How to compute the Lubin-Tate Action

Ching-Li Chai

Department of Mathematics University of Pennsylvania and Institute of Mathematics Academia Sinica

NCTS, Hsinchu, September 12, 2012

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Outline

- 1 One dimensional formal group laws
- 2 The Lubin-Tate action
- 3 Honda's formalism
- 4 The universal p-typical formal group law
- 5 Universal isomorphism *p*-typical formal group laws
- 6 The big picture
- 7 Sketch of the steps
- 8 The first test

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

a one-dimensional formal group law over a comm. ring R

- = a one-dimensional comm. smooth formal group G over R + a rigidification $\operatorname{Spf}(R[[x]]) \xrightarrow{\sim} G$
- = a formal power series $G(x, y) \in R[[x, y]]$ such that

$$G(x,y) = G(y,x)$$

•
$$G(x,y) \equiv x+y \pmod{\text{degree}} \ge 2$$

$$G(x, G(y, z)) = G(G(x, y), z)$$

A homomorphism from G(x, y) to F(x, y) over R is (represented by) a formal power series $\phi(x) \in R[[x]]$ such that

 $F(\phi(x),\phi(y)) = \phi(G(x,y))$

How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶▲□▶▲□▶▲□▶ □ ● ●

a one-dimensional formal group law over a comm. ring R= a one-dimensional comm. smooth formal group G over R + a rigidification $\operatorname{Spf}(R[[x]]) \xrightarrow{\sim} G$

= a formal power series $G(x,y) \in R[[x,y]]$ such that

$$G(x,y) = G(y,x)$$

$$G(x,y) \equiv x + y \pmod{\text{degree}} \ge 2$$

$$G(x, G(y, z)) = G(G(x, y), z)$$

A homomorphism from G(x, y) to F(x, y) over R is (represented by) a formal power series $\phi(x) \in R[[x]]$ such that

 $F(\phi(x),\phi(y)) = \phi(G(x,y))$

How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

a one-dimensional formal group law over a comm. ring R= a one-dimensional comm. smooth formal group G over R + a rigidification $\operatorname{Spf}(R[[x]]) \xrightarrow{\sim} G$

= a formal power series $G(x, y) \in R[[x, y]]$ such that

$$G(x,y) = G(y,x)$$

$$G(x,y) \equiv x + y \pmod{\text{degree}} \geq G(x,G(y,z)) = G(G(x,y),z)$$

A homomorphism from G(x, y) to F(x, y) over R is (represented by) a formal power series $\phi(x) \in R[[x]]$ such that

2)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $F(\phi(x),\phi(y)) = \phi(G(x,y))$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

a one-dimensional formal group law over a comm. ring R= a one-dimensional comm. smooth formal group G over R + a rigidification $\operatorname{Spf}(R[[x]]) \xrightarrow{\sim} G$

= a formal power series $G(x, y) \in R[[x, y]]$ such that

$$G(x,y) = G(y,x)$$

•
$$G(x,y) \equiv x + y \pmod{\text{degree}} \ge 2$$

$$G(x, G(y, z)) = G(G(x, y), z)$$

A homomorphism from G(x, y) to F(x, y) over R is (represented by) a formal power series $\phi(x) \in R[[x]]$ such that

 $F(\phi(x),\phi(y)) = \phi(G(x,y))$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

The *height* of a one-dimensional formal group

Let $k \supset \mathbb{F}_p$ be a field of char. p > 0. Let G(x, y) be a one-dim. formal group law over k.

$$[p]_G(x) = \begin{cases} 0 & \text{height} = \infty \\ x^{p^h} \pmod{x^{p^h+1}} & \text{height} = h \end{cases}$$

If $k = k^{\text{alg}}$, then G(x, y) is determined by its height up to non-unique isomorphisms.

Examples.

■
$$\mathbb{G}_a(x,y) = x + y$$
, height = ∞ in char. $p > 0$

•
$$\mathbb{G}_m(x,y) = x + y + xy$$
, height = 1 in char. p.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

The *height* of a one-dimensional formal group

Let $k \supset \mathbb{F}_p$ be a field of char. p > 0. Let G(x, y) be a one-dim. formal group law over k.

$$[p]_G(x) = \begin{cases} 0 & \text{height} = \infty \\ x^{p^h} \pmod{x^{p^h+1}} & \text{height} = h \end{cases}$$

If $k = k^{alg}$, then G(x, y) is determined by its height up to non-unique isomorphisms.

Examples.

•
$$\mathbb{G}_a(x,y) = x + y$$
, height = ∞ in char. $p > 0$

• $\mathbb{G}_m(x,y) = x + y + xy$, height = 1 in char. *p*.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The *height* of a one-dimensional formal group

Let $k \supset \mathbb{F}_p$ be a field of char. p > 0. Let G(x, y) be a one-dim. formal group law over k.

$$[p]_G(x) = \begin{cases} 0 & \text{height} = \infty \\ x^{p^h} \pmod{x^{p^h+1}} & \text{height} = h \end{cases}$$

If $k = k^{alg}$, then G(x, y) is determined by its height up to non-unique isomorphisms.

Examples.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Let *h* be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

$$g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^{h}}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$
Define $G_{W(x_i)} \in \mathbb{Z}_{\ell(x_i)}[[x, y]] \subset W(\mathcal{K}_r)[[x, y]]$ by

 $G_{W(\kappa_s)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$

Remark. $G_{W(\kappa_s)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: End_{$W(\kappa_s)$} $(G_{W(\kappa_s)}) \simeq W(\mathbb{F}_{p^h})$

- Let G_s be the closed fiber of G_{W(Ks}); it is a one-dimensional formal group (law) over F_p of height h
- It is well-known that $\operatorname{End}_{\kappa_s}(G_s)$ is the maximal order of $\operatorname{End}_{\kappa_s}^0(G_s) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 . So $\operatorname{Aut}_{\kappa_s}(G_s) = \operatorname{End}_{\kappa_s}(G_s)^{\times}$ is a compact h^2 -dimensional *p*-adic group with center \mathbb{Z}_p^{\times} .

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Let *h* be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

•
$$g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

• Define $G_{W(\kappa_s)} \in \mathbb{Z}_{(p)}[[x,y]] \subset W(\kappa_s)[[x,y]]$ by

$$G_{W(\kappa_s)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$$

Remark. $G_{W(\kappa_s)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: End_{$W(\kappa_s)$} $(G_{W(\kappa_s)}) \simeq W(\mathbb{F}_{p^h})$

- Let G_s be the closed fiber of G_{W(K_s)}; it is a one-dimensional formal group (law) over F_p of height h.
- It is well-known that $\operatorname{End}_{\kappa_s}(G_s)$ is the maximal order of $\operatorname{End}_{\kappa_s}^0(G_s) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 . So $\operatorname{Aut}_{\kappa_s}(G_s) = \operatorname{End}_{\kappa_s}(G_s)^{\times}$ is a compact h^2 -dimensional *p*-adic group with center \mathbb{Z}_p^{\times} .

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Let *h* be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

•
$$g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

• Define $G_{W(\kappa_s)} \in \mathbb{Z}_{(p)}[[x,y]] \subset W(\kappa_s)[[x,y]]$ by

$$G_{W(\kappa_s)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$$

Remark. $G_{W(\kappa_s)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: End_{$W(\kappa_s)$}($G_{W(\kappa_s)}$) $\simeq W(\mathbb{F}_{p^h})$

■ Let G_s be the closed fiber of G_{W(K_s)}; it is a one-dimensional formal group (law) over F_p of height h

■ It is well-known that $\operatorname{End}_{\kappa_s}(G_s)$ is the maximal order of $\operatorname{End}_{\kappa_s}^0(G_s) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 . So $\operatorname{Aut}_{\kappa_s}(G_s) = \operatorname{End}_{\kappa_s}(G_s)^{\times}$ is a compact h^2 -dimensional *p*-adic group with center \mathbb{Z}_p^{\times} .

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal somorphism 2-typical formal group laws

The big picture

Sketch of the steps

Let *h* be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

•
$$g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^{jh}}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

• Define $G_{W(\kappa_s)} \in \mathbb{Z}_{(p)}[[x,y]] \subset W(\kappa_s)[[x,y]]$ by

$$G_{W(\kappa_s)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$$

Remark. $G_{W(\kappa_s)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: End_{$W(\kappa_s)$}($G_{W(\kappa_s)}$) $\simeq W(\mathbb{F}_{p^h})$

Let G_s be the closed fiber of G_{W(κ_s)}; it is a one-dimensional formal group (law) over F_p of height h.

■ It is well-known that $\operatorname{End}_{\kappa_s}(G_s)$ is the maximal order of $\operatorname{End}_{\kappa_s}^0(G_s) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 . So $\operatorname{Aut}_{\kappa_s}(G_s) = \operatorname{End}_{\kappa_s}(G_s)^{\times}$ is a compact h^2 -dimensional *p*-adic group with center \mathbb{Z}_p^{\times} .

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Let *h* be a positive integer, fixed from now on. Let $\kappa_s = \mathbb{F}_{p^h}$.

•
$$g_h(x) := \sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^{2h}}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

• Define $G_{W(\kappa_s)} \in \mathbb{Z}_{(p)}[[x,y]] \subset W(\kappa_s)[[x,y]]$ by

$$G_{W(\kappa_s)}(x,y) := g_h^{-1}(g_h(x) + g_h(y))$$

Remark. $G_{W(\kappa_s)}$ is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$: End_{$W(\kappa_s)$}($G_{W(\kappa_s)}$) $\simeq W(\mathbb{F}_{p^h})$

- Let G_s be the closed fiber of G_{W(K_s)}; it is a one-dimensional formal group (law) over F_p of height h.
- It is well-known that End_{Ks}(G_s) is the maximal order of End⁰_{Ks}(G_s) = a central division algebra over Q_p of dimension h². So Aut_{Ks}(G_s) = End_{Ks}(G_s)[×] is a compact h²-dimensional p-adic group with center Z_p[×].

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate deformation functor

Let $\operatorname{Art}_{\kappa_s}$ be the category whose objects consists of pairs $(R, \varepsilon : \kappa_s \to \kappa)$, where

- **\square** *R* is an Artinian commutative local ring,
- $\kappa = R/\mathfrak{m}_R$,
- ε is a ring homomorphism.

The deformation functor

 $\mathscr{D}ef(G_s): \operatorname{Art}_{\kappa_s} \longrightarrow \operatorname{Sets}$

sends each object $(R, \varepsilon : R \to \kappa)$ of $\operatorname{Art}_{\kappa_s}$ to the set of all isomorphism classes of pairs

$$\left(\Phi, \psi: \Phi \times_{\operatorname{Spec}(R)} \operatorname{Spec}(\kappa) \xrightarrow{\sim} \Phi_s \times_{\operatorname{Spec}(\kappa_s),\varepsilon} \operatorname{Spec}(\kappa)\right),$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where Φ is a one-dimensional formal group over *R*.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate deformation functor

Let $\operatorname{Art}_{\kappa_s}$ be the category whose objects consists of pairs $(R, \varepsilon : \kappa_s \to \kappa)$, where

\blacksquare *R* is an Artinian commutative local ring,

• $\kappa = R/\mathfrak{m}_R$,

• ε is a ring homomorphism.

The deformation functor

$$\mathscr{D}ef(G_s)$$
: $\operatorname{Art}_{\kappa_s} \longrightarrow \operatorname{Sets}$

sends each object $(R, \varepsilon : R \to \kappa)$ of $\operatorname{Art}_{\kappa_s}$ to the set of all isomorphism classes of pairs

$$\left(\Phi, \psi: \Phi \times_{\operatorname{Spec}(R)} \operatorname{Spec}(\kappa) \xrightarrow{\sim} \Phi_s \times_{\operatorname{Spec}(\kappa_s), \varepsilon} \operatorname{Spec}(\kappa)\right),$$

where Φ is a one-dimensional formal group over *R*.

How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate moduli space

Equivalently, $\mathscr{D}ef(G_s)(R,\varepsilon)$ is the set of all *-isomorphism classes of one-dimensional formal group laws Φ over R whose closed fiber is ε_*G_s .

Recall: An isomorphism $\phi(x)$ from G_1 to G_2 over R is a *-isomorphism if $\phi(x) \equiv x \pmod{\mathfrak{m}_R}$.

Fact. $\mathscr{D}ef(G_s)$ is representable by a formal scheme \mathscr{M}_h which is formally smooth over $W(\kappa_s)$ of relative dimension h-1. In other words there is a universal one-dimensional deformation Φ_{univ} over \mathscr{M}_h such that every deformation of G_s over (R, ε) is the pull-back of Φ_{univ} via a unique morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$. How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate moduli space

Equivalently, $\mathscr{D}ef(G_s)(R, \varepsilon)$ is the set of all *-isomorphism classes of one-dimensional formal group laws Φ over R whose closed fiber is ε_*G_s .

Recall: An isomorphism $\phi(x)$ from G_1 to G_2 over R is a *-isomorphism if $\phi(x) \equiv x \pmod{\mathfrak{m}_R}$.

Fact. $\mathscr{D}ef(G_s)$ is representable by a formal scheme \mathscr{M}_h which is formally smooth over $W(\kappa_s)$ of relative dimension h-1. In other words there is a universal one-dimensional deformation Φ_{univ} over \mathscr{M}_h such that every deformation of G_s over (R, ε) is the pull-back of Φ_{univ} via a unique morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate action

The compact *p*-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by "change of marking", as follows:

 $\gamma: [(\Phi, \psi)] \mapsto [(\Phi, \gamma \circ \psi)] \qquad \forall [(\Phi, \psi)] \in \mathscr{D}(G_s)((R, \varepsilon))$

for any $\gamma \in \operatorname{Aut}(G_s)$ and any object (R, ε) in $\operatorname{Art}_{\kappa_s}$.

Equivalently, applying the above to the universal deformation Φ_{univ} : $\forall \gamma \in \text{Aut}(G_s)$, we have a commutative diagram

where $\xi(\gamma)$ is an automorphism of \mathcal{M}_h and $\tilde{\xi}(\gamma)$ is a formal group isomorphism with $\tilde{\xi}(\gamma)|_{G_s} = \gamma$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal somorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The Lubin-Tate action

The compact *p*-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by "change of marking", as follows:

 $\gamma: [(\Phi, \psi)] \mapsto [(\Phi, \gamma \circ \psi)] \qquad \forall [(\Phi, \psi)] \in \mathscr{D}(G_s)((R, \varepsilon))$

for any $\gamma \in \operatorname{Aut}(G_s)$ and any object (R, ε) in $\operatorname{Art}_{\kappa_s}$.

Equivalently, applying the above to the universal deformation Φ_{univ} : $\forall \gamma \in \text{Aut}(G_s)$, we have a commutative diagram

where $\xi(\gamma)$ is an automorphism of \mathcal{M}_h and $\tilde{\xi}(\gamma)$ is a formal group isomorphism with $\tilde{\xi}(\gamma)|_{G_s} = \gamma$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへ⊙

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Jniversal somorphism p-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate action, continued

Remark. 1. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

2. If one passes to the divided power envelope

 $W(\kappa_s)[[w_1,\ldots,w_{h-1}]][w_i^n/n!]_{n\in\mathbb{N},i\leq h-1}$

of the coordinate ring $W(\kappa_s)[[w_1, \ldots, w_{h-1}]]$, one can "linearize" the action by crystalline theory. However this is not very useful for studying the action of Aut(G_s) on the characteristic *p* fiber of \mathcal{M}_h . How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The Lubin-Tate action, continued

Remark. 1. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathcal{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

2. If one passes to the divided power envelope

 $W(\kappa_s)[[w_1,\ldots,w_{h-1}]][w_i^n/n!]_{n\in\mathbb{N},i\leq h-1}$

of the coordinate ring $W(\kappa_s)[[w_1, \ldots, w_{h-1}]]$, one can "linearize" the action by crystalline theory. However this is not very useful for studying the action of Aut(G_s) on the characteristic p fiber of \mathcal{M}_h . HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Set-up with a Frobenius lifting

Fix a prime number *p*. Our base ring *A* is cast in a quadruple $(A, K, \mathfrak{a}, \sigma)$, where

- *K* is a *commutative* ring with 1,
- *A* is a subring of *K* containing 1,
- $\mathfrak{a} \subset A$ is an ideal of A, and
- $\sigma: K \to K$ is a ring endomorphism,

such that conditions (a)-(c) below are satisfied.

- (a) $p \in \mathfrak{a}$,
- (b) $\sigma(A) \subset A$,
- (c) $\sigma(a) \equiv a^q \pmod{\mathfrak{a}}$ for all $a \in A$,
- (d) $\sigma((A:\mathfrak{a})) \subset (A:\mathfrak{a})$, where $(A:\mathfrak{a}) := \{y \in K | y \cdot \mathfrak{a} \subset A\}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

A twisted power series ring

Let $K[[\partial]]_{\sigma}$ be the ring of formal power series in ∂ with coefficients in *K* such that $\partial b = \sigma(b)\partial$ for all $b \in K$, i.e.

$$\left(\sum_{j\in\mathbb{N}}b_j\cdot\partial^j
ight)\cdot\left(\sum_{i\in\mathbb{N}}c_i\cdot\partial^i
ight)=\sum_{k\in\mathbb{N}}\left(\sum_{j+i=k}b_j\cdot\sigma^j(c_i)
ight)\cdot\partial^k.$$

Define a left action of the ring $K[[\partial]]_{\sigma}$ on power series rings $K[[\underline{t}]]^n$ by

$$\left(\left(\sum_{j\in\mathbb{N}}b_j\cdot\partial^j\right)*g\right)(\underline{t})=\sum_{j\in\mathbb{N}}b_j\cdot(\boldsymbol{\sigma}_*^jg)(t_1^q,\cdots,t_m^q)$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Functional equations

An element $u \in K[[\partial]]_{\sigma}$ is a *special element* if *u* has the form

$$u = 1 - \sum_{j \ge 1} s_j \cdot \partial^j, \quad s_j \in K \ \forall j \ge 1$$

such that $\mathfrak{a} \cdot s_j \subset A \ \forall j \geq 1$.

- An element $h(x) \in K[[\underline{t}]]$ is *u*-integral if $u * h \in A[[\underline{t}]]$.
- An element $f(x) \in K[[x]]_0$ (i.e. f(0) = 0) is said to be *regular u-integral* if $u * f \in A[[x]]$ and $f'(0) \in A^{\times}$. In other words f(x) satisfies a "functional equation" of the form

$$f(x) = g(x) + \sum_{j \ge 1} s_j \cdot (\sigma_*^j f)(x^{q^j})$$

with $g(x) \in A[[x]], g(0) = 0$, and $g'(0) \in A^{\times}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

・

Functional equations

An element $u \in K[[\partial]]_{\sigma}$ is a *special element* if *u* has the form

$$u = 1 - \sum_{j \ge 1} s_j \cdot \partial^j, \quad s_j \in K \ \forall j \ge 1$$

such that $\mathfrak{a} \cdot s_j \subset A \ \forall j \geq 1$.

- An element $h(x) \in K[[\underline{t}]]$ is *u*-integral if $u * h \in A[[\underline{t}]]$.
- An element $f(x) \in K[[x]]_0$ (i.e. f(0) = 0) is said to be *regular u-integral* if $u * f \in A[[x]]$ and $f'(0) \in A^{\times}$. In other words f(x) satisfies a "functional equation" of the form

$$f(x) = g(x) + \sum_{j \ge 1} s_j \cdot (\sigma_*^j f)(x^{q^j})$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

with $g(x) \in A[[x]], g(0) = 0$, and $g'(0) \in A^{\times}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Functional equations

An element $u \in K[[\partial]]_{\sigma}$ is a *special element* if *u* has the form

$$u = 1 - \sum_{j \ge 1} s_j \cdot \partial^j, \quad s_j \in K \ \forall j \ge 1$$

such that $\mathfrak{a} \cdot s_j \subset A \ \forall j \geq 1$.

- An element $h(x) \in K[[\underline{t}]]$ is *u*-integral if $u * h \in A[[\underline{t}]]$.
- An element f(x) ∈ K[[x]]₀ (i.e. f(0) = 0) is said to be regular u-integral if u * f ∈ A[[x]] and f'(0) ∈ A[×]. In other words f(x) satisfies a "functional equation" of the form

$$f(x) = g(x) + \sum_{j \ge 1} s_j \cdot (\sigma_*^j f)(x^{q^j})$$

with $g(x) \in A[[x]]$, g(0) = 0, and $g'(0) \in A^{\times}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Functional equation lemma

Proposition. Let $u \in K[[\partial]]_{\sigma}$ be a special element. Let $f(\underline{x})$ be a *regular u*-integral element in $K[[x]]_0$

- (1) The element $F(\underline{x},\underline{y}) := f^{-1}(f(x) + f(y)) \in K[[x,y]]$ belongs to A[[x,y]]. Hence F(x,y) is a formal group law over A.
- (2) For any *u*-integral element $h(\underline{t}) \in K[[\underline{t}]]_0 = K[[t_1, \dots, t_m]]_0$, the element $f^{-1}(h(\underline{t})) \in K[[\underline{t}]]_0$ belongs to $A[[\underline{t}]]_0$.
- (3) Suppose that $\alpha(\underline{z}) \in A[[\underline{z}]]_0 = A[[z_1, ..., z_k]]_0$, $\beta(\underline{z}) \in K[[\underline{z}]]_0 = K[[z_1, ..., z_k]]_0$. Then for all $r \ge 1$

 $\alpha(\underline{z}) \equiv \beta(\underline{z}) \pmod{\mathfrak{a}^r} \quad \text{iff} \ f(\alpha(\underline{z})) \equiv f(\beta(\underline{z})) \pmod{\mathfrak{a}^r}.$

(4) ∀ψ ∈ A[[t]]₀, the element f(ψ(t)) ∈ K[[t]]₀ is *u*-integral.
 (5) ∀ν ∈ A[[∂]]_σ and ∀ψ ∈ A[[t]]₀ we have

 $v * (f \circ \psi) \equiv (v * f) \circ \psi \pmod{\mathfrak{a} \cdot A[[\underline{t}]]}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Functional equation lemma

Proposition. Let $u \in K[[\partial]]_{\sigma}$ be a special element. Let $f(\underline{x})$ be a *regular u*-integral element in $K[[x]]_0$

- (1) The element $F(\underline{x},\underline{y}) := f^{-1}(f(x) + f(y)) \in K[[x,y]]$ belongs to A[[x,y]]. Hence F(x,y) is a formal group law over A.
- (2) For any *u*-integral element $h(\underline{t}) \in K[[\underline{t}]]_0 = K[[t_1, \dots, t_m]]_0$, the element $f^{-1}(h(\underline{t})) \in K[[\underline{t}]]_0$ belongs to $A[[\underline{t}]]_0$.
- (3) Suppose that $\alpha(\underline{z}) \in A[[\underline{z}]]_0 = A[[z_1, \dots, z_k]]_0$, $\beta(\underline{z}) \in K[[\underline{z}]]_0 = K[[z_1, \dots, z_k]]_0$. Then for all $r \ge 1$

$$\boldsymbol{\alpha}(\underline{z}) \equiv \boldsymbol{\beta}(\underline{z}) \pmod{\mathfrak{a}^r} \quad \text{iff} \ f(\boldsymbol{\alpha}(\underline{z})) \equiv f(\boldsymbol{\beta}(\underline{z})) \pmod{\mathfrak{a}^r}.$$

(4) ∀ψ ∈ A[[t]]₀, the element f(ψ(t)) ∈ K[[t]]₀ is *u*-integral.
 (5) ∀v ∈ A[[∂]]_σ and ∀ψ ∈ A[[t]]₀ we have

 $v * (f \circ \psi) \equiv (v * f) \circ \psi \pmod{\mathfrak{a} \cdot A[[\underline{t}]]}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

How to compute the Lubin-Tate Action

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Functional equation lemma

Proposition. Let $u \in K[[\partial]]_{\sigma}$ be a special element. Let $f(\underline{x})$ be a *regular u*-integral element in $K[[x]]_0$

- (1) The element $F(\underline{x},\underline{y}) := f^{-1}(f(x) + f(y)) \in K[[x,y]]$ belongs to A[[x,y]]. Hence F(x,y) is a formal group law over A.
- (2) For any *u*-integral element $h(\underline{t}) \in K[[\underline{t}]]_0 = K[[t_1, \dots, t_m]]_0$, the element $f^{-1}(h(\underline{t})) \in K[[\underline{t}]]_0$ belongs to $A[[\underline{t}]]_0$.
- (3) Suppose that $\alpha(\underline{z}) \in A[[\underline{z}]]_0 = A[[z_1, \dots, z_k]]_0$, $\beta(\underline{z}) \in K[[\underline{z}]]_0 = K[[z_1, \dots, z_k]]_0$. Then for all $r \ge 1$

$$\boldsymbol{\alpha}(\underline{z}) \equiv \boldsymbol{\beta}(\underline{z}) \pmod{\boldsymbol{\mathfrak{a}^r}} \quad \text{iff} \ f(\boldsymbol{\alpha}(\underline{z})) \equiv f(\boldsymbol{\beta}(\underline{z})) \pmod{\boldsymbol{\mathfrak{a}^r}}.$$

(4) ∀ψ ∈ A[[t]]₀, the element f(ψ(t)) ∈ K[[t]]₀ is *u*-integral.
 (5) ∀v ∈ A[[∂]]_σ and ∀ψ ∈ A[[t]]₀ we have

$$v * (f \circ \psi) \equiv (v * f) \circ \psi \pmod{\mathfrak{a} \cdot A[[\underline{t}]]}$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Essential uniqueness of functional equation

Proposition. Let *u* be a special element of $K[[\partial]]_{\sigma}$ and let $f(x) \in K[[x]]$ be regular *u*-integral. Suppose that

$$v = \sum_{j \in \mathbb{N}} \tilde{s}_j \cdot \partial^j \in K[[\partial]]_{\sigma}, \quad \tilde{s}_j \in (A:\mathfrak{a}) \; \forall j$$

and *f* is *v*-integral. Then $\exists ! c \in A[[\partial]]_{\sigma}$ such that $v = c \cdot u$ in $K[[\partial]]_{\sigma}$. In particular if *v* is also a special element, then $v \in A[[\partial]]_{\sigma}^{\times} \cdot u$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

How to construct homomorhisms over A/\mathfrak{a}

Let u, v be special elements in $K[[\partial]]_{\sigma}$. Let $f, g \in K[[x]]_0$ be regular *u*-integral and *v*-integral respectively. Let *F* and *G* be the formal group laws over *A* with logarithms *f* and *g*.

Proposition. For any c ∈ A[[∂]]_σ, let φ_{g,c,f}(x) := g⁻¹(c * f).
(1) φ_{g,c,f}(x) ∈ A[[x]]_σ iff ∃d ∈ A[[∂]]_σ such that v · c = d · u.
(2) If v · c = d · u and d ∈ A[[∂]]_σ, then the image of φ_{f,g,c} in (A/α)[[x]] defines an (A/α)-homomorphism

 $[\phi_{g,c,f}]: (F \mod \mathfrak{a}) \to (G \mod \mathfrak{a}).$

(3) Suppose that *w*-is a special element in *K*[[∂]]_σ, *h* ∈ *K*[[*x*]]₀ is *w*-regular and *H* is the formal group law over *A* with logarithm *h*. Suppose *c*, *d* ∈ *A*[[∂]]_σ and *w* · *c'* = *d'* · *v*. Then

$$[\boldsymbol{\phi}_{h,c',g}] \circ [\boldsymbol{\phi}_{g,c,f}] = [\boldsymbol{\phi}_{h,c'c,f}].$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへ⊙

How to construct homomorhisms over A/\mathfrak{a}

Let u, v be special elements in $K[[\partial]]_{\sigma}$. Let $f, g \in K[[x]]_0$ be regular *u*-integral and *v*-integral respectively. Let *F* and *G* be the formal group laws over *A* with logarithms *f* and *g*.

Proposition. For any $c \in A[[\partial]]_{\sigma}$, let $\phi_{g,c,f}(x) := g^{-1}(c * f)$. (1) $\phi_{g,c,f}(x) \in A[[x]]_{\sigma}$ iff $\exists d \in A[[\partial]]_{\sigma}$ such that $v \cdot c = d \cdot u$. (2) If $v \cdot c = d \cdot u$ and $d \in A[[\partial]]_{\sigma}$, then the image of $\phi_{f,g,c}$ in $(A/\mathfrak{a})[[x]]$ defines an (A/\mathfrak{a}) -homomorphism

 $[\phi_{g,c,f}]: (F \mod \mathfrak{a}) \to (G \mod \mathfrak{a}).$

(3) Suppose that *w*-is a special element in $K[[\partial]]_{\sigma}$, $h \in K[[x]]_{0}$ is *w*-regular and *H* is the formal group law over *A* with logarithm *h*. Suppose $c, d \in A[[\partial]]_{\sigma}$ and $w \cdot c' = d' \cdot v$. Then

$$[\phi_{h,c',g}] \circ [\phi_{g,c,f}] = [\phi_{h,c'c,f}].$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The universal *p*-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \tilde{R}[[x, y]]$ be the one-dimensional *p*-typical formal group law over \tilde{R} whose logarithm

$$g_{\underline{\nu}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{\nu}) \cdot x^{p^n}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{\nu_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The universal *p*-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \tilde{R}[[x, y]]$ be the one-dimensional *p*-typical formal group law over \tilde{R} whose logarithm

$$g_{\underline{\nu}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{\nu}) \cdot x^{p'}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{\nu_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

$$a_{n}(\underline{v}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_{s}}^{p^{i_{1} + i_{2} + \dots + i_{s-1}}}$$
$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot v_{i_{1}} \cdot v_{i_{2}}^{p^{i_{1}}} \cdot v_{i_{3}}^{p^{i_{1} + i_{2}}} \cdots v_{i_{r}}^{p^{i_{1} + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \ldots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \quad \forall j \ge 1$. (3) The formal group law $G_{\underline{v}}$ over \tilde{R} is "the" universal one-dimensional *p*-typical formal group law. HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps
Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

.

$$a_{n}(\underline{v}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_{s}}^{p^{i_{1}+i_{2}+\dots + i_{s-1}}}$$
$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot v_{i_{1}} \cdot v_{i_{2}}^{p^{i_{1}}} \cdot v_{i_{3}}^{p^{i_{1}+i_{2}}} \cdots v_{i_{r}}^{p^{i_{1}+\dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \ldots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \quad \forall j \ge 1$. (3) The formal group law $G_{\underline{v}}$ over \tilde{R} is "the" universal one-dimensional *p*-typical formal group law. HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

$$a_{n}(\underline{v}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_{s}}^{p^{i_{1} + i_{2} + \dots + i_{s-1}}}$$
$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot v_{i_{1}} \cdot v_{i_{2}}^{p^{i_{1}}} \cdot v_{i_{3}}^{p^{i_{1} + i_{2}}} \cdots v_{i_{r}}^{p^{i_{1} + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \ldots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \quad \forall j \ge 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional *p*-typical formal group law.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

1

$$a_{n}(\underline{\nu}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} \nu_{i_{s}}^{p^{i_{1}+i_{2} + \dots + i_{s-1}}}$$
$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1\\i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \nu_{i_{1}} \cdot \nu_{i_{2}}^{p^{i_{1}}} \cdot \nu_{i_{3}}^{p^{i_{1}+i_{2}}} \cdots \nu_{i_{r}}^{p^{i_{1} + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \ldots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \quad \forall j \ge 1$. (3) The formal group law $G_{\underline{v}}$ over \tilde{R} is "the" universal one-dimensional *p*-typical formal group law. HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, \dots, w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such the

$$\pi(v_i) = \begin{cases} w_i & \text{if } 1 \le i \le h-1\\ 1 & \text{if } i=h\\ 0 & \text{if } i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$ for the deformation $\pi_* G_{\nu}$ of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\underline{\nu}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal somorphism p-typical formal group laws

The big picture

Sketch of the steps

Let $R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, \dots, w_{h-1}]].$ Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if } 1 \le i \le h-1 \\ 1 & \text{if } i = h \\ 0 & \text{if } i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$ for the deformation π_*G_{ν} of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\underline{\nu}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal somorphism p-typical formal group laws

The big picture

Sketch of the steps

Let $R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, \dots, w_{h-1}]].$ Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if } 1 \le i \le h-1 \\ 1 & \text{if } i = h \\ 0 & \text{if } i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathscr{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\underline{\nu}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, \dots, w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if } 1 \le i \le h-1 \\ 1 & \text{if } i = h \\ 0 & \text{if } i \ge h+1 \end{cases}$$

The classifying morphism $\text{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\underline{\nu}}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The universal strict isomorphism

Let
$$\mathbb{Z}_{(p)}[\underline{v}, \underline{t}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \dots; t_1, t_2, t_3, \dots]$$
, and let $\sigma : \mathbb{Z}_{(p)}[\underline{v}, \underline{t}] \to \mathbb{Z}_{(p)}[\underline{v}, \underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(v_i) = v_i^p$ and $\sigma(t_i) = t_i^p \ \forall i \ge 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\underline{\nu},\underline{t}}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{\nu_j}{p} \cdot g_{\underline{\nu},\underline{t}}^{(\sigma^j)}(x^{p^j})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

The first test

The universal strict isomorphism

Let
$$\mathbb{Z}_{(p)}[\underline{v}, \underline{t}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \dots; t_1, t_2, t_3, \dots]$$
, and let $\sigma : \mathbb{Z}_{(p)}[\underline{v}, \underline{t}] \to \mathbb{Z}_{(p)}[\underline{v}, \underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(v_i) = v_i^p$ and $\sigma(t_i) = t_i^p \ \forall i \ge 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\underline{\nu},\underline{t}}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{\nu_j}{p} \cdot g_{\underline{\nu},\underline{t}}^{(\sigma^j)}(x^{p^j})$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}} := g_{\underline{v},\underline{t}}^{-1} \circ g_{\underline{v}} \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a *strict isomorphism*

 $\alpha_{\underline{\nu},\underline{t}}:G_{\underline{\nu}}\to G_{\underline{\nu},\underline{t}}$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in *x*.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture Sketch of the steps The first test

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}} := g_{\underline{v},\underline{t}}^{-1} \circ g_{\underline{v}} \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a *strict isomorphism*

$$\alpha_{\underline{v},\underline{t}}:G_{\underline{v}}\to G_{\underline{v},\underline{t}}$$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v}, \underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in *x*.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}} := g_{\underline{v},\underline{t}}^{-1} \circ g_{\underline{v}} \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a *strict isomorphism*

$$\alpha_{\underline{\nu},\underline{t}}:G_{\underline{\nu}}\to G_{\underline{\nu},\underline{t}}$$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v}, \underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in *x*.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Parameters of $G_{\underline{v},\underline{t}}$

By the universality $G_{\underline{\nu}}$ for *p*-typical formal group laws, there exists a unique ring homomorphism

$$\eta: \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

$$\eta_*G_{\underline{\nu}}=G_{\underline{\nu},\underline{t}}.$$

The elements

 $\overline{v}_n = \overline{v}_n(\underline{v}, \underline{t}) \in \mathbb{Z}_{(p)}[\underline{v}, \underline{t}], \quad n \in \mathbb{N}_{\geq 1}$

are the *parameters* of the *p*-typical formal group law $G_{v,t}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

Parameters of $G_{\underline{v},\underline{t}}$

By the universality $G_{\underline{\nu}}$ for *p*-typical formal group laws, there exists a unique ring homomorphism

$$\eta: \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

$$\eta_*G_{\underline{\nu}}=G_{\underline{\nu},\underline{t}}.$$

The elements

$$\overline{v}_n = \overline{v}_n(\underline{v},\underline{t}) \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}], \quad n \in \mathbb{N}_{\geq 1}$$

are the *parameters* of the *p*-typical formal group law $G_{v,t}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

A known recursive formula for the parameters of $G_{\underline{v},\underline{t}}$

$$\begin{split} \overline{v}_{n} &= v_{n} + p t_{n} + \sum_{i+j=n \atop i,j \ge 1} (v_{j} t_{i}^{p^{j}} - t_{i} \overline{v}_{j}^{p^{i}}) \\ &+ \sum_{j=1}^{n-1} a_{n-j}(\underline{v}) \cdot \left(v_{j}^{p^{n-j}} - \overline{v}_{j}^{p^{n-j}} \right) \\ &+ \sum_{k=2}^{n-1} a_{n-k}(\underline{v}) \cdot \sum_{i+j=k \atop i,j \ge 1} \left(v_{j}^{p^{n-k}} t_{i}^{p^{n-i}} - t_{i}^{p^{n-k}} \overline{v}_{j}^{p^{n-j}} \right) \end{split}$$

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.) HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture Sketch of the steps The first test

A known recursive formula for the parameters of $G_{\underline{v},\underline{t}}$

$$\begin{split} \overline{v}_{n} &= v_{n} + p t_{n} + \sum_{i+j=n \atop i,j \ge 1} (v_{j} t_{i}^{p^{j}} - t_{i} \overline{v}_{j}^{p^{i}}) \\ &+ \sum_{j=1}^{n-1} a_{n-j}(\underline{v}) \cdot \left(v_{j}^{p^{n-j}} - \overline{v}_{j}^{p^{n-j}}\right) \\ &+ \sum_{k=2}^{n-1} a_{n-k}(\underline{v}) \cdot \sum_{i+j=k \atop i,j \ge 1} \left(v_{j}^{p^{n-k}} t_{i}^{p^{n-i}} - t_{i}^{p^{n-k}} \overline{v}_{j}^{p^{n-j}}\right) \end{split}$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.)

An *integral* recursion formula for $\bar{v}_n(\underline{v},\underline{t})$

(useful for computing the Lubin-Tate action)

$$\begin{split} \bar{v}_{n} &= v_{n} + p t_{n} - \sum_{j=1}^{n-1} t_{j} \cdot \bar{v}_{n-j}^{p^{j}} + \\ &+ \sum_{l=1}^{n-1} v_{l} \sum_{k=1}^{n-l-1} \frac{1}{p} \cdot a_{n-k-l} (\underline{v})^{(p^{l})} \cdot \left\{ (\bar{v}_{k}^{(p^{l})})^{p^{n-l-k}} - (\bar{v}_{k}^{p^{l}})^{p^{n-l-k}} \right. \\ &+ \sum_{\substack{i+j=k\\i,j\geq 1}} t_{j}^{p^{n-k}} \left[(\bar{v}_{i}^{(p^{l})})^{p^{n-l-i}} - (\bar{v}_{i}^{p^{l}})^{p^{n-l-i}} \right] \right\} \\ &+ \sum_{l=1}^{n-1} v_{l} \cdot \left\{ \frac{1}{p} (\bar{v}_{n-l}^{(p^{l})} - \bar{v}_{n-l}^{p^{l}}) + \sum_{\substack{i+j=n-l\\i,j\geq 1}} t_{j}^{p^{l}} \cdot \frac{1}{p} \cdot \left[(\bar{v}_{i}^{(p^{l})})^{p^{j}} - (\bar{v}_{i}^{p^{l}})^{p^{n-l-k}} \right] \right\} \end{split}$$

for every $n \ge 1$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture Sketch of the steps The first test

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

The groupoid underlying the universal strict isomorphism

Let $X_0 := \operatorname{Spec}(\tilde{R}), X_1 := \operatorname{Spec}(\tilde{\Gamma})$. Consider the diagram

$$X_0 \xleftarrow{\text{source}} X_1 \xrightarrow{\text{target}} X_0,$$

where the *source* arrow corresponds to $\tilde{R} \hookrightarrow \tilde{\Gamma}$ and the *target* arrow corresponds to the ring homomorphism $\eta : \tilde{R} \to \tilde{\Gamma}$. The above diagram is part of a natural groupoid structure such that the (partial) product

$$\mu: X_1 \times_{s, X_0, t} X_1 \to X_1$$

corresponds to composition of strict isomorphisms between *p*-typical formal group laws.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Three ways to think about the moduli space \mathcal{M}_h

1. All *p*-typical deformations of G_s whose parameters satisfy $v_h = 1$, $v_{h+1} = v_{h+2} = \cdots = 0$.

2. All *p*-typical deformations of G_s whose parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$, up to/modulo *scaling by units*

3. All *p*-typical deformations of G_s , modulo the equivalence relations generated by

- strict *-isomorphisms, and
- scaling by units.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps The first test

Three ways to think about the moduli space \mathcal{M}_h

1. All *p*-typical deformations of G_s whose parameters satisfy $v_h = 1$, $v_{h+1} = v_{h+2} = \cdots = 0$.

2. All *p*-typical deformations of G_s whose parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$, up to/modulo *scaling by units*

3. All *p*-typical deformations of G_s , modulo the equivalence relations generated by

■ strict *-isomorphisms, and

scaling by units.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps The first test

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Three ways to think about the moduli space \mathcal{M}_h

1. All *p*-typical deformations of G_s whose parameters satisfy $v_h = 1$, $v_{h+1} = v_{h+2} = \cdots = 0$.

2. All *p*-typical deformations of G_s whose parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$, up to/modulo *scaling by units*

3. All *p*-typical deformations of G_s , modulo the equivalence relations generated by

- strict *-isomorphisms, and
- scaling by units.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Start with an element $\gamma \in \operatorname{Aut}(G_s)$.

1. Use Honda's formalism to construct an isomorphism $\psi_{\gamma}: F_{\gamma} \to \phi_* G_{\underline{\nu}}$ in equi-characteristic *p* whose closed fiber is equal to γ .

2. Compute the parameters v_1, v_2, v_3, \ldots of F_{γ} . (By recursive relations).

3. Change F_{γ} by a strict isomorphism with suitable parameters t_1, t_2, t_3, \ldots , to a new *p*-typical formal group law whose (new) parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$. (Implicit function theorem applied to ∞ -dimensional spaces)

4. Rescale to make $v_h = 1$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Start with an element $\gamma \in \operatorname{Aut}(G_s)$.

1. Use Honda's formalism to construct an isomorphism $\psi_{\gamma}: F_{\gamma} \to \phi_* G_{\underline{\nu}}$ in equi-characteristic *p* whose closed fiber is equal to γ .

2. Compute the parameters $v_1, v_2, v_3, ...$ of F_{γ} . (By recursive relations).

3. Change F_{γ} by a strict isomorphism with suitable parameters t_1, t_2, t_3, \ldots , to a new *p*-typical formal group law whose (new) parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$. (Implicit function theorem applied to ∞ -dimensional spaces)

4. Rescale to make $v_h = 1$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Start with an element $\gamma \in \operatorname{Aut}(G_s)$.

1. Use Honda's formalism to construct an isomorphism $\psi_{\gamma}: F_{\gamma} \to \phi_* G_{\underline{\nu}}$ in equi-characteristic *p* whose closed fiber is equal to γ .

2. Compute the parameters v_1, v_2, v_3, \ldots of F_{γ} . (By recursive relations).

3. Change F_{γ} by a strict isomorphism with suitable parameters t_1, t_2, t_3, \ldots , to a new *p*-typical formal group law whose (new) parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$. (Implicit function theorem applied to ∞ -dimensional spaces)

4. Rescale to make $v_h = 1$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Start with an element $\gamma \in \operatorname{Aut}(G_s)$.

1. Use Honda's formalism to construct an isomorphism $\psi_{\gamma}: F_{\gamma} \to \phi_* G_{\underline{\nu}}$ in equi-characteristic *p* whose closed fiber is equal to γ .

2. Compute the parameters $v_1, v_2, v_3, ...$ of F_{γ} . (By recursive relations).

3. Change F_{γ} by a strict isomorphism with suitable parameters t_1, t_2, t_3, \ldots , to a new *p*-typical formal group law whose (new) parameters satisfy $v_{h+1} = v_{h+2} = \cdots = 0$. (Implicit function theorem applied to ∞ -dimensional spaces)

4. Rescale to make $v_h = 1$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Given an element $\gamma \in Aut(G_0)$, construct

• a *p*-typical one-dimensional formal group law $F = F_{\gamma}$ over *R* whose closed fiber is equal to G_0 , and

an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}, G_{\overline{R}} = G_R \otimes_R \overline{R}.$$

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Given an element $\gamma \in Aut(G_0)$, construct

- a *p*-typical one-dimensional formal group law $F = F_{\gamma}$ over *R* whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Here $F_{\overline{p}} = F \otimes_R \overline{R}, G_{\overline{p}} = G_R \otimes_R \overline{R}.$

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Given an element $\gamma \in \operatorname{Aut}(G_0)$, construct

- a *p*-typical one-dimensional formal group law $F = F_{\gamma}$ over R whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$(\psi|_{G_0}:G_0\to G_0)=\gamma$$

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}, G_{\overline{R}} = G_R \otimes_R \overline{R}$$
.

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

Sketch of the steps

The formal group law $F_c, c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

(w_h =1 by convention).

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over \overline{R} !) with $\psi_c|_{G_0} = [c]$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The formal group law $F_c, c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

(w_h =1 by convention).

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over \overline{R} !) with $\psi_c|_{G_0} = [c]$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The formal group law $F_c, c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

(w_h =1 by convention).

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over $\overline{R}!$) with $\psi_c|_{G_0} = [c]$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional formal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

Compute the parameters

$$(u_i = u_i(w_1, \ldots, w_{h-1}))_{i \in \mathbb{N}_{\geq 1}}$$

for the *p*-typical group law $F = F_{\gamma}$ over *R*.

The above condition means that

$$\xi_*G_{\tilde{\nu}}=F,$$

where

$$\xi = \xi_{\gamma} : \tilde{R} \to R$$

is the ring homomorphism such that

$$\boldsymbol{\xi}(\boldsymbol{v}_i) = \boldsymbol{u}_i \quad \forall i \ge 1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Compute the parameters

$$(u_i = u_i(w_1, \ldots, w_{h-1}))_{i \in \mathbb{N}_{\geq 1}}$$

for the *p*-typical group law $F = F_{\gamma}$ over *R*.

The above condition means that

$$\xi_*G_{\tilde{\nu}}=F,$$

where

$$\xi = \xi_{\gamma} : \tilde{R} \to R$$

is the ring homomorphism such that

$$\xi(v_i) = u_i \quad \forall i \ge 1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Parameters for F_c , $c \in W(\mathbb{F}_{p^h})^{\times}$

U

In the case when $\gamma \in \operatorname{Aut}(G_0)$ lifts to an element [c] with $c \in W(\mathbb{F}_{p^h})^{\times} \simeq \operatorname{Aut}(G_1)$, we have the following integral recursive formula for the parameters $u_n = u_n(c; \underline{w})$.

where $w_h = 1$, $w_m = 0 \forall m \ge h + 1$ by convention.

p-typical formal group law

HOW TO COMPUTE

THE LUBIN-TATE ACTION Ching-Li Chai

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Parameters for F_c , continued

Remark. The above recursive formula for the parameters $u_n(c; \underline{w})$ can be turned into an explicit "path sum" formula for $u_n(c, \underline{w})$, with terms indexed by "paths".

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Find/compute the uniquely determined element

$$au_n \in \mathfrak{m}_R, \quad n \in \mathbb{N}_{>1}$$

and

$$\hat{u}_1 \in \mathfrak{m}_R, \ldots, \hat{u}_{h-1} \in \mathfrak{m}_R, \hat{u}_h \in 1 + \mathfrak{m}_R$$

such that

$$\overline{v}_n(\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h, 0, 0, \dots; \underline{\tau}) = u_n \quad \forall n \ge 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで
Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

(2) This step is a substitute for the operation *taking the quotient of the group "changes of coordinates"* in a space of formal group laws.

(3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

(2) This step is a substitute for the operation taking the quotient of the group "changes of coordinates" in a space of formal group laws.

(3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

one dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

(2) This step is a substitute for the operation *taking the quotient of the group "changes of coordinates"* in a space of formal group laws.

(3) The approximate solution coming from the linear term in the τ_j variables is often good enough for our application.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

A D > 4 回 > 4 □ > 4

A congruence formula for \overline{v}_n

The follow formula helps to explain the last remark.

$$\overline{v}_{n} \equiv v_{n} - \sum_{j=1}^{n} t_{j} \cdot v_{n-j}^{p^{j}} + \sum_{\substack{i,j,t,s_{1},s_{2},\dots,s_{t} \geq 1\\s_{1}+\dots+s_{t}+i+j=n}} (-1)^{t-1} t_{i} \cdot v_{j}^{p^{i}} \cdot v_{1}^{(p^{s_{1}}+p^{s_{2}}+\dots+p^{s_{t}}-t)/(p-1)} + v_{n-s_{1}}^{p^{s_{1}}-1} \cdot v_{n-s_{1}-s_{2}}^{p^{s_{1}}-1} \cdots v_{n-s_{1}-\dots-s_{t}}^{p^{s_{t}}-1} - mod (pt_{a}, t_{a} \cdot t_{b})_{a,b} \geq 1\mathbb{Z}[\underline{\nu}, \underline{t}]$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows:

 $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\boldsymbol{\omega}(\boldsymbol{v}_i) = \hat{\boldsymbol{u}}_i \quad \forall i \ge 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows: $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\boldsymbol{\omega}(\boldsymbol{v}_i) = \hat{\boldsymbol{u}}_i \quad \forall i \ge 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへ⊙

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows: $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \ge 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへ⊙

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows: $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\boldsymbol{\omega}(v_i) = \hat{\boldsymbol{u}}_i \quad \forall i \geq 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows: $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\boldsymbol{\omega}(v_i) = \hat{\boldsymbol{u}}_i \quad \forall i \geq 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1.$$

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

ne dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

The first test

▲□▶▲□▶▲□▶▲□▶ = のへで

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{\underline{v},\underline{t}}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\underline{\hat{u}},\underline{\tau}} : F \to \omega_* G_{\underline{v}}$$

with $\alpha|_{G_0} = \mathrm{Id}_{G_0}$.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta: \omega_*G_{\underline{\nu}} \to \rho_*G_{\underline{\nu}}$$

with $\beta|_{G_0} = \mathrm{Id}_{G_0}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{\underline{\nu},\underline{t}}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\underline{\hat{u}},\underline{\tau}} : F \to \omega_* G_{\underline{v}}$$

with $\alpha|_{G_0} = \mathrm{Id}_{G_0}$.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta: \omega_*G_{\underline{v}} \to \rho_*G_R$$

with $\beta|_{G_0} = \mathrm{Id}_{G_0}$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conclusion

Combined with $\overline{\psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_* G_{\overline{R}} \to G_{\overline{R}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in \operatorname{Aut}(G_0)$. (Here $\overline{\alpha} = \alpha \otimes_R \overline{R}$ and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in \operatorname{Aut}(G_0)$ operates on the equi-characteristic deformation space $\operatorname{Spf}(\overline{R})$ of G_0 via the ring automorphism ρ . (Notice that \overline{w} , α and β all depend on γ .)

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

Conclusion

Combined with $\overline{\psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_* G_{\overline{R}} \to G_{\overline{R}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in \operatorname{Aut}(G_0)$. (Here $\overline{\alpha} = \alpha \otimes_R \overline{R}$ and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in \operatorname{Aut}(G_0)$ operates on the equi-characteristic deformation space $\operatorname{Spf}(\overline{R})$ of G_0 via the ring automorphism ρ . (Notice that $\overline{\Psi}$, α and β all depend on γ .) HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism *p*-typical formal group laws

The big picture

Sketch of the steps

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathcal{M}_{3\overline{\mathbb{F}}_{p}} = \operatorname{Spf}(\overline{\mathbb{F}}_{p}[[w_{1}, w_{2}]])$ be an irreducible closed formal subscheme of \mathcal{M}_{3} over $\overline{\mathbb{F}}_{p}$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}}_{p}[[w_{1}, w_{2}]]$. If *Z* is stable under the action of an open subgroup of $W(\mathbb{F}_{p}$ then $Z = \operatorname{Spf}(\overline{\mathbb{F}}_{p}[[w_{1}, w_{2}]]/(w_{1}))$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathcal{M}_{3\overline{\mathbb{F}_p}} = \operatorname{Spf}(\overline{\mathbb{F}_p}[[w_1, w_2]])$ be an irreducible closed formal subscheme of \mathcal{M}_3 over $\overline{\mathbb{F}_p}$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}_p}[[w_1, w_2]]$. If *Z* is stable under the action of an open subgroup of $W(\mathbb{F}_{p^3})^{\times}$, then $Z = \operatorname{Spf}(\overline{\mathbb{F}_p}[[w_1, w_2]]/(w_1))$.

HOW TO COMPUTE THE LUBIN-TATE ACTION

Ching-Li Chai

One dimensional ormal group laws

The Lubin-Tate action

Honda's formalism

The universal p-typical formal group law

Universal isomorphism p-typical formal group laws

The big picture

Sketch of the steps

The first test