$$

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Compatibility with the notion "geom. fiberwise constant"

Proposition. Suppose that *S* is reduced and locally of finite type over κ . Let $X \to S/\kappa$ and X_0/κ be *p*-divisible groups. If X_s is strongly κ -sustained modeled on $X_0 \forall s \in S$, then $X \to S$ is strongly κ -sustained modeled on X_0/κ .

Proposition. Let $X \to S/\kappa$ and X_0/κ be *p*-divisible groups. Assume that S/κ is locally noetherian. There exists a locally closed subscheme $T \hookrightarrow S$ satisfying

- (a) $X \times_S T$ is κ -sustained modeled on X_0 .
- (b) If $T_1 \hookrightarrow S$ is a locally closed subschema of S and $X \times_S T_1$ is κ -sustained modeled on X_0 , then $T_1 \subseteq T$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic definition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Hom-schemes for *p*-divisible groups

Interlude: certain (systems of) Hom-schemes

Given *Y*,*Z*: *p*-divisible groups over a field $\kappa \supset \mathbb{F}_p$. Define group schemes of finite type over κ

 $H_n := \mathscr{H}om(Y[p^n], Z[p^n])$

We have arrows

- $r_{i,n+i}: H_{n+i} \to H_n$ (restriction homomorphism)
- $\iota_{n+i,i}: H_i \hookrightarrow H_{n+i}$ (induced by $[p^n]_{H_{n+i}}$, = Ker $(r_{i,n+i})$
- $\mathbf{v}_{n;i}: H_{n+i}/\iota_{n+i,i}(H_i) \rightarrow H_n$ ($r_{i,n+i} \mod its kernel$)
- $v_{n;i,i+j}$: $H_{n+i+j}/\iota_{n+i+j,i+j}(H_{i+j}) \rightarrow H_{n+i}/\iota_{n+i,i}(H_i)$ (induced by $r_{n+i+j,n+i}$)

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Stabilization

Lemma. There exists a positive integer n_0 such that the monomorphism

$$\mathbf{v}_{n;1,2} \colon H_{n+2}/\iota_{n+2,n+1}(H_{n+1}) \rightarrowtail H_{n+1}/\iota_{n+1,n}(H_n)$$

is an isomorphism $\forall n \ge n_0$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The stabilized \mathscr{H}_{ond} for *p*-divisible group

Definition. We define a family of commutative finite group schemes G_n over κ and and κ homormorphisms.

 $G_n := H_{n+n_0}/\iota_{n+n_0,n_0}(H_{n_0})$ $v_n : G_n \rightarrow H_n, \text{ defined by } v_n = v_{n;i_0}$ $j_{n+i,n} : G_n \hookrightarrow G_{n+i}, \text{ induced by } \iota_{n+i+n_0}$ $\pi_{n,n+i} : G_{n+i} \twoheadrightarrow G_n, \text{ induced by } r_{n+n_0,n+n_0+i}$

Proposition. The system $(G_n, j_{n+i,n}, \pi_{n,n+i})$ is *p*-divisible group over κ , denoted by

$$\mathscr{H}_{\mathrm{OM}}'_{\mathrm{div}}(Y,Z)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

 $\mathscr{H}_{OM}'_{div}(Y,Z)$ and $\mathscr{H}_{OM}'(Y,Z)$

Definition.

- $\mathscr{H}_{OM}'(Y,Z)$ = the inductive system $(H_n, \iota_{n+i,n})$
- The monomorphisms $v_n : G_n \rightarrow H_n$ define a mono $v : \mathscr{H}_{OM'_{div}}(Y, Z) \rightarrow \mathscr{H}_{OM'}(Y, Z).$

Proposition. (1) $\mathscr{H}_{OM'_{div}}(Y,Z)$ = the maximal *p*-divisible subgroup of $\mathscr{H}_{OM'}(Y,Z)$.

(2) The formal completion $\mathscr{H}_{\mathfrak{OM}'}(Y,Z)^{\wedge}$ of $\mathscr{H}_{\mathfrak{OM}'}(Y,Z)$ is a smooth formal group over κ .

(3) $\dim(\mathscr{H}_{OM}'(Y,Z)^{\wedge}) = \dim(Z) \cdot \dim(Y^t).$

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Slopes and dimension of $\mathscr{H}_{\mathrm{ond}'_{\mathrm{div}}}(Y,Z)$

Proposition. Suppose that *Y*, *Z* are isoclinic over κ , with slopes λ_Y and λ_Z respectively.

- If $\lambda_Y > \lambda_Z$, then $\mathscr{H}_{\mathrm{OM}'_{\mathrm{div}}}(Y, Z) = (0)$.
- If $\lambda_Y \leq \lambda_Z$, then $\mathscr{H}_{\text{OM}'_{\text{div}}}(Y,Z)$ is isoclinic of slope $\lambda_Z \lambda_Y$ and height $\operatorname{ht}(Z) \cdot \operatorname{ht}(Y)$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Formal groups defined by Ext

Definition. Given *p*-divisible groups *Y*,*Z* over a field $\kappa \supset \mathbb{F}_p$, define a group-valued formal functor $\mathscr{E}x_{\mathcal{T}}(Y,Z)$, which sends every augmented Artinian local κ -algebra $(R, \varepsilon \colon R \to \kappa)$ to

$$\mathscr{E}\mathfrak{XT}(Y,Z) := \operatorname{Ker}\left(\operatorname{Ext}_{R}(Y_{R},Z_{R}) \to \operatorname{Ext}_{\kappa}(Y_{\kappa},Z_{\kappa})\right)$$

Proposition. $\mathscr{E}\mathfrak{XT}(Y,Z)$ is formally smooth of dimension $\dim(Z) \cdot \dim(Y^t)$ over κ .

Definition. $\mathscr{E}\mathfrak{XT}_{div}(Y, Z) :=$ the maximal *p*-divisible subgroup of the smooth formal group $\mathscr{E}\mathfrak{XT}(Y, Z)$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Relating $\mathscr{H}_{\mathfrak{M}}'(Y,Z)$ to $\mathscr{E}_{\mathfrak{XT}}(Y,Z)$

Proposition. There is a natural isomorphism

$$\delta: \mathscr{H}_{\mathrm{OM}}'(Y,Z)^{\wedge} \xrightarrow{\sim} \mathscr{E}_{\mathrm{XT}}(Y,Z),$$

which induces an isomorphism

 $\mathscr{H}_{\mathrm{OM}'_{\mathrm{div}}}(Y,Z) \xrightarrow{\sim} \mathscr{E}_{\mathrm{XT}_{\mathrm{div}}}(Y,Z).$

Remark. (a) δ is a coboundary map coming from $0 \rightarrow \varprojlim_n Y[p^n] \rightarrow \left(\varprojlim_n Y[p^n]\right) \otimes \mathbb{Z}[1/p] \rightarrow Y \rightarrow 0$ (b) There is a canonical/tautological biextension of $(Y, \mathscr{H}_{OM'_{div}}(Y, Z))$ by *Z*. SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic efinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

The Dieudonné module of $\mathscr{H}_{\mathrm{ond}'_{\mathrm{div}}}(Y,Z)$

Assume: $\lambda_Y < \lambda_Z$ and κ is perfect. Let M, N be the Cartier modules of Y and Z. Let $H := \operatorname{Hom}_{W(\kappa)}(M, N)$. Have semi-linear actions on $H \otimes_{W(k)} W(\kappa)[1/p]$ $F_H : h \mapsto F_N \circ h \circ V_M, \quad V_H : h \mapsto p^{-1}V_N \circ h \circ F_M.$

Let H_1 := the largest $W(\kappa)$ -submodule of H stable under F_H and V_H

Proposition. The Cartier module of the *p*-divisible group $\mathscr{H}_{\mathfrak{M}_{\operatorname{div}}}(Y,Z)$ is naturally isomorphic to H_1 .

Remark. The smallest submodule of $H \otimes_{W(\kappa)} W(k)[1/p]$ which contains *H* and stable under both F_H and V_H is the Cartier module of the maximal *p*-divisible quotient of $\mathscr{H}_{OM}'(Y,Z)^{\wedge}$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

The Cartier module of $\mathscr{H}_{\mathfrak{OM}}(Y,Z)$

Definition. Let $BC_p(\kappa)$ = the Cartier module of the infinite dimensional connected smooth formal group

 $R \mapsto \operatorname{Ker}(\operatorname{Cart}_p(R) \to \operatorname{Cart}_p(\kappa))$

 \forall augmented Artinian commutative κ -algebra R.

 $\operatorname{Cart}_p(\kappa)$ is a triple $\operatorname{Cart}_p(\kappa)$ -module: two from the Cartier ring structure; the third because it is the Cartier module of a smooth formal group.

Proposition. The Cartier module of $\mathscr{H}_{OM}'(Y,Z)^{\wedge} \simeq \mathscr{E}_{XT}(Y,Z)$ is

$$\operatorname{Ext}^{1}_{\operatorname{Cart}_{p}(\kappa)}(M, \operatorname{BC}_{p}(\kappa) \otimes_{\operatorname{Cart}_{p}(\kappa)} N)$$

with action by $\operatorname{Cart}_p(\kappa)$ via the "third" $\operatorname{Cart}_p(\kappa)$ -module structure on $\operatorname{BC}_p(\kappa)$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

An example of slopes 1/3 and 4/5

Suppose that $\lambda_Y = 1/3$, dim(Y) = 1 $\lambda_Z = 4/5$, dim(Z) = 4, and κ is alg. closed.

A computation with Cartier modules shows that:

$$\mathscr{H}_{\mathrm{OM}_{\mathrm{big\,site}}}(Y,Z) = \operatorname{Spec}(\tilde{R}),$$

where

$$\tilde{R} = \kappa[t_0, t_1, t_2, \ldots] \left/ \left((t_0^p, t_1^p, t_2^{p^2}, t_3^{p^2}, t_4^{p^3}, t_5^{p^3}, t_6^{p^5}) + (t_{i+7}^{p^5} - t_i)_{i \ge 0} \right) \right.$$

Remark. \tilde{R} looks like being 7-dimensional in some sense ..., but why 7?

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

An example of slopes 1/3 and 4/5

Suppose that $\lambda_Y = 1/3$, dim(Y) = 1 $\lambda_Z = 4/5$, dim(Z) = 4, and κ is alg. closed.

A computation with Cartier modules shows that:

$$\mathscr{H}_{\mathrm{OM}_{\mathrm{big\,site}}}(Y,Z) = \operatorname{Spec}(\tilde{R}),$$

where

$$\tilde{R} = \kappa[t_0, t_1, t_2, \ldots] \left/ \left((t_0^p, t_1^p, t_2^{p^2}, t_3^{p^2}, t_4^{p^3}, t_5^{p^3}, t_6^{p^5}) + (t_{i+7}^{p^5} - t_i)_{i \ge 0} \right) \right.$$

Remark. \tilde{R} looks like being 7-dimensional in some sense ..., but why 7?

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

answer

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

$$\operatorname{Spec}(\tilde{R}) = \varprojlim_{n} \mathscr{H}_{\operatorname{OM}}'_{\operatorname{div}}(Y, Z)[p^n]$$

and 7 is the numerator of $\frac{4}{5} - \frac{1}{3}$. (This computation also serves as a reality check.)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

How to build a sustained *p*-divisible group?

Sketchy answer:

1. A purported κ -sustained *p*-divisible group $X \to S$ must satisfy:

(a) \exists a slope filtration

 $X = X_0 \supset X_1 \supset \cdots \supset X_{m-1} \supset X_m = (0)$ such that each X_i/X_{i+1} is κ -sustained and isoclinic, and $slope(X_i/X_{i+1}) < slope(X_{i+1}/X_{i+2}) \forall i.$

(b) All extension classes involved are of the form constant + *p*-divisible

in the flat topology (suitably interpreted).

2. The above conditions (a), (b) are also sufficient: a successive extension of κ -sustained isoclinic *p*-divisible groups by extension classes satisfying condition (b) is a κ -sustained *p*-divisible group.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

The two-slope case explained

Notation

- \blacksquare *S*/ κ : a κ -scheme
- $0 \rightarrow Z \rightarrow X \rightarrow Y \rightarrow 0$: a short exact sequence of *p*-divisible groups over κ , such that $Y \rightarrow S$ and $Z \rightarrow S$ are κ -sustained, $\lambda_Y < \lambda_Z$

$$S_1 := S \times_{\operatorname{Spec} \kappa} S, \ \operatorname{pr}_1, \operatorname{pr}_2 : S_1 \to S$$

- $\mathscr{J}_{SOM_{Y,n}} = \mathscr{J}_{SOM}(\mathrm{pr}_1^* Y[p^n], \mathrm{pr}_2^* Y[p^n]) = \text{stabilized}$ Isom-scheme over S_1 ; similarly for $\mathscr{J}_{SOM_{Z,n}}$
- $q_n: \mathscr{J}_{SOMY,n} \times_{S_1} \mathscr{J}_{SOMZ,n} \to S_1$: structural map
- Over $\mathscr{J}_{SOM_{Y,n}} \times_{S_1} \mathscr{J}_{SOM_{Z,n}}$, have a tautological isomorphism $\tau_{N,n} : \operatorname{Ext}(q_N^* \operatorname{pr}_1^* Y[p^n], q_N^* \operatorname{pr}_1^* Z[p^n]) \xrightarrow{\sim} \operatorname{Ext}(q_N^* \operatorname{pr}_2^* Y[p^n], q_N^* \operatorname{pr}_2^* Z[p^n])$

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

The two slope case, continued

Definition. We say that $X \to S$ is κ -firm with two slopes if $\forall N \ge n, \exists$ an fppf morphism $g : T \to \mathscr{J}_{SOM_{Y,n}} \times_{S_1} \mathscr{J}_{SOM_{Z,n}}$ such that

$$g^* \left(\begin{array}{c} \tau_{N,n}([q_N^* \mathrm{pr}_1^*(0 \to Z \to X \to Y \to 0)]) \\ -[q_N^* \mathrm{pr}_2^*(0 \to Z \to X \to Y \to 0)] \end{array} \right) = 0$$

(i.e. the difference between the two extension classes, pulled back by pr_1^* and pr_2^* , is *p*-divisible fppf-locally on the base.)

Definition. Replacing S_1 by $S_1^{/\Delta(S)}$ = formal completion along the diagonal, we get a weaker notion of infinitesimally κ -firm *p*-divisible group with two slopes.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

The two slope case, continued

Proposition. Let *X* be a *p*-divisible group over S/κ with a slope filtration $0 \rightarrow Z \rightarrow X \rightarrow Y \rightarrow 0$, where *Y*,*Z* are κ -sustained isoclinic with slope(*Y*) < slope(*Z*).

- (a) X is κ -sustained with if and only if it is κ -firm.
- (b) Suppose S is of finite type over κ . Then X is κ -sustained with if and only if it is infinitesimally κ -firm.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

local structure of leaves: two-slope case

Proposition. Let Y_0, Z_0 be isoclinic *p*-divisible groups over a perfect base field $\kappa \supset \mathbb{F}_p$. Let $X_0 = Y_0 \times Z_0$. Inside the equi-characteristic deformation space $\mathscr{D}_{\mathcal{EF}}(X_0)$ of X_0 , the maximal κ -sustained locus modeled on X_0 is naturally isomorphic to $\mathscr{H}_{\mathcal{OM}'_{\operatorname{div}}}(Y, Z)$.

Remark. Can/will also study global differential property of a leaf \mathscr{C} using $(\mathscr{C} \times \mathscr{C})^{/\Delta(\mathscr{C})}$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Application 0: leaves in moduli spaces

Let \mathscr{M} be a PEL moduli space over an alg. closed field $\kappa \supset \mathbb{F}_p$, with good reduction.

Let $(\mathscr{A},*) \to \mathscr{M}$ be the universal abelian scheme, plus extra (PEL) structure.

Let $x_0 \in \mathscr{M}(\kappa)$ be a closed point of \mathscr{M} , and let $(A_0, *_0)$ be the fiber over x_0 .

Let $\mathscr{C}(x_0)$ be the leaf passing through x_0 , i.e. $\mathscr{C}(x_0)$ is the maximal locus in \mathscr{M} over which $(\mathscr{A}[p^{\infty}], *[p^{\infty}])$ is strongly sustained modeled on $(A_0[p^{\infty}], *_0[p^{\infty}])$

proposition. $\mathscr{C}(x_0)$ is reduced and smooth over κ .

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves: two-slope case

 \mathcal{A}_g = moduli space of principally polarized *g*-dimensional abelian varieties over κ .

 $x_0 = [(A_0, \lambda_0)] \in \mathscr{A}_g(\kappa)$: a closed point $\mathscr{C}(x_0)$ = the leaf through x_0

Assume: A_0 has exactly two slopes λ_0 and $1 - \lambda_0$, $\lambda_0 < \frac{1}{2}$

Proposition. (1) $\operatorname{pr}_2 : (C_0 \times C_0)^{/\Delta(C_0)} \to C_0$ has a natural structure as a neutral torsor for an isoclinic sustained *p*-divisible group $G \to C_0$.

(2) $G \rightarrow C_0$ has height g(g+1)/2 and slope $1-2\lambda_0$.

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

A weak rigidity statement and a question

 $C_0 \subset \mathscr{A}_g$: as in the previous slide Let $Z \subset \mathscr{C}$ be an irreducible closed subscheme of C_0 .

proposition. (weak rigidity) Suppose that *Z* is Tate-linear at a closed point $z_0 \in \mathcal{C}$, in the sense that $Z^{/z_0} \subset C^{/z_0}$ is a torsor for a *p*-divisible subgroup of G_{z_0} . Then *Z* is Tate-linear at every point of *Z*.

Question. Is *Z* the reduction of a Shimura subvariety of \mathscr{A}_g ?

THE END

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SUSTAINED p-DIVISIBLE GROUPS

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

<日 > < 同 > < 目 > < 目 > < 目 > の Q (~)

Happy 60th, Gerd!

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

▲ロト ▲理 ト ▲ 臣 ト ▲ 臣 - の へ @ ト

Ching-Li Chai

scheme-theoretic efinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

Ching-Li Chai

A scheme-theoretic lefinition of leaves

Hom-schemes for p-divisible groups

How to build sustained p-divisible groups

Differential analysis of leaves

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへぐ