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CHRONOLOGICAL TABLE

Euclid ∼300 B.C.E. Galois 1811–1832

Diophantus ∼300 C.E. Hermite 1822–1901

Brahmagupta ∼600 C.E. Eisenstein 1823–1852

Qin Jiushao 1202–1261 Kronecker 1823–1891

Fermat 1601–1665 Riemann 1826–1866

Euler 1707–1783 Dedekind 1831–1916

Lagrange 1736–1813 Weber 1842–1913

Legendre 1752–1833 Hensel 1861–1941

Gauss 1777–1855 Hilbert 1862–1943

Abel 1802–1829 Takagi 1875–1960

Jacobi 1804–1851 Hecke 1887–1947

Dirichlet 1805–1859 Artin 1898–1962

Kummer 1810–1893 Hasse 1898–1979
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§1. Examples

Some numbers

• 2, the only even prime number.

•
√

2, the Pythagora’s number, often the first irrational

numbers one learns in school.

•
√
−1, the first imaginary number one encountered.

• 1+
√

5
2 , the golden number , a root of the quadratic

polynomial x2 − x− 1.
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• e = exp(1) =
∑∞

n=0
1
n! , the base of the natural

logarithm.

• π, area of a circle of radius 1. Zu Chungzhi

(429–500) gave two approximating fractions,

22
7

355
113

and obtained that

3.1415926 < π < 3.1415927

• 1729 = 123 + 13 = 103 + 93,

the taxi cab number .

• 30, the largest positive integer m such that every

positive integer between 2 and m and relatively prime

to m is a prime number.
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Some families of numbers

• 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, . . .

the triangular numbers

∆n =
n(n+ 1)

2

• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . .

the prime numbers .

• 2p − 1, the Mersenne numbers . If M = 2p − 1 is

a prime number (a Mersenne prime), then

∆M =
1
2
M(M + 1) = 2p−1(2p − 1)

is an even perfect number .
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• 3, 5, 17, 257, 65537, 4294967297

the Fermat numbers ,

Fr = 22r
+ 1

Euler found in 1732 that

232 + 1 = 4294967297 = 641× 6700417

• The partition numbers p(n) with generating series

∞∑
n=0

p(n)xn =
∞∏

n=1

(1− xm)−1

e.g. (1, 1, 1, 1), (2, 1, 1, 1), (2, 2), (3, 1), (4) are

the five ways to partition 4, so p(4) = 5.

(Ramanujan) p(n) ∼ 1
4n
√

3
eπ
√

2n/3
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• 1,−24, 252,−1472, 4830,−6048, . . . ,

the first few of the Ramanujan numbers , defined by

∞∑
n=1

τ(n)xn = x

[ ∞∏
n=1

(1− xn)

]24

• The Bernouli numbers , defined by

x

ex − 1
=

∞∑
n=0

Bn x
n

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 ,

B8 = − 1
30 , B12 = − 691

2730 , B14 = 7
6 .
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• −1,−2,−3,−7,−11,−19,−43,−67,−163,

the nine Heegner numbers ; they are the only negative

integers −d such that the class number of the

imaginary quadratic fields Q(
√
−d) is equal to one.

For the larger Heegner numbers, eπ
√

d is close to an

integer.

eπ
√

67 = 147197952743.99999866

eπ
√

163=161537412640768743.99999999999925007
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Primes of the form Ax2 + By2

• (Fermat)

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4)

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 (mod 8)

p = x2 + 3y2 ⇐⇒ p = 3p or p ≡ 1 (mod 3)

• (Euler)

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

2p = x2 + 5y2 ⇐⇒ p ≡ 3, 7 (mod 20)

p = x2 + 14y2 or p = 2x2 + 7y2 ⇐⇒

p ≡ 1, 9, 15, 23, 25, 39 (mod 56)
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• p = x2 + 27y2 ⇐⇒ p ≡ 1 (mod 3) and 2 is
a cubic residue modulo p.

• p = x2 + 64y2 ⇐⇒ p ≡ 1 (mod 4) and 2 is
a biquadratic residue modulo p.

• (Kronecker)

p = x2+31y2 ⇐⇒ (x3−10x)2+31(x2−1)2 ≡ 0
(mod p) has an integer solution
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I. Some Diophantine equations

• The equation

x2 + y2 = z2

has lots of integer solutions. The primitive ones with x

odd and y even are given by the formula

x = s2 − t2, y = 2st, z = s2 + t2

• (Fermat) The equation

x4 − y4 = z2

has no non-trivial integer solution.
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• (Fermat’s Last Theorem)

xp + yp + zp = 0

has no non-trivial integer solution if p is an odd prime

number.

Proved by A. Wiles in 1994, more than 300 years after

Fermat wrote the assertion at the margin of his

personal copy of the 1670 edition of Diophantus.
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II. Some formulas discovered by Euler

• π
4 = 1− 1

3 + 1
5 −

1
7 + . . .

• 1 + 1
22 + 1

32 + 1
42 + . . . = π2

2

• 1 + 1
24 + 1

34 + 1
44 + . . . = π4

90

• 1− 2k + 3k − 4k + . . . = − (1−2k+1)
k+1 Bk+1

for k ≥ 1; in particular it vanishes if k is even.

• 1
π2k (1 + 1

22k + 1
32k + 1

42k + . . .) ∈ Q

for every integer k ≥ 1.
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III. Counting solutions.

For each integer k ≥ 1, let rk(n) be the number of

k-tuples (x1, . . . , xn) ∈ Zk such that

x2
1 + . . .+ x2

k = n .

• Sum of two squares.

Write n = 2f · n1 · n2, where every prime divisor of

n1 (resp. n2) is ≡ 1 (mod 4) (resp. ≡ 3
(mod 4)).

Fermat showed that r2(n) > 0 (i.e. n is a sum of two

squares) if and only if every prime divisor p of n2

occurs in n2 to an even power.

Assume this is the case, Jacobi obtained

r2(n) = 4d(n1)

where d(n1) is the number of divisors of n1.
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• Sum of four squares.

Lagrange showed that r4(n) > 0 for every n ∈ Z.

Jacobi obtained

r4(n) = 8σ′(n)

where σ′(n) is the sum of divisors of n which are not

divisible by 4.

• Sum of three squares.

Legendre showed that n is a sum of three squares if

and only if n is not of the form 4a(8m+ 7), and

r3(4an) = r3(n).

Let Rk(n) be the number of primitive solutions of

x2
1 + · · ·+ x2

k = n, i.e. gcd(x1, . . . , xk) = 1. Then

R3(n) =

 24
∑bn/4c

s=1

(
s
n

)
n ≡ 1 (mod 4)

8
∑bn/2c

s=1

(
s
n

)
n ≡ 3 (mod 8)
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§2. Fermat’s infinite descent

Fermat’s proof that

x4 − y4 = z2

has no non-trivial integer solution.

May assume gcd(x, y, z) = 1. The either x, y are

both odd, or x is odd and y is even. We will consider

only the first case that x, y are both odd .
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Step 1 . (x2 + y2) · (x2 − y2) = z2 =⇒∃u, v such

that gcd(u, v) = 1, x2 + y2 = 2u2, x2 − y2 = 2v2

and z = 2uv.

2v2 = (x+ y) · (x− y) =⇒∃r, s such that

x+ y = r2, x− y = 2s2, v = rs (adjust the signs).

The original equation becomes r4 + 4s4 = 4u2.

Write r = 2t, the equation becomes

s4 + 4t4 = u2

and we have

x = 2t2 + s2, y = 2t2 − s2, z = 4tsu ,

gcd(s, t, u) = 1.
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Step 2. s4 + 4t4 = u2, gcd(s, t, u) = 1

It is easy to see that u and s are both odd. May

assume u > 0.

4t2 = (u− s2)(u+ s2) =⇒∃a, b such that

u− s2 = 2b2, u+ s2 = 2a2, t2 = ab,

gcd(a, b) = 1.

t2 = ab=⇒∃x1, y1 such that a = x2
1, b = y2

1 and

t = x1y1.. It follows that u = x4
1 + y4

1 and

x4
1 − y4

1 = s2 .

Let z1 = s. Then (x1, y1, z1) is an integer solution of

the original equation x4 − y4 = z2, with |x1| strictly

smaller.
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Conclusion. Starting with a non-trivial solution, we

obtain an infinite sequence of non-trivial solutions

(x, y, z), (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . .
such that the |x| > |x1| > |x2| > |x3| > · · ·. That’s

impossible. Q.E.D.

(We leave it to the reader to check that if we start with a

non-trivial solution of x4 − y4 = z2 such that x is odd

and y is even, the same argument will also lead us to

another non-trivial solution such that the absolute value

of x decreases. )
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Remark. Consider algebraic varieties

X1 : x4 − y4 = z2 and X2 : s4 + 4t4 = u2; and

maps f : X1 → X2

f : (x, y, z) 7→ (s, t, u) = (z, xy, x4 + y4)

and g : X2 → X1

g : (s, t, u) 7→ (s2 + 2t2, s2 − 2t2, 4stu)

The varieties X1 and X2 correspond to elliptic curves

E1, E2 over Q with complex multiplication ; they

become isomorphic over Q( 4
√
−4).

The maps f, g correspond to “multiplication by

(1 +
√
−1) and (1−

√
−1)” respectively. Their

composition is “multiplication by 2”, defined over Q.
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Relation with elliptic integrals

• Fagnano considered the arc length integral∫ r

0

dρ√
1− ρ4

of the lemniscate

[(x− 1√
2
)2 + y2] · [(x+

1√
2
)2 + y2] =

1
2
,

using ρ =
√
x2 + y2 as the parameter.

1. ρ2 = 2ξ2

1+ξ4 leads to dρ√
1−ρ4

=
√

2 dξ√
1+ξ4

,

∫ r

0

dρ√
1− ρ4

=
√

2
∫ t

0

dξ√
1 + ξ4

,

where r2 = 2t2

1+t4
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2. ξ2 = 2η2

1−η4 leads to dξ√
1+ξ4

=
√

2 dη√
1−η4

,

∫ t

0

dξ√
1 + ξ4

=
√

2
∫ u

0

dη√
1− η4

,

where t2 = 2u2

1−u4

3. r(u) = 2u
√

1−u4

1+u4 doubles the arc length

2
∫ u

0

dt√
1− t4

=
∫ r(u)

0

dt√
1− t4

,

where r2 = 4u2(1−u4)
(1+u4)2

4. Rewrite:∫ r

0

dρ√
1− ρ4

= (1±
√
−1)

∫ v

0

dψ√
1− ψ4

where r = ±2
√
−1v2

1−v4 .
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• In 1751, inspired by Fagnano, Euler discovered the

addition formula∫ r

0

dρ√
1− ρ4

=
∫ u

0

dη√
1− η4

+
∫ v

0

dψ√
1− ψ4

where r = u
√

1−v4+v
√

1−u4

1+u2v2 , and the theory of

elliptic functions was born.

Notice that r is a rational function in u,
√

1− u4, v

and
√

1− v4.
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S3. Zeta and L-values

Euler’s evaluation of zeta values.

The Riemann zeta function ζ(s) is defined by

ζ(s) =
∞∑

n=1

1
ns
, Re(s) > 1

Insert a factor tk and evaluate at t = 1:

ζ(−k) =
∞∑

n=1

nk =

( ∞∑
n=1

nktn

)∣∣∣∣∣
t=1

From
(
t d
dt

)k
tn = nktn, we get

ζ(−k)=(t d
dt)

k(
P∞

n=1 tn)
˛̨̨
t=1

=(t d
dt)

k( t
1−t)

˛̨̨
t=1

Let t = ex, so t d
dt = d

dx ,

ζ(−k)=( d
dx)k

“
ex

1−ex

”˛̨̨
x=0

=−(k+1)Bk+1

for k > 0. Esp. ζ(−k) ∈ Q , ζ(−2k) = 0 ∀ k > 0.
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Remark. ζ(s) extends to a meromorphic function on

the whole complex plane C with s = 1 as the only

pole. Moreover ζ(s) satisfies a function equation

π−s/2 Γ(s/2) ζ(s)=π−(1−s)/2 Γ((1−s)/2) ζ((1−s)/2) ,

where Γ(s) =
∫∞
0 e−xxs dx

x is the Gamma function

with Γ(n+ 1) = n! for each positive integer n.

In particular the values of ζ(s) at odd negative integers

are related to the values at even positive integers.

Numerical examples .

• ζ(0) = −1
2

• ζ(−1) = − 1
22×3

• ζ(−3) = − 1
23×3×5

• ζ(−11) = 691
23×32×5×7×13
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L-functions . The Riemann zeta function has many

cousins. Let N be a positive integer, and let

χ : (Z/NZ)× → C×

be a Dirichlet character modulo N . That means χ is a

function from integers prime to N to C× such that

χ(n1) = χ(n2) if n1 ≡ n2 (mod N) and

χ(n1n2) = χ(n1n2).

For instance when N = 4, there is exactly one

non-trivial Dirichlet character ε4:

ε4(1 (mod4)) = 1, ε4(3 (mod4)) = −1

The Dirichlet L-function attached to χ is

L(s, χ) =
∞∑

n=1

χ(n)
ns

where we set χ(n) = 0 if n is not prime to N .
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The Dirichlet L-functions also have meromorphic

continuation and functional equations relating L(s, χ)
to L(1− s, χ). Their values at non-positive integers

and positive integers k such that χ(−1) = (−1)k

can be computed by Euler’s method.

For instance when the conductor N = 4, we have

L(1, ε4) = 1− 1
3

+
1
5
− 1

7
+

1
9
− 1

11
+ · · · = π

4

L(3, ε4) = 1− 1
33

+
1
53
− 1

73
+

1
93
− · · ·

=
π3

32
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Magical properties of zeta .

I. Non-vanishing of zeta functions.

• Dirichlet’s famous theorem that there are infinitely

many prime numbers in any arithmetic progression

amounts to L(1, χ) 6= 0.

• Similarly the Prime number theorem, which asserts

that the number of prime numbers up to a real number

x is asymptotic to x
log x amounts to the non-vanishing

of ζ(s) at the critical line Re(s) = 1.

II. Rationality The “essential part” of certain special

zeta and L-values are rational number.

E.g. ζ(0), ζ(−1), ζ(−3), ζ(−5), . . . ∈ Q,

ζ(2), ζ(4), ζ(6), . . . ∈ π2NQ.
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III. Arithmetic info encoded in special values.

• For instance, the special value L(1, ε4) tells us that

the Gaussian integers Z[
√
−1] is a unique

factorization domain.

• The formula for R3(n), the number of primitive

solutions of the Diophantine equation

x2
1 + x2

2 + x3
3 = n, is closely related to the values

L(1, χ) for Dirichlet characters χ such that χ2 = 1
and χ(−1) = −1.
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IV. p-adic properties of special values.

EXAMPLE 1. (Kummer congruence)

(a) For every non-positive integer m with m 6≡ 1
(mod p− 1), the denominator of ζ(m) is prime to p.

ILLUSTRATION. The prime factors of the denominators

of ζ(−11) are 2, 3, 5, 7, 13, exactly those primes p

such that −11 ≡ 1 mod p− 1.

(b) If m1,m2 are non-positive integers such that

m1 ≡ m2 6≡ 1 (mod p− 1), then the numerator of

ζ(m1)− ζ(m2) is divisible by p.

EXAMPLE 2. The prime factor 691 of the numerator of

ζ(−11) implies that 691 divides the class number of

Q(e2π
√
−1/691).
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V. Close relation to modular forms

(a) Sometimes special values appear as (the main part

of) Fourier coefficients of modular forms—fruitful for

p-adic properties of special L-values.

(b) This connection is part of the Langlands program .

Challenge: GRH .

Riemann Hypothesis : All non-trivial zeroes of ζ(s)
(i.e. those with 0 < Re(s) < 1) have Re(s) = 1

2

(Equivalent to a statement about the error term for the

distribution of prime numbers.)

The Grand Riemann Hypothesis is a similar

statement for more general zeta and L-functions.
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S4. Modular forms.

Definition. Let N ∈ N+, k ∈ (1/2)N+. A modular

form of weight k and level N is a holomorphic

function f : H → C on the upper half plane H s.t.

• ∀ τ ∈ H and ∀ a, b, c, d ∈ Z with ad− bc = 1,

a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N),

we have

f

(
aτ + b

cτ + d

)
= (cτ + d)k f(τ) .

• f(τ) is holomorphic at infinity.

Such a modular form f(τ) has a q-expansion

f(τ) =
∞∑

n=0

an e
2π
√
−1n

N =
∞∑

n=0

an q
n/N ,

where qn/N = e
2π
√
−1n

N .
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Examples.

• For every positive integer k, let

G2k(τ)=

∑′

m,n∈Z
1

(mτ+n)2k .

This Eisenstein series is a modular form of weight 2k
and level 1, whose q-expansion is

G2k(τ)=2ζ(2k)+2
(2π

√
−1)2k

(2k−1)!

P∞
n=1 σ2k−1(n) qn ,

where σ2k−1(n) =
∑

d|n d
2k−1.

Notice that the constant term of G2k is a zeta-value.

• Put g2 = 60G2 , g3 = 140G3,

∆ = g3
2 − 27g2

3 . The classical j-invariant is

j(τ) = (12)3g3
2/∆ =

1
q

+ 744 +
∞∑

n=1

c(n)qn

where every c(n) ∈ Z.

32



• For the Heegner numbers −d = −67,−163, the

theory of complex multiplications tells us that

j
(

1+
√
−d

2

)
∈ Z. The q-expansion of j(τ) tells us

that the difference between eπ
√

d and the nearest

integer is
∑∞

n=1(−1)nc(n)e−nπ
√

d, a pretty small

number.

• θ(τ) =
∑

m∈Z e
π
√
−1m2τ , the Jacobi theta

series. It is a modular form of weight 1/2 and level 4.

We have

θ(τ)k =
∑
n∈Z

rk(n) eπ
√
−1nτ

where rk(n) is the number of ways to represent n as a

sum of k squares. Explicit formulas for r2(n), r4(n)
and r3(n) can be obtained by expressing θ(τ)k in

terms of other modular forms.
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• ∆ = g3
2 − 27g2

3 vanishes at infinity; i.e. it is a cusp

form of weight 12, and it is up to constant the unique

cusp form of weight 12.

• The normalized cusp form ∆′ = (2π)−12∆ admits

a product expansion

∆′(τ) = q
∞∏

m=1

(1− qm)24 =
∞∑

n=1

τ(n)qn ,

where τ(n) are the Ramanujan numbers.

The theory of Hecke operators give

τ(mn) = τ(m)τ(n) if gcd(m,n) = 1

and τ(pn) can be computed from τ(p) by recursion

τ(p)τ(pn) = τ(pn+1) + p11τ(pn−1)

if p is a prime number.
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• Ramanujan conjectured that |τ(p)| ≤ 2p11/2 for

every prime number p. This was proved by Deligne in

1974 when he proved the Weil conjecture; it is one of

the great achievements in the 20th century.

• The L-function attached to the cusp form ∆′ admits

an Euler product decomposition

L∆′ (s):=
P∞

n=1 τ(n)n−s=
Q

p
1

(1−τ(p)p−s+p11−2s)
.

Moreover it extends to an entire function on C and

(2π)−s Γ(s) L∆′ (s)=(2π)12−s Γ(12−s) L∆′ (12−s) .

Similar properties hold for more general primitive cusp

forms.
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• Elliptic curves over Q provide another source for

modular forms.

Let E be an elliptic curve over Q. Let

LE(s) :=
Q

p
1

(1−app−s+p1−2s)
=

P
n≥1 an n−s

#E(Fp) = 1 + p− ap

Let

fE(τ) =
∑
n≥1

an q
n .

The modularity conjecture asserts that fE is a

modular form of weight 2.

In 1994 A. Wiles and R. Taylor proved the modularity

conjecture when E has semistable reduction, from

which Fermat’s Last Theorem follows. The modularity

conjecture was subsequently settled by C. Breuil, B.

Conrad, F. Diamond and R. Taylor.
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• Let E be an elliptic curve over Q without complex

multiplication .

(Hasse): ap ≤ 2
√
p ∀ prime number p

The Sato-Tate conjecture asserts that the family of

real numbers {ap/
√
p} is equidistributed in [−2, 2]

with respect to the measure 1
2π

√
4− t2dt, i.e.

limx→∞
1

#{p:p≤x}
P

p≤x f(ap/
√

p)= 1
2π

R 2
−2 f(t)

√
4−t2dt

for every continuous function f(t) on [−2, 2].

This statement was not known for a single elliptic

curve over Q until the Sato Tate conjecture was proved

by R. Taylor in 2006.

Number theory is not standing still!
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Further Challenge . The key to the proof of the

modularity conjecture and the Sato-Tate conjecture is

to show certain families of Dirichlet series come from

modular forms. Extending the method to other more

general Dirichlet series is another great challenge in

number theory.
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