Geometry and Numbers

Ching-Li Chai

Institute of Mathematics
Academia Sinica
and
Department of Mathematics
University of Pennsylvania

National Chiao Tung University, July 6, 2012

Outline

1 Sample arithmetic statements

- Diophantine equations
- Counting solutions of a diophantine equation
- Counting congruence solutions
- L-functions and distribution of prime numbers
- Zeta and L-values

2 Sample of geometric structures and symmetries

- Elliptic curve basics
- Modular forms, modular curves and Hecke symmetry

■ Complex multiplication
■ Frobenius symmetry

- Monodromy
- Fine structure in characteristic p

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions $=$ L-functions;
modular forms $=$ automorphic representations.
(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions = L-functions; modular forms $=$ automorphic representations.
(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.

The general theme

Geometry and symmetry influences arithmetic through zeta functions and modular forms

Remark. (i) zeta functions = L-functions; modular forms $=$ automorphic representations.
(ii) There are two kinds of L-functions, from harmonic analysis and arithmetic respectively.

Fermat's infinite descent

Geometry and Numbers

Ching-Li Chai

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation
does not have any non-trivial integer solution.
Remark. (i) The above equation can be "projectivized" to $x^{4}-y^{4}=x^{2} z^{2}$, which gives an elliptic curve E with complex multiplication by $\mathbb{Z}[\sqrt{-1}]$.

Fermat's infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation

$$
x^{4}-y^{4}=z^{2}
$$

does not have any non-trivial integer solution.

Fermat's infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the diophantine equation

$$
x^{4}-y^{4}=z^{2}
$$

does not have any non-trivial integer solution.
Remark. (i) The above equation can be "projectivized" to $x^{4}-y^{4}=x^{2} z^{2}$, which gives an elliptic curve E with complex multiplication by $\mathbb{Z}[\sqrt{-1}]$.

Geometry and Numbers

Ching-Li Chai

Sample arithmetic

 statementsDiophantine equations
Counting solutions of a diophantine equation

Counting congruence solutions
L-functions and distribution of prime numbers

Zeta and L-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms modular curves and Hecke symmetry

Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Figure: Fermat

Fermat's infinite descent continued

(ii) Idea: Show that every non-trivial rational point $P \in E(\mathbb{Q})$ is the image $[2]_{E}$ of another "smaller" rational point.
(Construct another rational variety X and maps $f: E \rightarrow X$ and $g: X \rightarrow E$ such that $g \circ f=[2]_{E}$ and descent in two stages. Here X is a twist of E, and f, g corresponds to $[1+\sqrt{-1}]$ and $[1-\sqrt{-1}]$ respectively.)

Interlude: Euler's addition formula

In 1751, Fagnano's collection of papers Produzioni
Mathematiche reached the Berlin Academy. Euler was asked to examine the book and draft a letter to thank Count Fagnano. Soon Euler discovered the addition formula

$$
\int_{0}^{r} \frac{d \rho}{\sqrt{1-\rho^{4}}}=\int_{0}^{u} \frac{d \eta}{\sqrt{1-\eta^{4}}}+\int_{0}^{v} \frac{d \psi}{\sqrt{1-\psi^{4}}}
$$

where

$$
r=\frac{u \sqrt{1-v^{4}}+v \sqrt{1-u^{4}}}{1+u^{2} v^{2}}
$$

Diophantine equations
Counting solutions of
drophantine equation
Counting congrauence shlutiony L-functions and distribution of prime numbers
Zeta and L-values

Geometry and Numbers

Ching-Li Chai

Sample arithmetic

statements

Diophantine equations
Counting solutions of:
diophantine equation
Counting conartuenee colutions
L-functions and distribution of prime numbers

Zeta and I-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forme modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Figure: Euler

Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For $n, k \in \mathbb{N}$, let

$$
r_{k}(n):=\#\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{n}: x_{1}^{2}+\cdots+x_{k}^{2}=n\right\}
$$

be the number of ways to represent n as a sum of k squares.

where $n=2^{f} \cdot n_{1} \cdot n_{2}$, and every prime divisor of n_{1} (resp. n_{2}) is $\equiv 1(\bmod 4)(\operatorname{resp} . \equiv 3(\bmod 4))$.

Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For $n, k \in \mathbb{N}$, let

$$
r_{k}(n):=\#\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{n}: x_{1}^{2}+\cdots+x_{k}^{2}=n\right\}
$$

be the number of ways to represent n as a sum of k squares.
(i) $r_{2}(n)=4 \cdot \sum_{d \mid n, n \text { odd }}(-1)^{(d-1) / 2}= \begin{cases}0 & \text { if } n_{2} \neq \square \\ \sum_{d \mid n_{1}} 1 & \text { if } n_{2}=\square\end{cases}$
where $n=2^{f} \cdot n_{1} \cdot n_{2}$, and every prime divisor of n_{1} (resp. n_{2}) is $\equiv 1(\bmod 4)($ resp. $\equiv 3(\bmod 4))$.

Counting solutions of a diophantine equation
Counting congruence solutions

Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For $n, k \in \mathbb{N}$, let

$$
r_{k}(n):=\#\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{n}: x_{1}^{2}+\cdots+x_{k}^{2}=n\right\}
$$

be the number of ways to represent n as a sum of k squares.
(i) $r_{2}(n)=4 \cdot \sum_{d \mid n, n \text { odd }}(-1)^{(d-1) / 2}= \begin{cases}0 & \text { if } n_{2} \neq \square \\ \sum_{d \mid n_{1}} 1 & \text { if } n_{2}=\square\end{cases}$
where $n=2^{f} \cdot n_{1} \cdot n_{2}$, and every prime divisor of n_{1} (resp. n_{2}) is $\equiv 1(\bmod 4)($ resp. $\equiv 3(\bmod 4))$.
(ii) $r_{4}(n)= \begin{cases}8 \cdot \sum_{d \mid n} d & \text { if } n \text { is odd } \\ 24 \cdot \sum_{d \mid n, d \text { odd }} d & \text { if } n \text { is even }\end{cases}$

Counting solutions of a diophantine equation

How to count number of sum of squares

Method. Explicitly identify the theta series

$$
\theta^{k}(\tau)=\left(\sum_{m \in \mathbb{N}} q^{m^{2}}\right)^{k} \quad \text { where } q=e^{2 \pi \sqrt{-1} \tau}
$$

with modular forms obtained in a different way, such as Eisenstein series.

Counting congruence solutions

Geometry and Numbers

Ching-Li Chai
3. Counting congruence solutions and L-functions
(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p
(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with
an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

Sample arithmetic

 statementsDiophantine equations Counting solutions of a diophantine equation

Counting congruence solutions L-functions and distribution of prime numbers
Zeta and L-values
Sample of geometric structures and symmetries

Elliptic curve basics
Modular forms, modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Counting congruence solutions

Geometry and Numbers

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p
(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies)
an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p
(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies)
an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p
(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies)
with
an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given diophantine equation modulo a (fixed) prime number p
(b) Identify the L-function for a given diophantine equation (basically the generating function for the number of congruence solutions modulo p as p varies) with
an L-function coming from harmonic analysis. (The latter is associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.

The Riemann zeta function

Geometry and Numbers

Ching-Li Chai
4. L-functions and the the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function $\zeta(s)$ is a
meromorphic function on \mathbb{C} with only a simple pole at $s=0$,

such that the function $\xi(s)=\pi^{-s / 2} \cdot \Gamma(s / 2) \cdot \zeta(s)$ satisfies

$$
\xi(1-s)=\xi(s)
$$

Sample arithmetic

Diophantine equations
Counting solutions of a
diophantine equation

L-functions and distribution of prime numbers
Zeta and L-values
Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms: modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

The Riemann zeta function

4. L-functions and the the distribution of prime numbers for a given diophantine problem

Examples. (i) The Riemann zeta function $\zeta(s)$ is a meromorphic function on \mathbb{C} with only a simple pole at $s=0$,

$$
\zeta(s)=\sum_{n \geq 1} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1} \quad \text { for } \operatorname{Re}(s)>1
$$

such that the function $\xi(s)=\pi^{-s / 2} \cdot \Gamma(s / 2) \cdot \zeta(s)$ satisfies

$$
\xi(1-s)=\xi(s) .
$$

Geometry and Numbers

Ching-Li Chai

Sample arithmetic

statements

Diophantine equations
Counting solutions of a
diophantine equation
Counting congruence solutions
L-functions and distribution of prime numbers

Zeta and L-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms modular
curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Figure: Riemann

Dirichlet L-functions

(ii) Similar properties hold for the Dirichlet L-function

$$
L(\chi, s)=\sum_{n \in N,(n, N)=1} \chi(n) \cdot n^{-s} \quad \operatorname{Re}(s)>1
$$

for a primitive Dirichlet character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$.

Geometry and Numbers

Ching-Li Chai

Sample arithmetic statements

Diophantine equations
Counting solutions of a
diophantine equation
Counting congruence solutions
L-functions and distribution of prime numbers
Zeta and L-values
Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms, modular
curves and Hecke symmetry
Complex multiplication
Frobenins symmetry
Monodromy
Fine structure in characteristic

Figure: Dirichlet

L-functions and distribution of prime numbers

(a) Dirichlet's theorem for primes in arithmetic progression $\leftrightarrow L(\chi, 1) \neq 0 \forall$ Dirichlet character χ.
(b) The prime number theorem
\leftrightarrow zero free region of $\zeta(s)$ near $\{\operatorname{Re}(s)=1\}$.
(c) Riemann's hynothesis \leftrightarrow the first term after the main term
in the asymptotic expansion of $\zeta(s)$.

L-functions and distribution of prime numbers

(a) Dirichlet's theorem for primes in arithmetic progression $\leftrightarrow L(\chi, 1) \neq 0 \forall$ Dirichlet character χ.
(b) The prime number theorem
\leftrightarrow zero free region of $\zeta(s)$ near $\{\operatorname{Re}(s)=1\}$.
(c) Riemann's hypothesis \leftrightarrow the first term after the main term
in the asymptotic expansion of $\zeta(s)$.

L-functions and distribution of prime numbers

Zeta and L-values

L-functions and distribution of prime numbers

(a) Dirichlet's theorem for primes in arithmetic progression $\leftrightarrow L(\chi, 1) \neq 0 \forall$ Dirichlet character χ.
(b) The prime number theorem
\leftrightarrow zero free region of $\zeta(s)$ near $\{\operatorname{Re}(s)=1\}$.
(c) Riemann's hypothesis \leftrightarrow the first term after the main term in the asymptotic expansion of $\zeta(s)$.

Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_{n} are defined by

$$
\frac{x}{e^{x}-1}=\sum_{n \in \mathbb{N}} \frac{B_{n}}{n!} \cdot x^{n}
$$

$B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{4}=-1 / 30, B_{6}=1 / 42$,
$B_{8}=-1 / 30, B_{10}=5 / 66, B_{12}=-691 / 2730$.
(i) (Euler) $\zeta(1-k)=-B_{k} / k \quad \forall$ even integer $k>0$.
(ii) (Leibniz's formula, 1678; Madhava, ~ 1400)

Bernoulli numbers and zeta values

Numbers

5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_{n} are defined by

$$
\frac{x}{e^{x}-1}=\sum_{n \in \mathbb{N}} \frac{B_{n}}{n!} \cdot x^{n}
$$

$B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{4}=-1 / 30, B_{6}=1 / 42$,
$B_{8}=-1 / 30, B_{10}=5 / 66, B_{12}=-691 / 2730$.
(i) (Euler) $\zeta(1-k)=-B_{k} / k \quad \forall$ even integer $k>0$.
(ii) (Leibniz's formula, 1678; Madhava, ~ 1400) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$

Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for \mathbb{Q}.
Recall that the Bernoulli numbers B_{n} are defined by

$$
\frac{x}{e^{x}-1}=\sum_{n \in \mathbb{N}} \frac{B_{n}}{n!} \cdot x^{n}
$$

$B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{4}=-1 / 30, B_{6}=1 / 42$,
$B_{8}=-1 / 30, B_{10}=5 / 66, B_{12}=-691 / 2730$.
(i) (Euler) $\zeta(1-k)=-B_{k} / k \quad \forall$ even integer $k>0$.
(ii) (Leibniz's formula, 1678; Madhava, ~ 1400)

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}
$$

Content of L-values

(b) L-values often contain deep arithmetic/geometric information.
(i) Leibniz's formula: $\mathbb{Z}[\sqrt{-1}]$ is a PID (because the formula implies that the class number $h(\mathbb{Q}(\sqrt{-1}))$ is 1$)$.
(ii) B_{k} / k appears in the formula for the number of (isomorphism classes of) exotic ($4 k-1$)-spheres.

Kummer congruence

(c) (Kummer congruence)
(i) $\zeta(m) \in \mathbb{Z}_{p}$ for $m \leq 0$ with $m \not \equiv 1(\bmod p-1)$
(ii) $\zeta(m) \equiv \zeta\left(m^{\prime}\right)(\bmod p) \quad$ for all $m, m^{\prime} \leq 0$ with $m \equiv m^{\prime} \not \equiv 1(\bmod p-1)$.

Examples.

Sample arithmetic

 statements
Diophantine equations

Counting solutions of a
diophantine equation
Counting congruence solutions L-functions and distribution of prime numbers

Zeta and L-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms: modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy

Kummer congruence

(c) (Kummer congruence)
(i) $\zeta(m) \in \mathbb{Z}_{p}$ for $m \leq 0$ with $m \not \equiv 1(\bmod p-1)$
(ii) $\zeta(m) \equiv \zeta\left(m^{\prime}\right)(\bmod p) \quad$ for all $m, m^{\prime} \leq 0$ with $m \equiv m^{\prime} \not \equiv 1(\bmod p-1)$.

Examples.

- $\zeta(-1)=-\frac{1}{2^{2} \cdot 3^{2}} ;-1 \equiv 1(\bmod p-1)$ only for $p=2,3$.
- $\zeta(-11)=\frac{691}{2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13} ;-11 \equiv 1(\bmod p-1)$ holds only for $p=2,3,5,7,13$.
- $\zeta(-5)=-\frac{1}{2^{2} \cdot 3^{2} \cdot 7} \equiv \zeta(-1)(\bmod 5)$.

Note that $3 \cdot 7 \equiv 1(\bmod 5)$.

Geometry and
Numbers
Ching-Li Chai

Sample arithmetic

statements

Diophantine equations
Counting solutions of a diophantine equation

Counting congruence solutions L-functions and distribution of prime numbers

Zeta and L-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forme modular curves and Hecke symmetry

Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Figure: Kummer

Elliptic curves basics

II. Sample of geometric structures and symmetries

1. Review of elliptic curves

Equivalent definitions of an elliptic curve E :

- a projective curve with an algebraic group law;
- a projective curve of genus one together with a rational point (= the origin);
■ over \mathbb{C} : a complex torus of the form $E_{\tau}=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, where $\tau \in \mathfrak{H}:=$ upper-half plane;
■ over a field F with $6 \in F^{\times}$: given by an affine equation

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad g_{2}, g_{3} \in F .
$$

Weistrass theory

Geometry and Numbers

Ching-Li Chai
For $E_{\tau}=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, let

$$
\begin{aligned}
x_{\tau}(z) & =\wp(\tau, z) \\
& =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left(\frac{1}{(z-m \tau-n)^{2}}-\frac{1}{(m \tau+n)^{2}}\right)
\end{aligned}
$$

$y_{\tau}(z)=\frac{d}{d_{z}} \wp(\tau, z)$
Then E_{τ} satisfies the Weistrass equation

Sample arithmetic

 statementsDiophantine equations
Counting solutions of a
diophantine equation
Counting congruence solutions L-functions and distribution of prime numbers

Zeta and L-values

Sample of geometric

 structures andsymmetries
Elliptic curve basics
Modular forms, modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

Weistrass theory

Numbers
Ching-Li Chai
For $E_{\tau}=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, let

$$
\begin{aligned}
x_{\tau}(z) & =\wp(\tau, z) \\
& =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left(\frac{1}{(z-m \tau-n)^{2}}-\frac{1}{(m \tau+n)^{2}}\right)
\end{aligned}
$$

$y_{\tau}(z)=\frac{d}{d z} \nprec(\tau, z)$
Then E_{τ} satisfies the Weistrass equation

$$
y_{\tau}^{2}=4 x_{\tau}^{3}-g_{2}(\tau) x_{\tau}-g_{3}(\tau)
$$

with

Weistrass theory

For $E_{\tau}=\mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$, let

$$
\begin{aligned}
x_{\tau}(z) & =\wp(\tau, z) \\
& =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left(\frac{1}{(z-m \tau-n)^{2}}-\frac{1}{(m \tau+n)^{2}}\right)
\end{aligned}
$$

$y_{\tau}(z)=\frac{d}{d z} \wp(\tau, z)$
Then E_{τ} satisfies the Weistrass equation

$$
y_{\tau}^{2}=4 x_{\tau}^{3}-g_{2}(\tau) x_{\tau}-g_{3}(\tau)
$$

with

$$
\begin{aligned}
& \square g_{2}(\tau)=60 \sum_{(0,0) \neq(m, n) \in \mathbb{Z}^{2}} \frac{1}{(m \tau+n)^{4}} \\
& g_{3}(\tau)=140 \sum_{(0,0) \neq(m, n) \in \mathbb{Z}^{2}} \frac{1}{(m \tau+n)^{6}}
\end{aligned}
$$

The j-invariant

Elliptic curves are classified by their j-invariant

$$
j=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

Over $\mathbb{C}, j\left(E_{\tau}\right)$ depends only on the lattice $\mathbb{Z} \tau+\mathbb{Z}$ of E_{τ}. is a modular function for $\operatorname{SL}_{2}(\mathbb{Z})$:

Geometry and Numbers

Ching-Li Chai

Sample arithmetic

 statementsDiophantine equations
Counting solutions of a diophantine equation
Counting congruence solutions L-funetions and distribution of prime numbers
Zeta and L-values

Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms, modular curves and Hecke symmetry
Complex multiplication
Frobenius symmetry
Monodromy
Fine structure in characteristic

We have a Fourier expansion

The j-invariant

Elliptic curves are classified by their j-invariant

$$
j=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

Over $\mathbb{C}, j\left(E_{\tau}\right)$ depends only on the lattice $\mathbb{Z} \tau+\mathbb{Z}$ of E_{τ}. $\operatorname{So} j(\tau)$ is a modular function for $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
j\left(\frac{a \tau+b}{c \tau+d}\right)=j(\tau)
$$

for all $a, b, c, d \in \mathbb{Z}$ with $a d-b c=1$.
We have a Fourier expansion

Geometry and Numbers

The j-invariant

Elliptic curves are classified by their j-invariant

$$
j=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

Over $\mathbb{C}, j\left(E_{\tau}\right)$ depends only on the lattice $\mathbb{Z} \tau+\mathbb{Z}$ of E_{τ}. $\operatorname{So} j(\tau)$ is a modular function for $\mathrm{SL}_{2}(\mathbb{Z})$:

$$
j\left(\frac{a \tau+b}{c \tau+d}\right)=j(\tau)
$$

for all $a, b, c, d \in \mathbb{Z}$ with $a d-b c=1$.
We have a Fourier expansion

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+\cdots
$$

where $q=q_{\tau}=e^{2 \pi \sqrt{-1} \tau}$.

Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv \mathrm{I}_{2}(\bmod N)$ for some N.
(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

and has moderate growth at all cusps.
(b) The quotient $Y_{\Gamma}:=\Gamma \backslash \pi$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.

Geometry and Numbers

Diophantine equations

Counting solutions of a diophantine equation
Counting congruence solutions L-functions and distribution of prime numbers
Zeta and L-values

Sample of geometric
structures and
symmetries

Modular forms, modular curves and Hecke symmetry

Complex multiplication
Frobenius symmetry
Monodromy
Finc structure in characteristic

Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv \mathrm{I}_{2}(\bmod N)$ for some N.
(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

$$
f\left((a \tau+b)(c \tau+d)^{-1}\right)=(c \tau+d)^{k} \cdot f(\tau) \forall \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

and has moderate growth at all cusps.
(b) The quotient $Y_{\Gamma}:=\Gamma \backslash \mathbb{H}$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.

Modular forms, modular curves and Hecke symmetry

2. Modular forms and modular curves

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. Γ contains all elements which are $\equiv \mathrm{I}_{2}(\bmod N)$ for some N.
(a) A holomorphic function $f(\tau)$ on the upper half plane \mathbb{H} is said to be a modular form of weight k and level Γ if

$$
f\left((a \tau+b)(c \tau+d)^{-1}\right)=(c \tau+d)^{k} \cdot f(\tau) \forall \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

and has moderate growth at all cusps.
(b) The quotient $Y_{\Gamma}:=\Gamma \backslash \mathbb{H}$ has a natural structure as an (open) algebraic curve, definable over a natural number field; it parametrizes elliptic curves with suitable level structure.

Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma=\mathrm{H}^{0}\left(X_{\Gamma}, \omega^{k}\right)$, where X_{Γ} is the natural compactification of Y_{Γ}, and ω is the Hodge line bundle on X_{Γ}

$$
\left.\omega\right|_{[E]}=\operatorname{Lie}(E)^{\vee} \quad \forall[E] \in X_{\Gamma}
$$

(d) The action of $\mathrm{GL}_{2}(\mathbb{Q})_{\text {det }>0}$ on \mathbb{H} "survives" on the modular curve $Y_{\Gamma}=\Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.

The L-function attached to a cusp form which is a common eigenvector of all Hecke correspondences admits an Euler product.

Modular curves and Hecke symmetry

(c) Modular forms of weight k for $\Gamma=\mathrm{H}^{0}\left(X_{\Gamma}, \omega^{k}\right)$, where X_{Γ} is the natural compactification of Y_{Γ}, and ω is the Hodge line bundle on X_{Γ}

$$
\left.\omega\right|_{[E]}=\operatorname{Lie}(E)^{\vee} \quad \forall[E] \in X_{\Gamma}
$$

(d) The action of $\mathrm{GL}_{2}(\mathbb{Q})_{\operatorname{det}>0}$ on \mathbb{H} "survives" on the modular curve $Y_{\Gamma}=\Gamma \backslash \mathbb{H}$ and takes a reincarnated form as a family of algebraic correspondences.
The L-function attached to a cusp form which is a common eigenvector of all Hecke correspondences admits an Euler product.

Sample arithmetic

statements

Diophantine equations
Counting solutions of a
diophantine equation
Counting congruence solutions
L-functions and distribution of prime numbers

Zeta and L-values
Sample of geometric structures and
symmetries
Elliptic curve basics
Modular forms, modular curves and Hecke symmetry

Complex multiplication
Frobenius symmetry
Monodromy
Finc structure in characteristic

Figure: Hecke

The Ramanujan τ function

 NumbersExample. Weight 12 cusp forms for $\mathrm{SL}_{2}(\mathbb{Z})$ are constant multiples of

$$
\Delta=q \cdot \prod_{m \geq 1}\left(1-q^{m}\right)^{24}=\sum_{n} \tau(n) q^{n}
$$

and

$$
T_{p}(\Delta)=\tau(p) \cdot \Delta \quad \forall p
$$

where T_{p} is the Hecke operator represented by $\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right)$.

Modular forms, modular curves and Hecke symmetry

The Ramanujan τ function

Example. Weight 12 cusp forms for $\mathrm{SL}_{2}(\mathbb{Z})$ are constant multiples of

$$
\Delta=q \cdot \prod_{m \geq 1}\left(1-q^{m}\right)^{24}=\sum_{n} \tau(n) q^{n}
$$

and

$$
T_{p}(\Delta)=\tau(p) \cdot \Delta \quad \forall p
$$

where T_{p} is the Hecke operator represented by $\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right)$.
Let $L(\Delta, s)=\sum_{n \geq 1} a_{n} \cdot n^{-s}$. We have

$$
L(\Delta, s)=\prod_{p}\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)^{-1} .
$$

CM elliptic curves

3. Complex multiplication

An elliptic E over \mathbb{C} is said to have complex multiplication if its endomorphism algebra $\operatorname{End}^{0}(E)$ is an imaginary quadratic field.

Example. Consequences of

- $j\left(\mathbb{C} / \mathscr{O}_{K}\right)$ is an algebraic integer
- $K \cdot j\left(\mathbb{C} / \mathscr{O}_{K}\right)=$ the Hilbert class field of K.

CM elliptic curves

3. Complex multiplication

An elliptic E over \mathbb{C} is said to have complex multiplication if its endomorphism algebra $\operatorname{End}^{0}(E)$ is an imaginary quadratic field.

Example. Consequences of

- $j\left(\mathbb{C} / \mathscr{O}_{K}\right)$ is an algebraic integer
- $K \cdot j\left(\mathbb{C} / \mathscr{O}_{K}\right)=$ the Hilbert class field of K.
$e^{\pi \sqrt{67}}=147197952743.9999986624542245068292613 \cdots$
$j\left(\frac{-1+\sqrt{-67}}{2}\right)=-147197952000=-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$

CM elliptic curves

3. Complex multiplication

An elliptic E over \mathbb{C} is said to have complex multiplication if its endomorphism algebra $\operatorname{End}^{0}(E)$ is an imaginary quadratic field.

Example. Consequences of

- $j\left(\mathbb{C} / \mathscr{O}_{K}\right)$ is an algebraic integer
- $K \cdot j\left(\mathbb{C} / \mathscr{O}_{K}\right)=$ the Hilbert class field of K.

$$
\begin{aligned}
& e^{\pi \sqrt{67}}=147197952743.9999986624542245068292613 \cdots \\
& j\left(\frac{-1+\sqrt{-67}}{2}\right)=-147197952000=-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \\
& e^{\pi \sqrt{163}}=262537412640768743.99999999999925007259719 \ldots \\
& j\left(\frac{-1+\sqrt{-163}}{2}\right)=-262537412640768000= \\
& -2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}
\end{aligned}
$$

Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$
y^{2}=x^{3}+x
$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have
$\# E\left(\mathbb{F}_{p}\right)=1+p-a_{p}$
and for odd p we have
 Numbers

Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit formulas: Let E be the elliptic curve

$$
y^{2}=x^{3}+x
$$

which has CM by $\mathbb{Z}[\sqrt{-1}]$. We have

$$
\# E\left(\mathbb{F}_{p}\right)=1+p-a_{p}
$$

and for $o d d p$ we have

$$
\begin{aligned}
a_{p} & =\sum_{u \in \mathbb{F}_{p}}\left(\frac{u^{3}+u}{p}\right) \\
& = \begin{cases}0 & \text { if } p \equiv 3(\bmod 4) \\
-2 a & \text { if } p=a^{2}+4 b^{2} \text { with } a \equiv 1(\bmod 4)\end{cases}
\end{aligned}
$$

A CM curve and its associated modular form,

 continuedThe L-function $L(E, s)$ attached to E with

$$
\prod_{p \text { odd }}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}=\sum_{n} a_{n} \cdot n^{-s}
$$

is equal to a Hecke L-function $L(\psi, s)$, where the Hecke character ψ is the given by

$$
\psi(\mathfrak{a})=\left\{\begin{array}{lll}
0 & \text { if } & 2 \mid \mathrm{N}(\mathfrak{a}) \\
\lambda & \text { if } & \mathfrak{a}=(\lambda), \lambda \in 1+4 \mathbb{Z}+2 \mathbb{Z} \sqrt{-1}
\end{array}\right.
$$

The function $f_{E}(\tau)=\sum_{n} a_{n} \cdot q^{n}$ is a modular form of weight 2 and level 4, and

$$
f_{E}(\tau)=\sum_{\mathfrak{a}} \psi(\mathfrak{a}) \cdot q^{\mathrm{N}(\mathfrak{a})}=\sum_{\substack{a=1 \\ b=0 \\ b=0 \\(\bmod 4)}} a \cdot q^{a^{2}+b^{2}}
$$

Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_{q} has a map $\mathrm{Fr}_{q}: X \rightarrow X$, induced by the ring endomorphism $f \mapsto f^{q}$ of the function field of X.

Deligne's proof of Weil's conjecture implies that

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $\mathrm{H}_{\mathrm{et}}^{1}\left(\bar{X}, \operatorname{Sym}^{10}(\underline{\mathrm{H}}(\mathscr{E} / X))\right)$, which "contains" the cusp form \triangle via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_{p} and the Hecke correspondence T_{p}; invoke the Weil bound.

Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_{q} has a map $\mathrm{Fr}_{q}: X \rightarrow X$, induced by the ring endomorphism $f \mapsto f^{q}$ of the function field of X.

Deligne's proof of Weil's conjecture implies that

$$
\tau(p) \leq 2 p^{11 / 2} \quad \forall p
$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $\mathrm{H}_{\mathrm{et}}^{1}\left(\bar{X}, \operatorname{Sym}^{10}(\underline{\mathrm{H}}(\mathscr{E} / X))\right)$, which "contains" the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_{p} and the Hecke correspondence T_{p}; invoke the Weil bound.

Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_{q} has a map $\mathrm{Fr}_{q}: X \rightarrow X$, induced by the ring endomorphism $f \mapsto f^{q}$ of the function field of X.

Deligne's proof of Weil's conjecture implies that

$$
\tau(p) \leq 2 p^{11 / 2} \quad \forall p
$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $\mathrm{H}_{\mathrm{et}}^{1}\left(\bar{X}, \operatorname{Sym}^{10}(\underline{\mathrm{H}}(\mathscr{E} / X))\right)$, which "contains" the cusp form Δ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_{p} and the Hecke correspondence T_{p}; invoke the Weil bound.

Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field \mathbb{F}_{q} has a map $\mathrm{Fr}_{q}: X \rightarrow X$, induced by the ring endomorphism $f \mapsto f^{q}$ of the function field of X.

Deligne's proof of Weil's conjecture implies that

$$
\tau(p) \leq 2 p^{11 / 2} \quad \forall p
$$

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional Galois representation inside $\mathrm{H}_{\mathrm{et}}^{1}\left(\bar{X}, \operatorname{Sym}^{10}(\underline{\mathrm{H}}(\mathscr{E} / X))\right)$, which "contains" the cusp form Δ via the Eichler-Shimura integral.
Step 2. Apply the Eichler-Shimura congruence relation, which relates Fr_{p} and the Hecke correspondence T_{p}; invoke the Weil bound.

A hypergeometric differential equation

5. Monodromy

(a) The hypergeometric differential equation

$$
4 x(1-x) \frac{d^{2} y}{d x^{2}}+4(1-2 x) \frac{d y}{d x}-y=0
$$

has a classical solution

$$
F(1 / 2,1 / 2,1, x)=\sum_{n \geq 0}\binom{-1 / 2}{n} x^{n}
$$

The global monodromy group of the above differential is the principal congruence subgroup $\Gamma(2)$.

Historic origin

Remark. The word "monodromy" means "run around singly"; it was (?first) used by Riemann in Beiträge zur Theorie der durch die Gauss'sche Reihe $F(\alpha, \beta, \gamma, x)$ darstellbaren Functionen, 1857.
... ; für einen Werth in welchem keine Verzweigung statfindet, heist die Function "einändrig order monodrom...

The Legendre family of elliptic curves

The family of equations

$$
y^{2}=x(x-1)(x-\lambda) \quad 0,1, \infty \neq \lambda \in \mathbb{P}^{1}
$$

defines a family $\pi: \mathscr{E} \rightarrow S=\mathbb{P}^{1}-\{0,1, \infty\}$ of elliptic curves, with

$$
j\left(E_{\lambda}\right)=\frac{2^{8}[1-\lambda(1-\lambda)]^{3}}{\lambda^{2}(1-\lambda)^{2}}
$$

This formula exhibits the λ-line as an S_{3}-cover of the j-line, such that the 6 conjugates of λ are

$$
\lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda} .
$$

The Legendre family, continued

The formula
$\left[4 \lambda(1-\lambda) \frac{d}{d \lambda^{2}}+4(1-2 \lambda) \frac{d}{d \lambda}-1\right]\left(\frac{d x}{y}\right)=-d\left(\frac{y}{(x-\lambda)^{2}}\right)$
means that the global section $[d x / y]$ of $\underline{\mathrm{H}}_{\mathrm{dR}}^{1}(\mathscr{E} / S)$ satisfies the above hypergeometric ODE.

Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.
2. To say that the monodromy is "as large as possible" is an irreducibility statement.
3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet's proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.

Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.
2. To say that the monodromy is "as large as possible" is an irreducibility statement.
3. Maximality of monodromy has important consequences. E.g. the key geometric input in Deligne-Ribet's proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.

Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries among potential symmetries.
2. To say that the monodromy is "as large as possible" is an irreducibility statement.
3. Maximality of monodromy has important consequences.
E.g. the key geometric input in Deligne-Ribet's proof of p-adic interpolation for special values of Hecke L-functions attached to totally real fields.

Supersingular elliptic curves

6. Fine structure in char. $p>0$

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field $k \supset \mathbb{F}_{p}$ come in two flavors.

- Those with $E(k) \simeq(0)$ are called supersingular.
- There is only a finite number of supersingular j-values.
- An elliptic curve E over a finite field \mathbb{F}_{q} is supersingular if and only if $E\left(\mathbb{F}_{q}\right) \equiv 0(\bmod p)$.

An elliptic curve E over a finite field \mathbb{F}_{q} is supersingular if and only if $E\left(\mathbb{F}_{q}\right) \not \equiv 0(\bmod p)$

Supersingular elliptic curves

6. Fine structure in char. $p>0$

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field $k \supset \mathbb{F}_{p}$ come in two flavors.

■ Those with $E(k) \simeq(0)$ are called supersingular.

- There is only a finite number of supersingular j-values.
- An elliptic curve E over a finite field \mathbb{F}_{q} is supersingular if and only if $E\left(\mathbb{F}_{q}\right) \equiv 0(\bmod p)$.
- Those with $E[p](k) \simeq \mathbb{Z} / p \mathbb{Z}$ are said to be ordinary.

An elliptic curve E over a finite field \mathbb{F}_{q} is supersingular if and only if $E\left(\mathbb{F}_{q}\right) \not \equiv 0(\bmod p)$

The Hasse invariant

For the Legendre family, the supersingular locus (for $p>2$) is the zero locus of

$$
A(\lambda)=(-1)^{(p-1) / 2} \cdot \sum_{j=0}^{(p-1) / 2}\left(\frac{(1 / 2)_{j}}{j!}\right)^{2} \cdot \lambda^{j}
$$

where $(c)_{m}:=c(c+1) \cdots(c+m-1)$.
Remark. The above formula for the coefficients a_{j} satisfy

The Hasse invariant

For the Legendre family, the supersingular locus (for $p>2$) is the zero locus of

$$
A(\lambda)=(-1)^{(p-1) / 2} \cdot \sum_{j=0}^{(p-1) / 2}\left(\frac{(1 / 2)_{j}}{j!}\right)^{2} \cdot \lambda^{j}
$$

where $(c)_{m}:=c(c+1) \cdots(c+m-1)$.
Remark. The above formula for the coefficients a_{j} satisfy

$$
a_{1}, \ldots, a_{(p-1) / 2} \in \mathbb{Z}_{(p)}
$$

and

$$
a_{(p+1) / 2} \equiv \cdots \equiv a_{p-1} \equiv 0 \quad(\bmod p)
$$

The Hasse invariant

For the Legendre family, the supersingular locus (for $p>2$) is the zero locus of

$$
A(\lambda)=(-1)^{(p-1) / 2} \cdot \sum_{j=0}^{(p-1) / 2}\left(\frac{(1 / 2)_{j}}{j!}\right)^{2} \cdot \lambda^{j}
$$

where $(c)_{m}:=c(c+1) \cdots(c+m-1)$.
Remark. The above formula for the coefficients a_{j} satisfy

$$
a_{1}, \ldots, a_{(p-1) / 2} \in \mathbb{Z}_{(p)}
$$

and

$$
a_{(p+1) / 2} \equiv \cdots \equiv a_{p-1} \equiv 0 \quad(\bmod p)
$$

Counting supersingular j-values

Theorem. (Eichler 1938) The number h_{p} of supersingular j-values is

$$
h_{p}= \begin{cases}\lfloor p / 12\rfloor & \text { if } p \equiv 1 \quad(\bmod 12) \\ \lceil p / 12\rceil & \text { if } p \equiv 5 \operatorname{or} 7 \quad(\bmod 12) \\ \lceil p / 12\rceil+1 & \text { if } p \equiv 11 \quad(\bmod 12)\end{cases}
$$

Remark. (i) It is known that h_{p} is the class number for the quaternion division algebra over \mathbb{Q} ramified (exactly) at p and ∞.
(ii) Deuring thought that it is nicht leicht that the above class number formula can be obtained by counting supersingular j-invariants directly.

Igusa's proof

From the hypergeometric equation for $F(1 / 2,1 / 2,1, x)$ we conclude that

$$
\left[4 \lambda(1-\lambda) \frac{d^{2}}{d \lambda^{2}}+4(1-2 \lambda) \frac{d}{d \lambda}-1\right] A(\lambda) \equiv 0 \quad(\bmod p)
$$

for all $p>3$. It follows immediately that $A(\lambda)$ has simple zeroes. The formula for h_{p} is now an easy consequence. (Hint: Use the formula 6 -to- 1 cover of the j-line by the λ-line.) Q.E.D.

p-adic monodromy for modular curves

For the ordinary locus of the Legendre family

$$
\pi: \mathscr{E}^{\text {ord }} \rightarrow S^{\text {ord }}
$$

the monodromy representation

$$
\rho: \pi_{1}\left(S^{\text {ord }}\right) \rightarrow \operatorname{Aut}\left(\mathscr{E}^{\operatorname{ord}}\left[p^{\infty}\right]\left(\overline{\mathbb{F}}_{p}\right)\right) \cong \mathbb{Z}_{p}^{\times}
$$

(defined by Galois theory) is surjective.

p-adic monodromy for the modular curve

Sketch of a proof: Given any $n>0$ and any $\bar{u} \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$, pick a representative $u \in \mathbb{N}$ of \bar{u} with $0<u<p^{n}$ and let let

$$
\iota: \mathbb{Q}[T] /\left(T^{2}-u \cdot T+p^{4 n}\right) \hookrightarrow \mathbb{Q}_{p}
$$

be the embedding such that $\imath(T) \in \mathbb{Z}_{p}^{\times}$. Then

$$
\imath(T) \equiv u \quad\left(\bmod p^{2 n}\right)
$$

By a result of Deuring, there exists an elliptic curve E over $\mathbb{F}_{p^{2 n}}$ whose Frobenius is the Weil number $l(T)$. So the image of the monodromy representation contains $l(T)$, which is congruent to the given element $\bar{u} \in \mathbb{Z} / p^{n} \mathbb{Z}$. Q.E.D.

