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The general theme

Geometry and symmetry influences
arithmetic through zeta functions and
modular forms

Remark. (i) zeta functions = L-functions;
modular forms = automorphic representations.

(ii) There are two kinds of L-functions, from harmonic analysis
and arithmetic respectively.
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Fermat’s infinite descent

I. Sample arithmetic questions and results

1. Diophantine equations

Example. Fermat proved (by his infinite descent) that the
diophantine equation

x4− y4 = z2

does not have any non-trivial integer solution.

Remark. (i) The above equation can be “projectivized” to
x4− y4 = x2z2, which gives an elliptic curve E with
complex multiplication by Z[

√
−1].
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Figure: Fermat
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Fermat’s infinite descent continued

(ii) Idea: Show that every non-trivial rational point P ∈ E(Q) is
the image [2]E of another “smaller” rational point.

(Construct another rational variety X and maps f : E→ X and
g : X→ E such that g◦ f = [2]E and descent in two stages. Here
X is a twist of E, and f ,g corresponds to [1+

√
−1] and

[1−
√
−1] respectively.)
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Interlude: Euler’s addition formula

In 1751, Fagnano’s collection of papers Produzioni
Mathematiche reached the Berlin Academy. Euler was asked to
examine the book and draft a letter to thank Count Fagnano.
Soon Euler discovered the addition formula∫ r

0

dρ√
1−ρ4

=
∫ u

0

dη√
1−η4

+
∫ v

0

dψ√
1−ψ4

,

where

r =
u
√

1− v4 + v
√

1−u4

1+u2v2 .
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Figure: Euler
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Counting sums of squares

2. Counting solutions of a diophantine equation

Example. Counting sums of squares.
For n,k ∈ N, let

rk(n) := #{(x1, . . . ,xk) ∈ Zn : x2
1 + · · ·+ x2

k = n}

be the number of ways to represent n as a sum of k squares.

(i) r2(n) = 4 · ∑
d|n, n odd

(−1)(d−1)/2 =

{
0 if n2 6=�
∑d|n1

1 if n2 =�

where n = 2f ·n1 ·n2, and every prime divisor of n1 (resp. n2) is
≡ 1 (mod 4) (resp. ≡ 3 (mod 4)).

(ii) r4(n) =
{

8 ·∑d|n d if n is odd
24 ·∑d|n,d odd d if n is even
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How to count number of sum of squares

Method. Explicitly identify the theta series

θ
k(τ) =

(
∑

m∈N
qm2)k where q = e2π

√
−1τ

with modular forms obtained in a different way, such as
Eisenstein series.
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Counting congruence solutions

3. Counting congruence solutions and L-functions

(a) Count the number of congruence solutions of a given
diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation
(basically the generating function for the number of
congruence solutions modulo p as p varies)

with
an L-function coming from harmonic analysis. (The latter is
associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
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The Riemann zeta function

4. L-functions and the the distribution of prime
numbers for a given diophantine problem

Examples. (i) The Riemann zeta function ζ (s) is a
meromorphic function on C with only a simple pole at s = 0,

ζ (s) = ∑
n≥1

n−s = ∏
p
(1−p−s)−1 for Re(s)> 1,

such that the function ξ (s) = π−s/2 ·Γ(s/2) ·ζ (s) satisfies

ξ (1− s) = ξ (s) .
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Figure: Riemann
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Dirichlet L-functions

(ii) Similar properties hold for the Dirichlet L-function

L(χ,s) = ∑
n∈N,(n,N)=1

χ(n) ·n−s Re(s)> 1

for a primitive Dirichlet character χ : (Z/NZ)×→ C×.
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L-functions and distribution of prime numbers

(a) Dirichlet’s theorem for primes in arithmetic progression
↔ L(χ,1) 6= 0 ∀ Dirichlet character χ .

(b) The prime number theorem
↔ zero free region of ζ (s) near {Re(s) = 1}.

(c) Riemann’s hypothesis ↔ the first term after the main term
in the asymptotic expansion of ζ (s).
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Bernoulli numbers and zeta values

5. Special values of L-functions

Examples. (a) zeta and L-values for Q.
Recall that the Bernoulli numbers Bn are defined by

x
ex−1

= ∑
n∈N

Bn

n!
· xn

B0 = 1, B1 =−1/2, B2 = 1/6, B4 =−1/30, B6 = 1/42,
B8 =−1/30, B10 = 5/66, B12 =−691/2730.

(i) (Euler) ζ (1− k) =−Bk/k ∀ even integer k > 0.

(ii) (Leibniz’s formula, 1678; Madhava, ∼ 1400)

1− 1
3 +

1
5 −

1
7 + · · ·=

π

4
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Content of L-values

(b) L-values often contain deep arithmetic/geometric
information.

(i) Leibniz’s formula: Z[
√
−1] is a PID (because the formula

implies that the class number h(Q(
√
−1)) is 1).

(ii) Bk/k appears in the formula for the number of
(isomorphism classes of) exotic (4k−1)-spheres.
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Kummer congruence

(c) (Kummer congruence)

(i) ζ (m) ∈ Zp for m≤ 0 with m 6≡ 1 (mod p−1)

(ii) ζ (m)≡ ζ (m′) (mod p) for all m,m′ ≤ 0 with
m≡ m′ 6≡ 1 (mod p−1).

Examples.

ζ (−1) =− 1
22 ·32 ; −1≡ 1 (mod p−1) only for p = 2,3.

ζ (−11) =
691

23 ·32 ·5 ·7 ·13
; −11≡ 1 (mod p−1) holds

only for p = 2,3,5,7,13.

ζ (−5) =− 1
22 ·32 ·7

≡ ζ (−1) (mod 5).

Note that 3 ·7≡ 1 (mod 5).
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Figure: Kummer
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Elliptic curves basics

II. Sample of geometric structures and symmetries

1. Review of elliptic curves

Equivalent definitions of an elliptic curve E :

a projective curve with an algebraic group law;

a projective curve of genus one together with a rational
point (= the origin);

over C: a complex torus of the form Eτ = C/Zτ +Z,
where τ ∈ H := upper-half plane;

over a field F with 6 ∈ F×: given by an affine equation

y2 = 4x3−g2 x−g3, g2,g3 ∈ F .
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Weistrass theory
For Eτ = C/Zτ +Z, let

xτ(z) = ℘(τ,z)

=
1
z2 + ∑

(m,n)6=(0,0)

(
1

(z−mτ−n)2 −
1

(mτ +n)2

)
yτ(z) = d

dz℘(τ,z)

Then Eτ satisfies the Weistrass equation

y2
τ = 4x3

τ −g2(τ)xτ −g3(τ)

with

g2(τ) = 60 ∑
(0,0)6=(m,n)∈Z2

1
(mτ +n)4

g3(τ) = 140 ∑
(0,0)6=(m,n)∈Z2

1
(mτ +n)6
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The j-invariant
Elliptic curves are classified by their j-invariant

j = 1728
g3

2

g3
2−27g2

3

Over C, j(Eτ) depends only on the lattice Zτ +Z of Eτ . So j(τ)
is a modular function for SL2(Z):

j
(

aτ +b
cτ +d

)
= j(τ)

for all a,b,c,d ∈ Z with ad−bc = 1.

We have a Fourier expansion

j(τ) =
1
q
+744+196884q+21493760q2 + · · · ,

where q = qτ = e2π
√
−1τ .
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Modular forms, modular curves and Hecke
symmetry

2. Modular forms and modular curves

Let Γ⊂ SL2(Z) be a congruence subgroup of SL2(Z), i.e. Γ

contains all elements which are ≡ I2 (mod N) for some N.

(a) A holomorphic function f (τ) on the upper half plane H is
said to be a modular form of weight k and level Γ if

f ((aτ +b)(cτ +d)−1) = (cτ +d)k · f (τ) ∀γ =

(
a b
c d

)
∈ Γ

and has moderate growth at all cusps.

(b) The quotient YΓ := Γ\H has a natural structure as an (open)
algebraic curve, definable over a natural number field; it
parametrizes elliptic curves with suitable level structure.
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Modular curves and Hecke symmetry

(c) Modular forms of weight k for Γ = H0(XΓ,ω
k), where XΓ is

the natural compactification of YΓ, and ω is the Hodge line
bundle on XΓ

ω|[E] = Lie(E)∨ ∀ [E] ∈ XΓ

(d) The action of GL2(Q)det>0 on H “survives” on the modular
curve YΓ = Γ\H and takes a reincarnated form as a family of
algebraic correspondences.

The L-function attached to a cusp form which is a common
eigenvector of all Hecke correspondences admits an Euler
product.
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Figure: Hecke
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The Ramanujan τ function

Example. Weight 12 cusp forms for SL2(Z) are constant
multiples of

∆ = q ·∏
m≥1

(1−qm)24 = ∑
n

τ(n)qn

and
Tp(∆) = τ(p) ·∆ ∀p,

where Tp is the Hecke operator represented by
(

p 0
0 1

)
.

Let L(∆,s) = ∑n≥1 an ·n−s. We have

L(∆,s) = ∏
p
(1− τ(p)p−s +p11−2s)−1.
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CM elliptic curves

3. Complex multiplication

An elliptic E over C is said to have complex multiplication if its
endomorphism algebra End0(E) is an imaginary quadratic field.

Example. Consequences of
• j(C/OK) is an algebraic integer
• K · j(C/OK) = the Hilbert class field of K.

eπ
√

67 = 147197952743.9999986624542245068292613 · · ·

j
(
−1+

√
−67

2

)
=−147197952000 =−215 ·33 ·53 ·113

eπ
√

163 = 262537412640768743.99999999999925007259719 . . .

j
(
−1+

√
−163

2

)
=−262537412640768000 =

−218 ·33 ·53 ·233 ·293
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Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit
formulas: Let E be the elliptic curve

y2 = x3 + x,

which has CM by Z[
√
−1]. We have

#E(Fp) = 1+p−ap

and for odd p we have

ap = ∑
u∈Fp

(
u3 +u

p

)
=

{
0 if p≡ 3 (mod 4)
−2a if p = a2 +4b2 with a≡ 1 (mod 4)



GEOMETRY AND
NUMBERS

Ching-Li Chai

Sample arithmetic
statements
Diophantine equations

Counting solutions of a
diophantine equation

Counting congruence solutions

L-functions and distribution of
prime numbers

Zeta and L-values

Sample of geometric
structures and
symmetries
Elliptic curve basics

Modular forms, modular
curves and Hecke symmetry

Complex multiplication

Frobenius symmetry

Monodromy

Fine structure in characteristic
p

Mod p points for a CM curve

A typical feature of CM elliptic curves is that there are explicit
formulas: Let E be the elliptic curve

y2 = x3 + x,

which has CM by Z[
√
−1]. We have

#E(Fp) = 1+p−ap

and for odd p we have

ap = ∑
u∈Fp

(
u3 +u

p

)
=

{
0 if p≡ 3 (mod 4)
−2a if p = a2 +4b2 with a≡ 1 (mod 4)



GEOMETRY AND
NUMBERS

Ching-Li Chai

Sample arithmetic
statements
Diophantine equations

Counting solutions of a
diophantine equation

Counting congruence solutions

L-functions and distribution of
prime numbers

Zeta and L-values

Sample of geometric
structures and
symmetries
Elliptic curve basics

Modular forms, modular
curves and Hecke symmetry

Complex multiplication

Frobenius symmetry

Monodromy

Fine structure in characteristic
p

A CM curve and its associated modular form,
continued

The L-function L(E,s) attached to E with

∏
p odd

(1−app−s +p1−2s)−1 = ∑
n

an ·n−s

is equal to a Hecke L-function L(ψ,s), where the Hecke
character ψ is the given by

ψ(a) =

{
0 if 2|N(a)

λ if a= (λ ), λ ∈ 1+4Z+2Z
√
−1

The function fE(τ) = ∑n an ·qn is a modular form of weight 2
and level 4, and

fE(τ) = ∑
a

ψ(a) ·qN(a) = ∑
a≡1 (mod 4)
b≡0 (mod 2)

a ·qa2+b2
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Frobenius symmetry

4. Frobenius symmetry

Every algebraic variety X over a finite field Fq has a map
Frq : X→ X, induced by the ring endomorphism f 7→ f q of the
function field of X.

Deligne’s proof of Weil’s conjecture implies that

τ(p)≤ 2p11/2 ∀p

Idea: Step 1. Use Hecke symmetry to cut out a 2-dimensional
Galois representation inside H1

et
(
X,Sym10 (H(E /X))

)
, which

“contains” the cusp form ∆ via the Eichler-Shimura integral.

Step 2. Apply the Eichler-Shimura congruence relation, which
relates Frp and the Hecke correspondence Tp; invoke the Weil
bound.
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A hypergeometric differential equation

5. Monodromy

(a) The hypergeometric differential equation

4x(1− x)
d2y
dx2 +4(1−2x)

dy
dx
− y = 0

has a classical solution

F(1/2,1/2,1,x) = ∑
n≥0

(−1/2
n )xn

The global monodromy group of the above differential is the
principal congruence subgroup Γ(2).
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Historic origin

Remark. The word “monodromy” means “run around singly”;
it was (?first) used by Riemann in Beiträge zur Theorie der
durch die Gauss’sche Reihe F(α,β ,γ,x) darstellbaren
Functionen, 1857.

. . . ; für einen Werth in welchem keine Verzweigung
statfindet, heist die Function “einändrig order
monodrom . . .
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The Legendre family of elliptic curves

The family of equations

y2 = x(x−1)(x−λ ) 0,1,∞ 6= λ ∈ P1

defines a family π : E → S = P1−{0,1,∞} of elliptic curves,
with

j(Eλ ) =
28 [1−λ (1−λ )]3

λ 2 (1−λ )2

This formula exhibits the λ -line as an S3-cover of the j-line,
such that the 6 conjugates of λ are

λ ,
1
λ
, 1−λ ,

1
1−λ

,
λ

λ −1
,

λ −1
λ

.



GEOMETRY AND
NUMBERS

Ching-Li Chai

Sample arithmetic
statements
Diophantine equations

Counting solutions of a
diophantine equation

Counting congruence solutions

L-functions and distribution of
prime numbers

Zeta and L-values

Sample of geometric
structures and
symmetries
Elliptic curve basics

Modular forms, modular
curves and Hecke symmetry

Complex multiplication

Frobenius symmetry

Monodromy

Fine structure in characteristic
p

The Legendre family, continued

The formula[
4λ (1−λ )

d
dλ 2 +4(1−2λ )

d
dλ
−1
] (

dx
y

)
=−d

(
y

(x−λ )2

)
means that the global section [dx/y] of H1

dR(E /S) satisfies the
above hypergeometric ODE.
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Monodromy and symmetry

1. Monodromy can be regarded as attainable symmetries
among potential symmetries.

2. To say that the monodromy is “as large as possible” is an
irreducibility statement.

3. Maximality of monodromy has important consequences.
E.g. the key geometric input in Deligne-Ribet’s proof of p-adic
interpolation for special values of Hecke L-functions attached
to totally real fields.
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Supersingular elliptic curves

6. Fine structure in char. p > 0

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field k⊃ Fp come in
two flavors.

Those with E(k)' (0) are called supersingular.

There is only a finite number of supersingular j-values.
An elliptic curve E over a finite field Fq is supersingular if
and only if E(Fq)≡ 0 (mod p).

Those with E[p](k)' Z/pZ are said to be ordinary.

An elliptic curve E over a finite field Fq is supersingular if
and only if E(Fq) 6≡ 0 (mod p)



GEOMETRY AND
NUMBERS

Ching-Li Chai

Sample arithmetic
statements
Diophantine equations

Counting solutions of a
diophantine equation

Counting congruence solutions

L-functions and distribution of
prime numbers

Zeta and L-values

Sample of geometric
structures and
symmetries
Elliptic curve basics

Modular forms, modular
curves and Hecke symmetry

Complex multiplication

Frobenius symmetry

Monodromy

Fine structure in characteristic
p

Supersingular elliptic curves

6. Fine structure in char. p > 0

Example. (ordinary/supersingular dichotomy)
Elliptic curves over an algebraically closed field k⊃ Fp come in
two flavors.

Those with E(k)' (0) are called supersingular.

There is only a finite number of supersingular j-values.
An elliptic curve E over a finite field Fq is supersingular if
and only if E(Fq)≡ 0 (mod p).

Those with E[p](k)' Z/pZ are said to be ordinary.

An elliptic curve E over a finite field Fq is supersingular if
and only if E(Fq) 6≡ 0 (mod p)



GEOMETRY AND
NUMBERS

Ching-Li Chai

Sample arithmetic
statements
Diophantine equations

Counting solutions of a
diophantine equation

Counting congruence solutions

L-functions and distribution of
prime numbers

Zeta and L-values

Sample of geometric
structures and
symmetries
Elliptic curve basics

Modular forms, modular
curves and Hecke symmetry

Complex multiplication

Frobenius symmetry

Monodromy

Fine structure in characteristic
p

The Hasse invariant

For the Legendre family, the supersingular locus (for p > 2) is
the zero locus of

A(λ ) = (−1)(p−1)/2 ·
(p−1)/2

∑
j=0

(
(1/2)j

j!

)2

·λ j

where (c)m := c(c+1) · · ·(c+m−1).

Remark. The above formula for the coefficients aj satisfy

a1, . . . ,a(p−1)/2 ∈ Z(p)

and
a(p+1)/2 ≡ ·· · ≡ ap−1 ≡ 0 (mod p).
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Counting supersingular j-values

Theorem. (Eichler 1938) The number hp of supersingular
j-values is

hp =


bp/12c if p≡ 1 (mod 12)
dp/12e if p≡ 5 or 7 (mod 12)
dp/12e+1 if p≡ 11 (mod 12)

Remark. (i) It is known that hp is the class number for the
quaternion division algebra over Q ramified (exactly) at p and
∞.

(ii) Deuring thought that it is nicht leicht that the above class
number formula can be obtained by counting supersingular
j-invariants directly.
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Igusa’s proof

From the hypergeometric equation for F(1/2,1/2,1,x) we
conclude that[

4λ (1−λ )
d2

dλ 2 +4(1−2λ )
d

dλ
−1
]

A(λ )≡ 0 (mod p)

for all p > 3. It follows immediately that A(λ ) has simple
zeroes. The formula for hp is now an easy consequence. (Hint:
Use the formula 6-to-1 cover of the j-line by the λ -line.)
Q.E.D.
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p-adic monodromy for modular curves

For the ordinary locus of the Legendre family

π : E ord→ Sord

the monodromy representation

ρ : π1
(
Sord)→ Aut

(
E ord[p∞](Fp)

)∼= Z×p

(defined by Galois theory) is surjective.
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p-adic monodromy for the modular curve

Sketch of a proof: Given any n > 0 and any ū ∈ (Z/pnZ)×,
pick a representative u ∈ N of ū with 0 < u < pn and let let

ι : Q[T]/(T2−u ·T +p4n) ↪→Qp

be the embedding such that ι(T) ∈ Z×p . Then

ι(T)≡ u (mod p2n) .

By a result of Deuring, there exists an elliptic curve E over Fp2n

whose Frobenius is the Weil number ι(T). So the image of the
monodromy representation contains ι(T), which is congruent
to the given element ū ∈ Z/pnZ. Q.E.D.
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