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Throughout history people are interested in numbers, for practical purposes and beyond. Per-
haps part of the reason is that number is a nearly universal ingredient in human languages.1 Certain
numbers are deemed special. In the western culture, 7 is the “lucky number”, while 13 is a number
for bad fortune. In the Chinese culture, the even numbers 2, 4, 8 are often associated with good
fortune, and the number 95 is associated to the emperor. More mathematically inclined people
tend to be attracted to some different aspect of numbers that is difficult to define, and collectively
known as “ number theory”.2 We would like to share with the reader the romance of numbers, and
discuss some of the challenges they pose.

Chronological table

Euclid ∼300 B.C.E. Galois 1811–1832
Diophantus ∼300 C.E. Hermite 1822–1901
Brahmagupta ∼600 C.E. Eisenstein 1823–1852
Qin Jiushao 1202–1261 Kronecker 1823–1891
Fermat 1601–1665 Riemann 1826–1866
Euler 1707–1783 Dedekind 1831–1916
Lagrange 1736–1813 Weber 1842–1913
Legendre 1752–1833 Hensel 1861–1941
Gauss 1777–1855 Hilbert 1862–1943
Abel 1802–1829 Takagi 1875–1960
Jacobi 1804–1851 Hecke 1887–1947
Dirichlet 1805–1859 Artin 1898–1962
Kummer 1810–1893 Hasse 1898–1979

§1. Examples.

To wet our appetite, we begin with a list of some special numbers.

• 2, the only even prime number.

•
√

2, the Pythagora’s number often the first irrational numbers one learns in school.

•
√
−1, the first imaginary number one learns.

• 1+
√

5
2 , the golden number, a root of the quadratic polynomial x2 − x− 1.

1The Parahã, a tribe in the Amazon, have no numbers. All known efforts to teach a Parahaã to count in another
language failed, unlike other tribes which also have a one-two-many counting system.

2In the words of Weil “When I smell number-theory, I think I know it, and when I smell something else, I think I
know it too.”; see [8].
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• e = exp(1) =
∑∞

n=0
1
n! , the base of the natural logarithm. It admits the following infinite

continuous fraction expansion

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6 +
1

1 +
1

1 +
1

8 + · · ·

• π, area of a circle of radius 1. Zu Chungzhi (429–500 C.E.) gave two approximating fractions
22
7 and 355

113 , and obtained that π is between 3.1415926 and 3.1415927.

• 1729 = 123 + 13 = 103 + 93, the taxi cab number. As Ramanujan remarked to Hardy, it is
the smallest positive integer which can be expressed as a sum of two positive integers in two
different ways.

• 30, the largest positive integer m such that every positive integer between 2 and m and
relatively prime to m is a prime number.

We will not come back to these numbers, and recommend [1] for amusing digressions.

Next comes some families of numbers.

• 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, . . ., the triangular numbers, ∆n = n(n+1)
2 .

• 1, 4, 9, 16, 25, . . ., squares of integers.

• 1, 5, 12, 22, 35, . . ., the pentagonal numbers, pn =
∑n

k=1 (3k − 2) = n(3n−1)
2 .

• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . ., the prime numbers.

• 2p − 1, the emphMersenne numbers. If M = 2p − 1 is a prime number (a Mersenne prime),
then ∆M = 1

2M(M + 1) = 2p−1(2p − 1) is an even perfect number.3

• 3, 5, 17, 257, 65537, 4294967297 the Fermat numbers, Fr = 22r
+ 1.4

3A perfect number is a positive integer which is equal to the sum of all of its proper divisors. No odd perfect
number is known. The 44th known Mersenne prime, 232582657 − 1, was discovered in 2006; it has 9808358 digits.

4Fermat thought that each Fr is a prime, but Euler found in 1732 that F5 is a composite: 232 +1 = 4294967297 =
641× 6700417, less than three years since Goldbach asked his opinion about Fermat’s statement. No Fermat number
Fr with r > 4 is known to be a prime.
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• 1, 2, 5, 1, . . . , cn = 1
n

(
2n
n

)
, . . ., the Catalan numbers.

• The partition numbers p(n) with generating series

∞∑
n=0

p(n)xn =
∞∏

n=1

(1− xm)−1

The first few of the partition numbers are:p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,
p(5) = 7, p(6) = 11. Ramanujan gave the asymptotic formula

p(n) ∼ 1
4n
√

3
eπ
√

2n/3 .

• 1,−24, 252,−1472, 4830,−6048, . . . are the first few of the Ramanujan numbers, defined by

∞∑
n=1

τ(n)xn = x

[ ∞∏
n=1

(1− xn)

]24

= x · (1− x)24 · (1− x2)24 · (1− x3)24 · (1− x4)24 · · ·

• The Bernouli numbers, defined by

x

ex − 1
=

∞∑
n=0

Bn x
n ,

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B12 = − 691

2730 , B14 = 7
6 .

• The nine Heegner numbers −1,−2,−3,−7,−11,−19,−43,−67,−163 are the only negative
integers −d such that the class number of the imaginary quadratic fields Q(

√
−d) is equal to

one. The last few Heegner numbers have the property that eπ
√

d is very close to an integer,5

for instance
eπ
√

67 = 147197952743.99999866,

eπ
√

163 = 161537412640768743.99999999999925007

Most of the above family of numbers are for historic interest interest only. Only prime numbers,
Ramanujan numbers, Bernouli numbers and the Heegner numbers are related to the main themes
of this talk.

Primes of the form Ax2 + By2. Below are some properties about numbers which may excite
the budding number theorists.

• (Fermat)
p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4)

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8)

p = x2 + 3y2 ⇐⇒ p = 3p or p ≡ 1 (mod 3)

5The lattice OQ(
√
−d) ⊂ C defines an elliptic curve over Q of CM-type, whose j-invariant is an integer; eπ

√
d is the

first term in the q-expansion of the j-invariant, the other terms decay exponentially.
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• (Euler)
p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

2p = x2 + 5y2 ⇐⇒ p ≡ 3, 7 (mod 20)

p = x2 + 14y2 or p = 2x2 + 7y2 ⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

• p = x2 + 27y2 ⇐⇒ p ≡ 1 (mod 3) and 2 is a cubic residue modulo p.

• p = x2 + 64y2 ⇐⇒ p ≡ 1 (mod 4) and 2 is a biquadratic residue modulo p.

• (Kronecker)

p = x2 + 31y2 ⇐⇒ (x3 − 10x)2 + 31(x2 − 1)2 ≡ 0 (mod p) has an integer solution

Investigations in the direction of the above examples have led to the class field theory, a major
achievement completed around 1930. We will not be able to go further in this direction in this talk.
Rather we will focus our main themes, Diophantine equations, zeta values and modular forms, and
illustrate them with some examples. We will indicate how the themes are intertwined, that modular
forms and zeta-values come in naturally when we attempt to count the number of solutions. We
will not define what an elliptic curve is, although their shadows are everywhere.

I. Some Diophantine equations

• The equation x2 + y2 = z2 has lots of integer solutions. The primitive ones with x odd and
y even are given by the formula x = s2 − t2, y = 2st, z = s2 + t2.

• (Fermat) The equation x4 − y4 = z2 has no non-trivial integer solution. We will come back
to this shortly.

• (Fermat’s Last Theorem) xp + yp + zp = 0 has no non-trivial integer solution if p is an odd
prime number.

This was proved by A. Wiles in 1994, more than 300 years after Fermat wrote the asserttion
at the margin of his personal copy of the 1670 edition of Diophantus.

II. Some formulas discovered by Euler

• π
4 = 1− 1

3 + 1
5 −

1
7 + . . .

• 1 + 1
22 + 1

32 + 1
42 + . . . = π2

2

• 1 + 1
24 + 1

34 + 1
44 + . . . = π4

90

• 1− 2k + 3k − 4k + . . . = − (1−2k+1)
k+1 Bk+1 for k ≥ 1; in particular it vanishes if k is even.

• 1
π2k (1 + 1

22k + 1
32k + 1

42k + . . .) is a rational number for every integer k ≥ 1.

•
∏∞

n=1 (1− xn) =
∑

n∈Z (−1)n xn(3n+1)/2
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III. Counting solutions.
For each integer k ≥ 1, let rk(n) be the number of k-tuples (x1, . . . , xn) ∈ Zk such that x2

1 +
. . .+ x2

k = n.

• Sum of two squares.

Write n = 2f · n1 · n2, where every prime divisor of n1 (resp. n2) is ≡ 1 (mod 4) (resp. ≡ 3
(mod 4)). Fermat showed that r2(n) > 0 (i.e. n is a sum of two squares) if and only if every
prime divisor p of n2 occurs in n2 to an even power. Assume this is the case, Jacobi obtained
the following closed formula for r2(n):

r2(n) = 4d(n1)

where d(n1) is the number of divisors of n1.

• Sum of four squares. Lagrange showed that r4(n) > 0 for every n ∈ Z. Jacobi obtained the
following explicit formula for r4(n): r4(n) = 8σ′(n), where σ′(n) is the sum of divisors of n
which are not divisible by 4. More explicitly,

r4(n) =

{
8 ·
∑

d|n d n odd
24 ·

∑
d|n, d odd d n even

• Sum of three squares. Legendre showed that n is a sum of three squares if and only if n is
not of the form 4a(8m + 7), and r3(4an) = r3(n). More explicit formulas exists (essentially
the class number formula for imaginary quadratic fields, the main part of which is the zeta-
value at s = 1). Let Rk(n) be the number of primitive solutions of x2

1 + · · · + x2
k = n, i.e.

gcd(x1, . . . , xk) = 1. Then we have for instance

R3(n) =

{
24 ·

∑bn/4c
s=1

(
s
n

)
if n ≡ 1 (mod 4)

8 ·
∑bn/2c

s=1

(
s
n

)
if n ≡ 3 (mod 8)

§2. Fermat’s infinite descent

We indicate how Fermat proved that the equation

x4 − y4 = z2

has no non-trivial integer solution, i.e. one with xy 6= 0. We may and do assume that gcd(x, y, z) =
1. We have (x2 + y2) · (x2− y2) = z2. It is easy to see that either x, y are both odd, or x is odd and
y is even. We will consider only the first case that x, y are both odd; the second case is similar.
Then there exist integers u, v such that gcd(u, v) = 1, x2 + y2 = 2u2, x2 − y2 = 2v2 and z = 2uv.

Consider the equation 2v2 = (x + y) · (x − y). After suitably adjusting the signs of x and y,
there exist integers r, s such that x+ y = r2, x− y = 2s2, v = rs. An easy computation shows that
the original equation x4 − y4 = z2 becomes r4 + 4s4 = 4u2. Write r = 2t, the equation becomes
s4 + 4t4 = u2, and we have x = 2t2 + s2, y = 2t2 − s2, z = 4tsu, gcd(s, t, u) = 1.
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Consider a non-trivial integer solution of the equation s4 + 4t4 = u2 with gcd(s, t, u) = 1. It
is easy to see that u and s are both odd. Adjusting the signs, we may assume that u > 0. Since
4t2 = (u−s2)(u+s2), there exist positive integers a, b such that u−s2 = 2b2, u+s2 = 2a2, t2 = ab,
gcd(a, b) = 1. From t2 = ab we see that there exist integers x1, y1 such that a = x2

1, b = y2
1 and

t = x1y1. It follows that u = x4
1 + y4

1 and s2 = x4
1 − y4

1. Let z1 = s, so (x1, y1, z1) is an integer
solution of the original equation x4 − y4 = z2, and the absolute value of x1 is strictly smaller than
the absolute value of x in the original non-trivial solution (x, y, z).

We leave it to the reader to check that if we start with a non-trivial solution of x4 − y4 = z2

such that x is odd and y is even, the same argument will also lead us to another non-trivial solution
such that the absolute value of x decreases. So we will obtain an infinite sequence of non-trivial
solutions (x, y, z), (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . . such that the |x| > |x1| > |x2| > |x3| > · · ·,
which is impossible. Therefore there is no non-trivial solution. Q.E.D.

Remark. (1) The algebraic variety X2 defined by the equation s4 + 4t4 = u2 is isomorphic to the
algebraic variety X1 defined by the equation x4 − y4 = z2 after the base field Q is extended to
Q( 4
√
−4). We have a morphism f : X1 → X2 given by

s 7→ z, t 7→ xy, u 7→ x4 + y4

and a morphism g : X2 → X1 given by

x 7→ s2 + 2t2, y 7→ s2 − 2t2, z 7→ 4stu .

What we showed above is that a nontrivial integral point (x, y, u) on X1 with x, y odd is the image
under g of a non-trivial integer point (s, t, u on X2, and the latter is the image of another non-trivial
integral point on X1 itself.

(2) After projectivising the two equations above to (x4 + y4− x2z2 = 0 and s4 + 4t4− s2u2 = 0
respectively, what we get are two elliptic curves E1 and E2 over Q with complex multiplication by
Q(
√
−1. The maps f and g above become multiplication by 1 +

√
−1 and 1 −

√
−1 respectively

over a suitable finite extension field of Q. Of course multiplication by 1 ±
√
−1 are defined over

Q. Rather they give a Q-rational map from E1 to E2 and a Q-rational map from E2 to E1. The
composition of the two maps is the Q-rational map “multiplication by 2”.

Relation with elliptic integrals

The Italian count Fagnano discovered a remarkable property of the arc length integral∫ r

0

dρ√
1− ρ4

of the lemniscate [(x− 1√
2
)2 + y2] · [(x+ 1√

2
)2 + y2] = 1

2 , using ρ =
√
x2 + y2 as the parameter. He

found that the change of variable ρ2 = 2ξ2

1+ξ4 leads to dρ√
1−ρ4

=
√

2 dξ√
1+ξ4

and

∫ r

0

dρ√
1− ρ4

=
√

2
∫ t

0

dξ√
1 + ξ4

, r2 =
2t2

1 + t4
.
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Similarly the change of variable ξ2 = 2η2

1−η4 leads to dξ√
1+ξ4

=
√

2 dη√
1−η4

and

∫ t

0

dξ√
1 + ξ4

=
√

2
∫ u

0

dη√
1− η4

, t2 =
2u2

1− u4
.

Combining the two formulas we get a function r(u) r(u) = 2u
√

1−u4

1+u4 for doubling the arc length of
the arc length of the lemniscate, which is a rational function in u and

√
1− u4:

2
∫ u

0

dt√
1− t4

=
∫ r(u)

0

dt√
1− t4

, r2 =
4u2(1− u4)
(1 + u4)2

.

We can rewrite the first two formulas with complex number to bring the complex multiplication to
focus: ∫ r

0

dρ√
1− ρ4

= (1±
√
−1)

∫ v

0

dψ√
1− ψ4

, r =
±2
√
−1v2

1− v4
.

Remark. The parallel between Fermat’s infinite descent for x4−y4 = z2 and the above is remark-
able. Of course it is not a coincidence. We have z

x2 =
√

1− (y/x)4, so the curve defined by the
algebraic function

√
1− t4 is isomorphic to E1 over Q. The curve defined by the algebraic function√

1 + t4 is isomorphic to E2 over R but not over Q, because one has extracted the square root of 2
in the change of variable formula ρ2 = 2ξ2√

1+ξ4
.

In 1751, Fagnano’s collection of papers Produzioni Mathematiche reached the Berlin Academy,
Euler was asked to examine the book and draft a letter to thank Count Fagnano. Soon Euler
discovered the addition formula∫ r

0

dρ√
1− ρ4

=
∫ u

0

dη√
1− η4

+
∫ v

0

dψ√
1− ψ4

, r =
u
√

1− v4 + v
√

1− u4

1 + u2v2
.

and the theory of elliptic functions was born. Notice that r is a rational function in u,
√

1− u4, v
and

√
1− v4. Euler’s formula amounts to the group law on the elliptic curve E1 corresponding to

the algebraic function
√

1− t4 of t.

§3. Zeta and L-values

Euler’s evaluation of zeta values. The Riemann zeta function ζ(s) is defined by the formula

ζ(s) =
∞∑

n=1

1
ns
.

The integral converges absolutely for Re(s) > 1. Euler computed the value of ζ(−k), k ∈ N>0

as follows. First he inserts a factor tk, so that the resulting series converges for |t| < 1, then he
evaluates it at t = 1:

ζ(−k) =
∞∑

n=1

nk =

( ∞∑
n=1

nktn

)∣∣∣∣∣
t=1
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From
(
t d
dt

)k
tn = nktn, we get

ζ(−k) =
(
t
d

dt

)k
( ∞∑

n=1

tn

)∣∣∣∣∣
t=1

=
(
t
d

dt

)k ( t

1− t

)∣∣∣∣∣
t=1

Change the variable and set t = ex, so t d
dt = d

dx , we see that

ζ(−k) =
(
d

dx

)k ( ex

1− ex

)∣∣∣∣∣
x=0

= −(k + 1)Bk+1

for k ∈ N>0 by the definition of Bernouli numbers. In particular ζ(−k) ∈ Q and ζ(−2k) = 0 for all
positive integer k.

The standard justification to make sense of values of ζ(s) for s to the left of Re(s) = 1 is that
ζ(s) extends to a meromorphic function on the whole complex plane C with s = 1 as the only pole.
Moreover ζ(s) satisfies a function equation which relates ζ(s) to ζ(1− s):

π−s/2 Γ(s/2) ζ(s) = π−(1−s)/2 Γ((1− s)/2) ζ((1− s)/2) ,

where Γ(s) =
∫∞
0 e−xxs dx

x is the Gamma function with Γ(n+ 1) = n! for every positive integer n.
In particular the values of ζ(s) at odd negative integers are related to the values at even positive
integers.

Some numerical examples.

• ζ(0) = −1
2

• ζ(−1) = − 1
22×3

• ζ(−3) = − 1
23×3×5

• ζ(−11) = 691
23×32×5×7×13

L-functions. The Riemann zeta function has many cousins. For historical reasons they are also
called L-functions because that was the notation used by Dirichlet. Let N be a positive integer,
and let

χ : (Z/NZ)× → C×

be a Dirichlet character modulo N . That means χ is a function from integers prime to N to C×
such that χ(n1) = χ(n2) if n1 ≡ n2 (mod N) and χ(n1n2) = χ(n1n2). For instance when N = 4,
there exists exactly one non-trivial Dirichlet character ε4: ε4(1 (mod 4)) = 1, ε4(3 (mod 4)) = −1.
The Dirichlet L-function attached to a Dirichlet character χ modulo N is defined by

L(s, χ) =
∞∑

n=1

χ(n)
ns

where we set χ(n) = 0 if n is not prime to N . Just like the Riemann zeta function, the Dirichlet L-
functions have meromorphic continuation and functional equations relating L(s, χ) to L(1− s, χ).
Their values at non-positive integers and positive integers k such that χ(−1) = (−1)k can be
computed by Euler’s method. For instance when the conductor N = 4, we have

• L(1, ε4) = 1− 1
3 + 1

5 −
1
7 + 1

9 −
1
11 + · · · = π

4

• L(3, ε4) = 1− 1
33 + 1

53 − 1
73 + 1

93 − 1
113 + · · · = π3

32
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Magical properties of zeta. Although it is not easy to define what number theory is, there is
a sort of “litmus test”: number theorists got excited by zeta and L-functions. Many arithmetic
properties are encoded in the zeta and L-functions like magic. We illustrate some of them.
Non-vanishing of zeta functions.

• Dirichlet’s famous theorem that there are infinitely many prime numbers in any arithmetic
progression amounts to L(1, χ) 6= 0.

• Similarly the Prime number theorem, which asserts that the number of prime numbers up to
a real number x is asymptotic to x

log x amounts to the non-vanishing of ζ(s) at the critical
line Re(s) = 1.

Arithmetic properties of special zeta values.

I. We have seen examples that the “essential part” of certain special zeta and L-values are rational
number. For instance, the value of the Riemann zeta function at negative integers are rational
numbers, while their value at even positive integers are rational numbers times suitable powers of
π. (These powers of π are the transcendental part of the special value which come from “periods”.)

II. The special values often have unexpected (“deep”) arithmetic meaning. For instance, the
special value L(1, ε4) tells us that the Gaussian integers Z[

√
−1] is a unique factorization domain.

The formula we saw for R3(n), the number of primitive solutions of the Diophantine equation
x2

1 +x2
2 +x3

3 = n, is closely related to the values L(1, χ) for Dirichlet characters χ such that χ2 = 1
and χ(−1) = −1.

III. The special zeta values have nice p-adic properties. An example is the classical Kummer
congruence. Let p be an odd prime number.

(a) For every negative (or non-positive) integer m such that m 6≡ 1 (mod p−1), the denominator
of ζ(m) is prime to p.

Illustration. The prime factors of the denominators of ζ(−11) are 2, 3, 5, 7, 13, exactly
those primes p such that −11 ≡ 1 mod p− 1.

(b) If m1,m2 are non-positive integers such that m1 ≡ m2 6≡ 1 (mod p− 1), then the numerator
of ζ(m1)− ζ(m2) is divisible by p.

As another example, the prime factor 691 of the numerator of ζ(−11) implies that 691 divides the
class number of Q(e2π

√
−1/691).

IV. L-functions are closely related to modular forms. Sometimes special values appear as (the main
part of) Fourier coefficients of modular forms; this connection is especially fruitful for investigating
p-adic properties of special L-values. Another connection is best viewed through the Langlands
program which merges

GRH. Finally we mention one of the great challenges in number theory, the Riemann Hypothesis,
which asserts that all non-trivial zeroes of ζ(s) (i.e. those with 0 < Re(s) < 1) have Re(s) = 1

2 . This
statement is equivalent to a statement about the error term for the distribution of prime numbers.6

The Grand Riemann Hypothesis is a similar statement for more general zeta and L-functions.

6The main term log x/x is given by the prime number theorem.
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§4. Modular forms

Modular forms are very special functions on the upper half plane. They are tightly related to
zeta and L-functions one the one hand, and to interesting arithmetic properties on the other hand,
especially to elliptic curves. We will only scratch the surface to wrap up this talk and illustrate a key
point just mentioned, that modular forms are closely related to Diophantine equations, especially
when one studies statical properties. Modular forms occur in many other problems in mathematics
as well; we refer the interested readers to [4].
Definition. Let N be a positive integers, and k be either a positive integer or a positive half-
integer. A modular form of weight k and level N is a holomorphic function f : H → C on the upper
half plane H satisfying the following properties.

• For any τ ∈ H and any
(
a b

c d

)
∈ ΓN ⊂ SL2(Z) we have

f

(
aτ + b

cτ + d

)
= (cτ + d)k f(τ) .

• f(τ) is holomorphic at infinity.

Here ΓN consists of all
(
a b

c d

)
∈ SL2(Z) such that a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N).

The precise definition of holomorphic at infinity is a bit long; we refer the reader to [6]. A modular
form f(τ) as above has a Fourier expansion

f(τ) =
∞∑

n=0

an e
2π
√
−1n

N =
∞∑

n=0

an q
n/N ,

often called the q-expansion of f(τ), where qn/N = e
2π
√
−1n

N .

Examples.

• For every positive integer k, let

G2k(τ) =
∑′

m,n∈Z

1
(mτ + n)2k

.

This Eisenstein series is a modular form of weight 2k and level 1, whose q-expansion is

G2k(τ) = 2ζ(2k) + 2
(2π

√
−1)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) qn ,

where σ2k−1(n) =
∑

d|n d
2k−1. Notice that the constant term of G2k is a zeta-value.

• Put g2 = 60G2 , g3 = 140G3, ∆ = g3
2 − 27g2

3. The classical j-invariant is

j(τ) = (12)3g3
2/∆ =

1
q

+ 744 +
∞∑

n=1

c(n)qn

where every c(n) ∈ Z. For the Heegner numbers −d = −67,−163, the theory of complex mul-
tiplications tells us that j

(
1+
√
−d

2

)
∈ Z. The q-expansion of j(τ) tells us that the difference

between eπ
√

d and the nearest integer is
∑∞

n=1(−1)nc(n)e−nπ
√

d, a very small number.
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• ∆ = g3
2 − 27g2

3 vanishes at infinity; i.e. it is a cusp form of weight 12, and it is up to constant
the unique cusp form of weight 12. The normalized cusp form ∆′ = (2π)−12∆ admits a
product expansion

(2π)−12∆(τ) = q
∞∏

m=1

(1− qm)24 =
∞∑

n=1

τ(n)qn ,

where τ(n) are the Ramanujan numbers. The theory of Hecke operators give

τ(mn) = τ(m)τ(n) if gcd(m,n) = 1

and τ(pn) can be computed from τ(p) by recursion

τ(p)τ(pn) = τ(pn+1) + p11τ(pn−1)

if p is a prime number.

• Ramanujan conjectured that |τ(p)| ≤ 2p11/2 for every prime number p. This was proved by
Deligne in 1974 when he proved the Weil conjecture; it is one of the great achievements in
the 20th century.

• The L-function attached to the cusp form ∆′ admits an Euler product decomposition

L∆′(s) :=
∞∑

n=1

τ(n)n−s =
∏
p

1
(1− τ(p)p−s + p11−2s)

.

Moreover it extends to an entire function on C and

(2π)−s Γ(s)L∆′(s) = (2π)12−s Γ(12− s)L∆′(12− s) .

Similar properties hold for more general primitive cusp forms.

• θ(τ) =
∑

m∈Z e
π
√
−1m2τ , the Jacobi theta series. It is a modular form of weight 1/2 and level

4. We have
θ(τ)k =

∑
n∈Z

rk(n) eπ
√
−1nτ

where rk(n) is the number of ways to represent n as a sum of k squares. Explicit formulas for
r2(n), r4(n) and r3(n) can be obtained by expressing θ(τ)k in terms of other modular forms.

• Elliptic curves over Q provide another source for modular forms. Let E be an elliptic curve
over Q. Let LE(s) be the Dirichlet series

LE(s) :=
∏
p

1
(1− app−s + p1−2s)

=
∑
n≥1

an n
−s

where the integers ap are determined by7

CardE(Fp) = 1 + p− ap

7Strictly speaking, the formula below is correct only when the elliptic curve E has good reduction at p.
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Let fE(τ) =
∑

n≥1 an q
n. The modularity conjecture asserts that fE is a modular form of

weight 2. In 1994 A. Wiles and R. Taylor proved the modularity conjecture when E has
semistable reduction, from which Fermat’s Last Theorem follows. The modularity conjecture
was subsequently settled by C. Breuil, B. Conrad, F. Diamond and R. Taylor following the
same train of ideas.

• Let E be an elliptic curve over Q as above. Hasse showed that ap ≤ 2
√
p for each prime

number p. The Sato-Tate conjecture asserts that the family of real numbers {ap/
√
p} is

equidistributed in [−2, 2] with respect to the measure 1
2π

√
4− t2dt, i.e.

lim
x→∞

1
Card{p : p ≤ x}

∑
p≤x

f(ap/
√
p) =

1
2π

∫ 2

−2
f(t)

√
4− t2dt

for every continuous function f(t) on [−2, 2]. This statement was not known for a single
elliptic curve over Q until the Sato-Tate conjecture was proved by R. Taylor in 2006.

Number theory is not standing still!

Further Challenge. The key to the proof of the modularity conjecture and the Sato-Tate conjec-
ture is to show certain families of Dirichlet series come from modular forms. Extending the method
to other more general Dirichlet series is another great challenge in number theory.
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