How to compute the Lubin-Tate Action

Ching-Li Chai

Department of Mathematics University of Pennsylvania and Institute of Mathematics Academia Sinica

NCTS, Hsinchu, September 12, 2012

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional ormal group laws

Honda's formalis

The universal p-typical formal

Universal isomorphism p-typical formal group laws

The big picture

The Gest tout

Outline

- 1 One dimensional formal group laws
- 2 The Lubin-Tate action
- 3 Honda's formalism
- 4 The universal p-typical formal group law
- 5 Universal isomorphism p-typical formal group laws
- 6 The big picture
- 7 Sketch of the steps
- 8 The first test

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group law

Luon Ionda's formalism

The universal

Universal isomorphism p-typical form

The big picture

One dimensional formal group laws

a one-dimensional formal group law over a comm. ring R

- = a one-dimensional comm. smooth formal group G over R + a rigidification Spf(R[[x]]) ~→ G
- = a formal power series $G(x, y) \in R[[x, y]]$ such that
 - G(x,y) = G(y,x)
 - $G(x,y) \equiv x + y \pmod{\text{degree}} \ge 2$
 - G(x,G(y,z)) = G(G(x,y),z)

A homomorphism from G(x,y) to F(x,y) over R is (represented by) a formal power series $\phi(x) \in R[[x]]$ such that

$$F(\phi(x),\phi(y))=\phi(G(x,y))$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

ction

The universal

p-typical forma group law

Universal isomorphism

group laws

Sketch of the st

The *height* of a one-dimensional formal group

Let $k \supset \mathbb{F}_p$ be a field of char. p > 0. Let G(x, y) be a one-dim. formal group law over k.

$$[p]_G(x) = \begin{cases} 0 & \text{height} = \infty \\ x^{p^h} & (\text{mod } x^{p^h+1}) & \text{height} = h \end{cases}$$

If $k = k^{alg}$, then G(x,y) is determined by its height up to non-unique isomorphisms.

Examples.

- $\mathbb{G}_a(x,y) = x + y$, height = ∞ in char. p > 0
- $\blacksquare \mathbb{G}_m(x,y) = x + y + xy, \text{ height = 1 in char. } p.$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

ction

Honda's formalism
The universal
p-typical formal

Universal isomorphism p-typical formal

The big picture Sketch of the ster

Notation: a Lubin-Tate formal group

Let h be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

- $g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$
- Define $G_{W(\kappa_s)} \in \mathbb{Z}_{(p)}[[x,y]] \subset W(\kappa_s)[[x,y]]$ by

$$G_{W(\kappa_r)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$$

Remark. $G_{W(\kappa_r)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: $\operatorname{End}_{W(\kappa_r)}(G_{W(\kappa_r)}) \simeq W(\mathbb{F}_{p^h})$

- Let G_s be the closed fiber of $G_{W(\kappa_s)}$; it is a one-dimensional formal group (law) over \mathbb{F}_p of height h.
- It is well-known that $\operatorname{End}_{K_s}(G_s)$ is the maximal order of $\operatorname{End}_{K_s}^0(G_s) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 . So $\operatorname{Aut}_{K_s}(G_s) = \operatorname{End}_{K_s}(G_s)^\times$ is a compact h^2 -dimensional p-adic group with center \mathbb{Z}_p^\times .

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

action

Honda's formalism

Universal isomorphism

The big picture

Sketch of the steps

The Lubin-Tate deformation functor

Let Art_{κ_s} be the category whose objects consists of pairs $(R, \varepsilon : \kappa_s \to \kappa)$, where

- R is an Artinian commutative local ring,
- $\kappa = R/\mathfrak{m}_R$
- ε is a ring homomorphism.

The deformation functor

$$\mathscr{D}ef(G_s): \mathbf{Art}_{\kappa_s} \longrightarrow \mathbf{Sets}$$

sends each object $(R, \varepsilon : R \to \kappa)$ of \mathbf{Art}_{κ_s} to the set of all isomorphism classes of pairs

$$\left(\Phi, \psi : \Phi \times_{\operatorname{Spec}(R)} \operatorname{Spec}(\kappa) \stackrel{\sim}{\longrightarrow} \Phi_s \times_{\operatorname{Spec}(\kappa_s), \varepsilon} \operatorname{Spec}(\kappa)\right),$$

where Φ is a one-dimensional formal group over R.

HOW TO COMPUTE
THE LUBIN-TATE
ACTION
Chine-Li Chai

The Lubin-Tate

Honda's formalism

Universal

p-typical formal group laws

The big picture Sketch of the step

The Lubin-Tate moduli space

Equivalently, $\mathscr{D}ef(G_s)(R,\varepsilon)$ is the set of all *-isomorphism classes of one-dimensional formal group laws Φ over R whose closed fiber is ε_*G_s .

Recall: An isomorphism $\phi(x)$ from G_1 to G_2 over R is a *-isomorphism if $\phi(x) \equiv x \pmod{\mathfrak{m}_R}$.

Fact. $\mathscr{D}ef(G_s)$ is representable by a formal scheme \mathscr{M}_h which is formally smooth over $W(\kappa_s)$ of relative dimension h-1. In other words there is a universal one-dimensional deformation Φ_{univ} over \mathscr{M}_h such that every deformation of G_s over (R, ε) is the pull-back of Φ_{univ} via a unique morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimension

The Lubin-Tate

he universal typical formal

Universal isomorphism p-typical forma group laws

Sketch of the steps

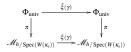
The Lubin-Tate action

The compact p-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by "change of marking", as follows:

$$\gamma: [(\Phi, \psi)] \mapsto [(\Phi, \gamma \circ \psi)] \quad \forall [(\Phi, \psi)] \in \mathscr{D}(G_s)((R, \varepsilon))$$

for any $\gamma \in Aut(G_s)$ and any object (R, ε) in Art_{κ} .

Equivalently, applying the above to the universal deformation Φ_{univ} : $\forall \gamma \in \text{Aut}(G_s)$, we have a commutative diagram



where $\xi(\gamma)$ is an automorphism of \mathcal{M}_h and $\tilde{\xi}(\gamma)$ is a formal group isomorphism with $\tilde{\xi}(\gamma)|_{G_s} = \gamma$.

HOW TO COMPUTE
THE LUBIN-TATE
ACTION
Chine-Li Chai

ne dimensiona ormal group lav

The Lubin-Tate

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture Sketch of the steps

The Lubin-Tate action, continued

Remark. 1. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

2. If one passes to the divided power envelope

$$W(\kappa_s)[[w_1, ..., w_{h-1}]][w_i^n/n!]_{n \in \mathbb{N}, i < h-1}$$

of the coordinate ring $W(\kappa_s)[[w_1, \dots, w_{h-1}]]$, one can "linearize" the action by crystalline theory. However this is not very useful for studying the action of $\operatorname{Aut}(G_s)$ on the characteristic p fiber of \mathcal{M}_h . HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

formal group las

onda's formali

Universal

p-typical forma group laws

Sketch of the st

Set-up with a Frobenius lifting

Fix a prime number p. Our base ring A is cast in a quadruple $(A, K, \mathfrak{a}, \sigma)$, where

- K is a commutative ring with 1,
- A is a subring of K containing 1,
- $\mathfrak{a} \subset A$ is an ideal of A, and
- $\sigma: K \to K$ is a ring endomorphism,

such that conditions (a)-(c) below are satisfied.

- (a) $p \in \mathfrak{a}$,
- (b) $\sigma(A) \subset A$,
- (c) $\sigma(a) \equiv a^q \pmod{\mathfrak{a}}$ for all $a \in A$,
- $(\mathbf{d}) \ \ \sigma\left((A:\mathfrak{a})\right) \subset (A:\mathfrak{a}), \text{ where } (A:\mathfrak{a}) := \{y \in K \, | \, y \cdot \mathfrak{a} \subset A\}.$

HOW TO COMPUTE
THE LUBIN-TATE
ACTION

Ching-Li Chai

one dimensional formal group laws The Lubin-Tate

Honda's formalism

The universal p-typical form

isomorphism
p-typical forma

The big picture

A twisted power series ring

Let $K[[\partial]]_{\sigma}$ be the ring of formal power series in ∂ with coefficients in K such that $\partial b = \sigma(b)\partial$ for all $b \in K$, i.e.

$$\left(\sum_{j\in\mathbb{N}}b_j\cdot\partial^j\right)\cdot\left(\sum_{i\in\mathbb{N}}c_i\cdot\partial^i\right)=\sum_{k\in\mathbb{N}}\left(\sum_{j+i=k}b_j\cdot\sigma^j(c_i)\right)\cdot\partial^k\,.$$

Define a left action of the ring $K[[\partial]]_{\sigma}$ on power series rings $K[[\underline{t}]]^n$ by

$$\left(\left(\sum_{j\in\mathbb{N}}b_j\cdot\partial^j\right)*g\right)(\underline{t})=\sum_{j\in\mathbb{N}}b_j\cdot(\sigma_*^jg)(t_1^q,\cdots,t_m^q)$$

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

One dimensional ormal group laws

Honda's formalism

group law

niversal omorphism typical formal

The big picture

The first test

Functional equations

■ An element $u \in K[[\partial]]_{\sigma}$ is a *special element* if u has the form

$$u = 1 - \sum_{j \ge 1} s_j \cdot \partial^j, \quad s_j \in K \ \forall j \ge 1$$

such that $\mathfrak{a} \cdot s_i \subset A \ \forall j \geq 1$.

- An element $h(x) \in K[[\underline{t}]]$ is *u-integral* if $u * h \in A[[\underline{t}]]$.
- An element $f(x) \in K[[x]]_0$ (i.e. f(0) = 0) is said to be regular u-integral if $u * f \in A[[x]]$ and $f'(0) \in A^{\times}$. In other words f(x) satisfies a "functional equation" of the form

$$f(x) = g(x) + \sum_{j \ge 1} s_j \cdot (\sigma_*^j f)(x^{q^j})$$

with $g(x) \in A[[x]], g(0) = 0$, and $g'(0) \in A^{\times}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws The Lubin-Tate

Honda's formalism

group law

p-typical formal group laws

The big picture

Sketch of the step

Functional equation lemma

Proposition. Let $u \in K[[\partial]]_{\sigma}$ be a special element. Let $f(\underline{x})$ be a *regular u*-integral element in $K[[x]]_0$

- (1) The element $F(\underline{x},\underline{y}):=f^{-1}(f(x)+f(y))\in K[[x,y]]$ belongs to A[[x,y]]. Hence F(x,y) is a formal group law over A.
- (2) For any *u*-integral element $h(\underline{t}) \in K[[\underline{t}]]_0 = K[[t_1, \dots, t_m]]_0$, the element $f^{-1}(h(\underline{t})) \in K[[\underline{t}]]_0$ belongs to $A[[\underline{t}]]_0$.
- (3) Suppose that $\alpha(\underline{z}) \in A[[\underline{z}]]_0 = A[[z_1, \dots, z_k]]_0$, $\beta(\underline{z}) \in K[[\underline{z}]]_0 = K[[z_1, \dots, z_k]]_0$. Then for all $r \ge 1$

$$\alpha(\underline{z}) \equiv \beta(\underline{z}) \pmod{\mathfrak{a}^r}$$
 iff $f(\alpha(\underline{z})) \equiv f(\beta(\underline{z})) \pmod{\mathfrak{a}^r}$.

- (4) $\forall \psi \in A[[\underline{t}]]_0$, the element $f(\psi(\underline{t})) \in K[[\underline{t}]]_0$ is *u*-integral.
- (5) $\forall v \in A[[\partial]]_{\sigma}$ and $\forall \psi \in A[[\underline{t}]]_{0}$ we have

$$v*(f\circ\psi)\equiv (v*f)\circ\psi\pmod{\mathfrak{a}\cdot A[[\underline{t}]]}$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group law

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical forma

The big picture

The first test

Essential uniqueness of functional equation

Proposition. Let u be a special element of $K[[\partial]]_{\sigma}$ and let $f(x) \in K[[x]]$ be regular u-integral. Suppose that

$$v = \sum_{j \in \mathbb{N}} \tilde{s}_j \cdot \partial^j \in K[[\partial]]_{\sigma}, \quad \tilde{s}_j \in (A : \mathfrak{a}) \ \forall j$$

and f is v-integral. Then $\exists! c \in A[[\partial]]_{\sigma}$ such that $v = c \cdot u$ in $K[[\partial]]_{\sigma}$. In particular if v is also a special element, then $v \in A[[\partial]]_{\sigma}^{\times} \cdot u$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws The Lubin-Tate ction

Honda's formalism

p-typical formal group law Universal isomorphism p-typical formal

The big picture Sketch of the steps

How to construct homomorhisms over A/\mathfrak{a}

Let u, v be special elements in $K[[\partial]]_{\sigma}$. Let $f, g \in K[[x]]_{0}$ be regular u-integral and v-integral respectively. Let F and G be the formal group laws over A with logarithms f and g.

Proposition. For any $c \in A[[\partial]]_{\sigma}$, let $\phi_{e,c,f}(x) := g^{-1}(c * f)$.

- (1) $\phi_{g,c,f}(x) \in A[[x]]_{\sigma}$ iff $\exists d \in A[[\partial]]_{\sigma}$ such that $v \cdot c = d \cdot u$.
- (2) If $v \cdot c = d \cdot u$ and $d \in A[[\partial]]_{\sigma}$, then the image of $\phi_{f,g,c}$ in $(A/\alpha)[[x]]$ defines an (A/α) -homomorphism

$$[\phi_{g,c,f}]:(F \mod \mathfrak{a}) o (G \mod \mathfrak{a}).$$

(3) Suppose that w-is a special element in K[[∂]]_σ, h ∈ K[[x]]₀ is w-regular and H is the formal group law over A with logarithm h. Suppose c, d ∈ A[[∂]]_σ and w · c' = d' · v. Then

$$[\phi_{h,c',g}] \circ [\phi_{g,c,f}] = [\phi_{h,c'c,f}].$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group law

Honda's formalism

group law Universal

isomorphism

p-typical forma

group laws

The big picture

Sketch of the steps

The universal *p*-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \bar{R}[[x,y]]$ be the one-dimensional p-typical formal group law over \bar{R} whose logarithm

$$g_{\underline{v}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{v}) \cdot x^{p^n}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{\nu_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional rmal group laws ne Lubin-Tate

The universal p-typical formal

isomorphism

p-typical formal
group laws

The big picture

Remarks on the formal group law G_{ν}

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_v(x)$.

(2) Explicitly:

$$\begin{split} a_n(\underline{\mathbf{y}}) &= \sum_{\substack{i_1,i_2,\dots,i_r \geq 1\\ i_1+\dots+i_r=n\\ i_1+\dots+i_r=n}} p^{-r} \cdot \prod_{s=1}^r \mathbf{y}_{i_s}^{j_1+i_2+\dots+i_{s-1}} \\ &= \sum_{\substack{i_1,i_2,\dots,i_r \geq 1\\ i_1+\dots+i_r=n}} p^{-r} \cdot \mathbf{v}_{i_1} \cdot \mathbf{v}_{i_2}^{j_1} \cdot \mathbf{v}_{i_3}^{j_1+i_2} \cdots \mathbf{v}_{i_r}^{j_1+\dots+i_{r-1}} \end{split}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \dots, v_n of weight p^n-1 when v_j is given the weight $p^j-1 \ \forall j \geq 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional p-typical formal group law.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

One dimensional formal group laws

Honda's formal

The universal p-typical forma group law

isomorphism
p-typical formal
group laws

Sketch of the step

The universal formal group over \mathcal{M}_h made explicit

Let $R = R_h = W(\overline{\mathbb{F}}_n)[[w_1, w_2, \dots, w_{h-1}]].$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if} \quad 1 \le i \le h-1 \\ 1 & \text{if} \quad i = h \\ 0 & \text{if} \quad i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\underline{v}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ormal group laws

Honda's formali

The universal p-typical formal group law

> isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism

Let $\mathbb{Z}_{(p)}[\underline{\nu},\underline{t}] = \mathbb{Z}_{(p)}[\nu_1,\nu_2,\nu_3,\ldots;t_1,t_2,t_3,\ldots]$, and let $\sigma: \mathbb{Z}_{(p)}[\underline{\nu},\underline{t}] \to \mathbb{Z}_{(p)}[\underline{\nu},\underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(\nu_i) = \nu_i^p$ and $\sigma(t_i) = t_i^p \ \forall i \geq 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\underline{v},\underline{t}}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{v_j}{p} \cdot g_{\underline{v},\underline{t}}^{(\sigma^j)}(x^{p^i})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

ne dimensional rmal group laws ne Lubin-Tate

Honda's formalis

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}}:=g_{\underline{v},\underline{t}}^{-1}\circ g_{\underline{v}}\in\mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a strict isomorphism

$$\alpha_{v,t}:G_v o G_{v,t}$$

between p-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in x.)

Moreover $\alpha_{y,t}$ is "the" universal strict isomorphism between one-dimensional p-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional ormal group laws he Lubin-Tate

he universal

Universal isomorphism p-typical formal group laws

Sketch of the steps
The first test

Parameters of $G_{v,t}$

By the universality $G_{\underline{\nu}}$ for p-typical formal group laws, there exists a unique ring homomorphism

$$\eta: \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

$$\eta_*G_v = G_{v,t}$$
.

The elements

$$\overline{v}_n = \overline{v}_n(v,t) \in \mathbb{Z}_{(n)}[v,t], \quad n \in \mathbb{N}_{\geq 1}$$

are the parameters of the p-typical formal group law $G_{\underline{v},\underline{t}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

Honda's formalism

p-typical formal group law Universal

isomorphism

p-typical formal

group laws

Sketch of the steps

A known recursive formula for the parameters of $G_{v,t}$

$$\begin{split} \overline{\mathbf{v}}_{n} &= \mathbf{v}_{n} + p \, t_{n} + \sum_{\stackrel{i,j=1}{i \neq j}} (\mathbf{v}_{j} \, \stackrel{p^{j}}{i} - t_{i} \, \overline{\mathbf{v}}_{j}^{p^{j}}) \\ &+ \sum_{j=1}^{n-1} a_{n-j}(\underline{\mathbf{v}}) \cdot \left(\mathbf{v}_{j}^{p^{n-j}} - \overline{\mathbf{v}}_{j}^{p^{n-j}}\right) \\ &+ \sum_{k=2}^{n-1} a_{n-k}(\underline{\mathbf{v}}) \cdot \sum_{\stackrel{i+j=k}{i \neq j}} \left(\mathbf{v}_{j}^{p^{n-k}} t_{i}^{p^{n-i}} - t_{i}^{p^{n-k}} \overline{\mathbf{v}}_{j}^{p^{n-j}}\right) \end{split}$$

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.)

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional rmal group laws

fonda's formalism

The universal p-typical formal

Universal isomorphism p-typical formal group laws

Sketch of the steps The first test

An *integral* recursion formula for $\bar{v}_n(\underline{v},\underline{t})$

(useful for computing the Lubin-Tate action)

$$\begin{split} \bar{\mathbf{v}}_{n} &= \mathbf{v}_{n} + p \, t_{n} - \sum_{j=1}^{n-1} t_{j} \cdot \bar{\mathbf{v}}_{n-j}^{p^{j}} + \\ &+ \sum_{l=1}^{n-1} \mathbf{v}_{l} \sum_{k=1}^{n-l-1} \frac{1}{p} \cdot a_{n-k-l}(\underline{\mathbf{v}})^{(p^{j})} \cdot \left\{ (\bar{\mathbf{v}}_{k}^{(p^{j})})^{p^{n-l-k}} - (\bar{\mathbf{v}}_{k}^{p^{j}})^{p^{n-l-k}} + \sum_{\substack{i=j-k \\ i \neq j = l}} t_{j}^{p^{n-k}} \left[(\bar{\mathbf{v}}_{i}^{(p^{j})})^{p^{n-l-i}} - (\bar{\mathbf{v}}_{i}^{p^{j}})^{p^{n-l-i}} \right] \right\} \end{split}$$

$$+ \sum_{l=1}^{n-1} v_l \cdot \left\{ \frac{1}{p} (\bar{\mathbf{v}}_{n-l}^{(p^l)} - \bar{\mathbf{v}}_{n-l}^{p^l}) + \sum_{\stackrel{l+j=n-l}{i\neq j=1}} t_j^{p^l} \cdot \frac{1}{p} \cdot \left[(\bar{\mathbf{v}}_i^{(p^l)})^{p^j} - (\bar{\mathbf{v}}_i^{p^l})^{p^j} \right] \right\}$$

for every $n \ge 1$.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

One dimensional ormal group laws

Honda's formalism The universal

Universal isomorphism p-typical formal group laws

Sketch of the steps The first test

The groupoid underlying the universal strict isomorphism

Let $X_0 := \operatorname{Spec}(\tilde{R}), X_1 := \operatorname{Spec}(\tilde{\Gamma})$. Consider the diagram

$$X_0 \leftarrow \frac{\text{source}}{} X_1 \xrightarrow{\text{target}} X_0$$

where the *source* arrow corresponds to $\bar{R}\hookrightarrow\bar{\Gamma}$ and the *target* arrow corresponds to the ring homomorphism $\eta:\bar{R}\to\bar{\Gamma}$. The above diagram is part of a natural groupoid structure such that the (partial) product

$$\mu: X_1 \times_{s,X_0,t} X_1 \rightarrow X_1$$

corresponds to composition of strict isomorphisms between p-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional rmal group laws

Honda's formalism

The universal p-typical formal group law

Universal isomorphism

The big picture

Three ways to think about the moduli space \mathcal{M}_h

1. All p-typical deformations of G_s whose parameters satisfy $v_h = 1, v_{h+1} = v_{h+2} = \cdots = 0.$

 All p-typical deformations of G_s whose parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$, up to/modulo scaling by units

 All p-typical deformations of G_s, modulo the equivalence relations generated by

- strict *-isomorphisms, and
- scaling by units.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

The big picture

Rough idea

Start with an element $\gamma \in Aut(G_s)$.

- Use Honda's formalism to construct an isomorphism $\psi_{\gamma}: F_{\gamma} \to \phi_* G_{\gamma}$ in equi-characteristic p whose closed fiber is equal to y.
- Compute the parameters v₁, v₂, v₃,... of F_γ. (By recursive relations).
- Change F_γ by a strict isomorphism with suitable parameters t_1, t_2, t_3, \dots , to a new p-typical formal group law whose (new) parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$. (Implicit function theorem applied to ∞-dimensional spaces)

Rescale to make v_h = 1.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

The big picture

Step 1

Given an element $\gamma \in Aut(G_0)$, construct

- **a** p-typical one-dimensional formal group law $F = F_{\gamma}$ over R whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}: G_0 \to G_0) = \gamma.$$

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}$$
, $G_{\overline{R}} = G_R \otimes_R \overline{R}$.

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in Aut(G_0)$.

THE LUBIN-TATE

Chine-Li Chai

Sketch of the steps

The formal group law F_c , $c \in W(\mathbb{F}_{n^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{n^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^{h} \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

 $(w_h=1 \text{ by convention}).$

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over \overline{R} !) with $\psi_c|_{G_0} = [c]$.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

Step 2

Compute the parameters

$$(u_i = u_i(w_1, \dots, w_{h-1}))_{i \in \mathbb{N}_{>1}}$$

for the p-typical group law $F = F_{\gamma}$ over R.

The above condition means that

$$\xi_*G_{\tilde{v}} = F$$
.

where

$$\xi = \xi_{\gamma} : \tilde{R} \to R$$

is the ring homomorphism such that

$$\xi(v_i) = u_i \quad \forall i \geq 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

Sketch of the steps

Parameters for F_c , $c \in W(\mathbb{F}_{n^h})^{\times}$

In the case when $\gamma \in Aut(G_0)$ lifts to an element [c] with $c \in W(\mathbb{F}_{p^h})^{\times} \simeq \operatorname{Aut}(G_1)$, we have the following integral recursive formula for the parameters $u_n = u_n(c; w)$.

$$\begin{split} u_n(c;\underline{w}) &= c^{-1+\sigma^n}w_n \\ &+ \sum_{j=1}^{n-1} c^{-1+\sigma^j} \cdot \frac{1}{p} \left[u_{n-j}(c;\underline{w})^{(p^j)} - u_{n-j}(c;\underline{w})^{p^j} \right] \cdot w_j \\ &+ \sum_{j=1}^{n-1} \sum_{i=1}^{n-j-1} \frac{1}{p} a_{n-i-j}(\underline{w})^{(p^j)} \cdot c^{-1+\sigma^{n-i}} \cdot \\ & \left[\left(u_i(c;\underline{w})^{(p^j)} \right)^{p^{n-i-j}} - \left(u_i(c;\underline{w})^{p^j} \right)^{p^{n-i-j}} \right] \cdot w_j \end{split}$$

where $w_h = 1$, $w_m = 0 \ \forall m \ge h + 1$ by convention.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

Parameters for F_c , continued

Remark. The above recursive formula for the parameters $u_n(c;\underline{w})$ can be turned into an explicit "path sum" formula for $u_n(c,\underline{w})$, with terms indexed by "paths".

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group law

Honda's formalist

p-typical form group law

Universal isomorphism

The big picture

Sketch of the steps

Step 3

Find/compute the uniquely determined element

$$\tau_n \in \mathfrak{m}_R, \quad n \in \mathbb{N}_{\geq 1}$$

and

$$\hat{u}_1 \in \mathfrak{m}_R, \dots, \hat{u}_{h-1} \in \mathfrak{m}_R, \hat{u}_h \in 1 + \mathfrak{m}_R$$

such that

$$\overline{\nu}_n(\hat{u}_1,\hat{u}_2,\ldots,\hat{u}_h,0,0,\ldots;\underline{\tau}) = u_n \quad \forall n \geq 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws The Lubin-Tate

londa's formalism

group law Universal

p-typical formal group laws

Sketch of the steps

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

One dimensional formal group law The Lubin-Tate

Honda's formalism

Universal isomorphism

group laws

Sketch of the steps

The first test

Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

- (2) This step is a substitute for the operation taking the quotient of the group "changes of coordinates" in a space of formal group laws.
- (3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

A congruence formula for \bar{v}_n

The follow formula helps to explain the last remark.

$$\begin{split} \overline{\mathbf{v}}_n &\equiv \mathbf{v}_n - \sum_{j=1}^n t_j \cdot \mathbf{v}_{n-j}^{j'} \\ &+ \sum_{\stackrel{i,j,i,j,2,\cdots,j\geq 1}{z_1+\cdots+y_i+i+j=n}} (-1)^{t-1} t_i \cdot \mathbf{v}_j^{j'} \cdot \mathbf{v}_1^{(p^{j_1}+p^{j_2}+\cdots+p^{j_i}-t)/(p-1)} \\ &\cdot \mathbf{v}_{n-s_1}^{p^{i_1}-1} \cdot \mathbf{v}_{n-s_1-s_2}^{p^{i_2}-1} \cdot \mathbf{v}_{n-s_1-s_2-s_i}^{p^{i_1}-1} \\ &\quad \mod (pt_a, t_a \cdot t_b)_{a,b \geq 1} \mathbb{Z}[\underline{v}, \underline{t}] \end{split}$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws The Lubin-Tate

Honda's formalism

Universal isomorphism p-typical formal

The big picture

Step 4

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows:

 $\exists ! \ \tau_0 \in \mathfrak{m}_R \ \text{such that}$

$$(1 + \tau_0)^{p^h - 1} \cdot \hat{u}_h = 1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \rightarrow R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \geq 1.$$

Let $\rho: R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v_i} \quad \forall i \geq 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

Sketch of the steps

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{v,t}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\hat{u},\tau} : F \to \omega_* G_v$$

with
$$\alpha|_{G_0} = \mathrm{Id}_{G_0}$$
.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta: \omega_*G_{\underline{v}} \rightarrow \rho_*G_R$$

with
$$\beta|_{G_0} = \mathrm{Id}_{G_0}$$
.

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai

Conclusion

Combined with $\overline{\psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_{+} G_{\overline{\rho}} \to G_{\overline{\rho}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in Aut(G_0)$.

(Here $\overline{\alpha} = \alpha \otimes_R \overline{R}$ and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in Aut(G_0)$ operates on the equi-characteristic deformation space $Spf(\overline{R})$ of G_0 via the ring automorphism ρ .

(Notice that $\overline{\psi}$, α and β all depend on γ .)

HOW TO COMPUTE THE LUBIN-TATE ACTION

Chine-Li Chai

Sketch of the steps

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathcal{M}_{3\overline{\mathbb{F}}_n} = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]])$ be an irreducible closed formal subscheme of \mathcal{M}_3 over $\overline{\mathbb{F}_p}$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}}_p[[w_1, w_2]]$. If Z is stable under the action of an open subgroup of $W(\mathbb{F}_{p^3})^{\times}$, then $Z = \operatorname{Spf}(\overline{\mathbb{F}}_{p}[[w_1, w_2]]/(w_1)).$

HOW TO COMPUTE THE LUBIN-TATE

Ching-Li Chai