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 六十而耳順	
 （論語）

(I knew the truth in all I heard when I turned sixty. Confucious)
(Your hearing gets better when you turn 60. modern translation,
Shouwu Zhang.)
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Leaves in PEL moduli spaces
The notion of leaves, due to F. Oort, was announced in 1999
(Texel).

p= a prime number

M = a moduli space of PEL type over a field k = ka ⊃ Fp,
assumed (for simplicity) to have good reduction at p.

A →M : universal abelian scheme with additional structure

Definition. The leaf C (x0)⊂M through a point x0 ∈M (k) is
the locus (with reduced structure) in M where the p-divisible
group A [p∞] (with additional structure) is isomorphic to the
fiber over x0.

Fact: C (x0) is a locally closed smooth subscheme of M .

Remark. (a) Leaves are “complementary” to Rapoport-Zink
spaces. (b) They are stable under prime-to-p Hecke corresp.
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Geometrically fiberwise constant p-divisible
groups

The definition of leaves was based on:

Definition. A p-divisible group X over a scheme S/Fp is
geometrically fiberwise constant if any two fibers Xs1 , Xs2 are
isomorphic when based-changed to a common algebraically
closed field K which contains both κ(s1) and κ(s2).

Remark: (i) The above notion results in reasonable properties
when the base scheme S is normal. (Zink, Oort-Zink)

(ii) A disadvantage: cannot use it to study differential
properties of leaves.
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An update (with Frans Oort)

Goals.

1. Find a scheme-theoretic substitute of the notion of
“geometrically fiberwise constant” p-divisible groups.

2. Perform “differential analysis” to study the local structure of
leaves. The big picture that emerged is:

locally every leaf is “built up from p-divisible
groups” via dévissage.

(These are “local Serre-Tate coordinates on leaves”—but only
in equi-characteristic p > 0 in general.)
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Goals, continued

3. The above local structure on leaves vary algebraically over
the base (e.g. a moduli space).

The resulting “global Serre-Tate coordinates” allows one to
prove some weak rigidity statement of the following sort:

(weak rigidity) Let Z ⊂ C be a connected irreducible closed
subscheme of a leaf C . Suppose that Z/z0 is Tate-linear at a
closed point z0 of a leaf C , in the sense that it is built up from
p-divisible subgroups of those involved in the local structure of
C /z0 . Then Z is Tate-linear at every point of Z.
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Strongly κ-sustained p-divisible groups

κ ⊃ Fp: a field of char. p > 0
S/κ: a κ-scheme
X0/κ: a p-divisible group

Definition. A p-divisible group X→ S is strongly κ-sustained
modeled on X0 if ∀n > 0, the Isom-scheme

ISOMS(X0[pn]×Spec(κ) S, X[pn])−→ S

is faithfully flat.1

Motivation: Manin’s thesis (1963)

1A sustained note feels constant, but isn’t really so.
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κ-sustained p-divisible groups

S/κ: as before

Definition. A p-divisible group X→ S is κ-sustained if either
of the following two equivalent conditions hold.

(1) ∃ extension field L/κ and a p-divisible group Y0/L such
that

X×Specκ SpecL−→ S×Specκ SpecL

is strongly L-sustained modeled on Y0/L.

(2) ∀n > 0, the Isom-scheme

ISOMS×Specκ S(pr∗1X[pn], pr∗2X[pn])−→ S×Specκ S

is faithfully flat.
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Existence of slope filtration

(an indication that the definition is reasonable)

Proposition. Let X→ S/κ be a κ-sustained p-divisible group.
There exists a unique slope filtration2

X = X0 ⊃ X1 ⊃ ·· · ⊃ Xm−1 ⊃ Xm = (0)

of X be p-divisible subgroups such that

(1) Xi/Xi+1 is a κ-sustained p-divisible group, isoclinic of
slope λi ∀i = 0,1, . . . ,m−1

(2) 0≤ λ0 < λ1 < · · ·< λm−1 ≤ 1.

2due to Zink and Oort-Zink over reduced base
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Compatibility with the notion “geom. fiberwise
constant”

Proposition. Suppose that S is reduced and locally of finite
type over κ . Let X→ S/κ and X0/κ be p-divisible groups. If
Xs is strongly κ-sustained modeled on X0 ∀s ∈ S, then X→ S is
strongly κ-sustained modeled on X0/κ .

Proposition. Let X→ S/κ and X0/κ be p-divisible groups.
Assume that S/κ is locally noetherian. There exists a locally
closed subscheme T ↪→ S satisfying

(a) X×S T is κ-sustained modeled on X0.

(b) If T1 ↪→ S is a locally closed subschema of S and X×S T1
is κ-sustained modeled on X0, then T1 ⊆ T .
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Hom-schemes for p-divisible groups

Interlude: certain (systems of) HOM-schemes

Given Y,Z: p-divisible groups over a field κ ⊃ Fp.
Define group schemes of finite type over κ

Hn := H om(Y[pn],Z[pn])

We have arrows

ri,n+i : Hn+i→ Hn (restriction homomorphism)

ιn+i,i : Hi ↪→ Hn+i (induced by [pn]Hn+i , = Ker(ri,n+i)

νn;i : Hn+i/ιn+i,i(Hi)� Hn (ri,n+i mod its kernel)

νn;i,i+j : Hn+i+j/ιn+i+j,i+j(Hi+j)� Hn+i/ιn+i,i(Hi)
(induced by rn+i+j,n+i)
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Stabilization

Hn+i+j/ιn+i+j,i+j(Hi)
� � νn;i+j //

_�

νn;i,i+j

��

Hn

=

��
Hn+i/ιn+i,i(Hi)

� � νn;i // Hn

=

��
0 // Hi

ιn+i,i // Hn+i
ri,n+i //

OOOO

Hn

Lemma. There exists a positive integer n0 such that the
monomorphism

νn;1,2 : Hn+2/ιn+2,n+1(Hn+1)� Hn+1/ιn+1,n(Hn)

is an isomorphism ∀n≥ n0.
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The stabilized H OM
′
div for p-divisible group

Definition. We define a family of commutative finite group
schemes Gn over κ and and κ homormorphisms.

Gn := Hn+n0/ιn+n0,n0(Hn0)

νn : Gn � Hn, defined by νn = νn;i0

jn+i,n : Gn ↪→ Gn+i, induced by ιn+i+n0

πn,n+i : Gn+i � Gn, induced by rn+n0,n+n0+i

Proposition. The system (Gn, jn+i,n,πn,n+i) is p-divisible group
over κ , denoted by

H OM
′
div(Y,Z)
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H OM
′
div(Y,Z) and HOM

′(Y,Z)

Definition.
HOM

′(Y,Z) = the inductive system (Hn, ιn+i,n)

The monomorphisms νn : Gn � Hn define a mono
ν : H OM

′
div(Y,Z)� HOM

′(Y,Z).

Proposition. (1) H OM
′
div(Y,Z)= the maximal p-divisible

subgroup of HOM
′(Y,Z).

(2) The formal completion HOM
′(Y,Z)∧ of HOM

′(Y,Z) is a
smooth formal group over κ .

(3) dim(HOM
′(Y,Z)∧) = dim(Z) ·dim(Y t).
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Slopes and dimension of H OM
′
div(Y,Z)

Proposition. Suppose that Y,Z are isoclinic over κ , with slopes
λY and λZ respectively.

If λY > λZ , then H OM
′
div(Y,Z) = (0).

If λY ≤ λZ , then H OM
′
div(Y,Z) is isoclinic of slope

λZ−λY and height ht(Z) ·ht(Y).
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Formal groups defined by Ext

Definition. Given p-divisible groups Y,Z over a field κ ⊃ Fp,
define a group-valued formal functor EXT(Y,Z), which sends
every augmented Artinian local κ-algebra (R,ε : R→ κ) to

EXT(Y,Z) := Ker(ExtR(YR,ZR)→ Extκ(Yκ ,Zκ))

Proposition. EXT(Y,Z) is formally smooth of dimension
dim(Z) ·dim(Y t) over κ .

Definition. EXTdiv(Y,Z) := the maximal p-divisible subgroup
of the smooth formal group EXT(Y,Z).
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Relating HOM
′(Y,Z) to EXT(Y,Z)

Proposition. There is a natural isomorphism

δ : HOM
′(Y,Z)∧ ∼−→ EXT(Y,Z),

which induces an isomorphism

H OM
′
div(Y,Z)

∼−→ EXTdiv(Y,Z).

Remark. (a) δ is a coboundary map coming from
0→ lim←−n

Y[pn]→
(

lim←−n
Y[pn]

)
⊗Z[1/p]→ Y→ 0

(b) There is a canonical/tautological biextension of
(Y,H OM

′
div(Y,Z)) by Z.
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The Dieudonné module of H OM
′
div(Y,Z)

Assume: λY < λZ and κ is perfect.
Let M,N be the Cartier modules of Y and Z.

Let H := HomW(κ)(M,N).
Have semi-linear actions on H⊗W(k)W(κ)[1/p]

FH : h 7→ FN ◦h◦VM, VH : h 7→ p−1VN ◦h◦FM.

Let H1:= the largest W(κ)-submodule of H stable under FH

and VH

Proposition. The Cartier module of the p-divisible group
H OM

′
div(Y,Z) is naturally isomorphic to H1.

Remark. The smallest submodule of H⊗W(κ)W(k)[1/p] which
contains H and stable under both FH and VH is the Cartier
module of the maximal p-divisible quotient of HOM

′(Y,Z)∧.
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The Cartier module of HOM
′(Y,Z)

Definition. Let BCp(κ) = the Cartier module of the infinite
dimensional connected smooth formal group

R 7→ Ker(Cartp(R)→ Cartp(κ))
∀ augmented Artinian commutative κ-algebra R.

Cartp(κ) is a triple Cartp(κ)-module: two from the Cartier ring
structure; the third because it is the Cartier module of a smooth
formal group.

Proposition. The Cartier module of HOM
′(Y,Z)∧ ' EXT(Y,Z)

is
Ext1Cartp(κ)(M,BCp(κ)⊗Cartp(κ) N)

with action by Cartp(κ) via the “third” Cartp(κ)-module
structure on BCp(κ).
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An example of slopes 1/3 and 4/5

Suppose that λY = 1/3, dim(Y) = 1 λZ = 4/5, dim(Z) = 4,
and κ is alg. closed.

A computation with Cartier modules shows that:

HOMbig site(Y,Z) = Spec(R̃),

where

R̃ = κ[t0, t1, t2, . . .]
/(

(tp
0, t

p
1, t

p2

2 , tp2

3 , tp3

4 , tp3

5 , tp5

6 )+(tp5

i+7− ti)i≥0
)

Remark. R̃ looks like being 7-dimensional in some sense ...,
but why 7?
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answer

Spec(R̃) = lim←−
n

H OM
′
div(Y,Z)[p

n]

and 7 is the numerator of 4
5 −

1
3 . (This computation also serves

as a reality check.)
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How to build a sustained p-divisible group?

Sketchy answer:
1. A purported κ-sustained p-divisible group X→ S must
satisfy:

(a) ∃ a slope filtration
X = X0 ⊃ X1 ⊃ ·· · ⊃ Xm−1 ⊃ Xm = (0)

such that each Xi/Xi+1 is κ-sustained and isoclinic, and
slope(Xi/Xi+1)< slope(Xi+1/Xi+2) ∀i.

(b) All extension classes involved are of the form
constant + p-divisible

in the flat topology (suitably interpreted).

2. The above conditions (a), (b) are also sufficient:
a successive extension of κ-sustained isoclinic p-divisible
groups by extension classes satisfying condition (b) is a
κ-sustained p-divisible group.
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The two-slope case explained

Notation
S/κ: a κ-scheme

0→ Z→ X→ Y→ 0: a short exact sequence of
p-divisible groups over κ , such that Y→ S and Z→ S are
κ-sustained, λY < λZ

S1 := S×Specκ S, pr1,pr2 : S1→ S

JSOMY,n = JSOM(pr∗1Y[pn],pr∗2Y[pn]) = stabilized
Isom-scheme over S1; similarly for JSOMZ,n

qn : JSOMY,n×S1 JSOMZ,n→ S1: structural map

Over JSOMY,n×S1 JSOMZ,n , have a tautological
isomorphism τN,n : Ext(q∗Npr∗1Y[pn],q∗Npr∗1Z[pn])

∼−→
Ext(q∗Npr∗2Y[pn],q∗Npr∗2Z[pn])
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The two slope case, continued

Definition. We say that X→ S is κ-firm with two slopes if
∀N ≥ n, ∃ an fppf morphism g : T→JSOMY,n×S1 JSOMZ,n such
that

g∗
(

τN,n([q∗Npr∗1(0→ Z→ X→ Y→ 0)])
− [q∗Npr∗2(0→ Z→ X→ Y→ 0)]

)
= 0

(i.e. the difference between the two extension classes, pulled
back by pr∗1 and pr∗2, is p-divisible fppf-locally on the base.)

Definition. Replacing S1 by S/∆(S)
1 = formal completion along

the diagonal, we get a weaker notion of infinitesimally κ-firm
p-divisible group with two slopes.
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The two slope case, continued

Proposition. Let X be a p-divisible group over S/κ with a
slope filtration 0→ Z→ X→ Y→ 0, where Y,Z are
κ-sustained isoclinic with slope(Y)< slope(Z).

(a) X is κ-sustained with if and only if it is κ-firm.

(b) Suppose S is of finite type over κ . Then X is κ-sustained
with if and only if it is infinitesimally κ-firm.
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local structure of leaves: two-slope case

Proposition. Let Y0,Z0 be isoclinic p-divisible groups over a
perfect base field κ ⊃ Fp. Let X0 = Y0×Z0. Inside the
equi-characteristic deformation space DEF(X0) of X0, the
maximal κ-sustained locus modeled on X0 is naturally
isomorphic to H OM

′
div(Y,Z).

Remark. Can/will also study global differential property of a
leaf C using (C ×C )/∆(C ).
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Application 0: leaves in moduli spaces

Let M be a PEL moduli space over an alg. closed field κ ⊃ Fp,
with good reduction.

Let (A ,∗)→M be the universal abelian scheme, plus extra
(PEL) structure.

Let x0 ∈M (κ) be a closed point of M , and let (A0,∗0) be the
fiber over x0.

Let C (x0) be the leaf passing through x0, i.e. C (x0) is the
maximal locus in M over which (A [p∞],∗[p∞]) is strongly
sustained modeled on (A0[p∞],∗0[p∞])

proposition. C (x0) is reduced and smooth over κ .
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Differential analysis of leaves: two-slope case

Ag = moduli space of principally polarized g-dimensional
abelian varieties over κ .

x0 = [(A0,λ0)] ∈Ag(κ): a closed point

C (x0) = the leaf through x0

Assume: A0 has exactly two slopes λ0 and 1−λ0, λ0 <
1
2

Proposition. (1) pr2 : (C0×C0)
/∆(C0)→ C0 has a natural

structure as a neutral torsor for an isoclinic sustained
p-divisible group G→ C0.

(2) G→ C0 has height g(g+1)/2 and slope 1−2λ0.
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A weak rigidity statement and a question

C0 ⊂Ag: as in the previous slide

Let Z ⊂ C be an irreducible closed subscheme of C0.

proposition. (weak rigidity) Suppose that Z is Tate-linear at a
closed point z0 ∈ C , in the sense that Z/z0 ⊂ C/z0 is a torsor for
a p-divisible subgroup of Gz0 . Then Z is Tate-linear at every
point of Z.

Question. Is Z the reduction of a Shimura subvariety of Ag?

THE END
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Happy 60th, Gerd!
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