HECKE ORBITS AS SHIMURA VARIETIES IN POSITIVE CHARACTERISTIC

Ching-Li Chai

ICM 2006, Madrid

- $\S1$. Introduction
- p: a fixed prime number,

 \mathcal{M} : a modular variety of PEL type over $\,\mathbb{F}:=\mathbb{F}_p^{\mathrm{alg}}$,

G: reductive group over $\,\mathbb Q\,$ attached to the PEL type

Want to study:

- HECKE SYMMETRIES: prime-to-p Hecke correspondences on \mathcal{M} coming from the action of $G(\mathbb{A}_{f}^{(p)})$ on the prime-to-p tower of \mathcal{M} ,
- LEAVES: subvarieties of \mathcal{M} , defined by fixing an *isomorphism type* of *p*-divisible group with prescribed symmetries, i.e. fix all *p*-adic invariants.

THEMES:

- (1) Hecke symmetries on *M* determines the "foliation structure" by leaves: *Every Hecke orbit is dense in the leaf containing it.*(Oort's Hecke orbit conjecture)
- (2) Tools for the Hecke orbit problems:
 monodromy, canonical coordinates, local rigidity, may be useful elsewhere.
- (3) Leaves $\approx\,$ Shimura varieties in char. p
 - \rightsquigarrow the reduction mod p of a Shimura variety X

 $= \coprod_{\text{infinite}} \text{char. } p \text{ renderings of } X$.

(c.f. Indra's Pearls)

§2 Hecke symmetry on modular varieties Unramified PEL data $(B, *, \mathcal{O}_B, V, V_{\mathbb{Z}_p}, \langle \cdot, \cdot \rangle, h)$:

- B a finite dim. semisimple \mathbb{Q} -algebra unramified at p,
- \mathcal{O}_B a maximal order of B maximal at p,
- * a positive involution on B preserving \mathcal{O}_B ,
- V a B-module of finite dimension over \mathbb{Q} ,
- $\langle \cdot, \cdot \rangle$ a Q-valued nondegen. alternating form on V compatible with (B, *),
- $V_{\mathbb{Z}_p}$ a self-dual \mathbb{Z}_p -lattice in $V_{\mathbb{Q}_p}$ stable under \mathcal{O}_B
- $h: \mathbb{C} \to \operatorname{End}_{B_{\mathbb{R}}}(V_{\mathbb{R}})$, a *-homomorphism s.t. $(v, w) \mapsto \langle v, h(\sqrt{-1})w \rangle$

is a pos. definite symmetric form on $\,V_{\mathbb{R}}\,$

MODULAR VARIETIES OF PEL TYPE

Given an unramified PEL data ~>>

- G = unitary group attached to $(End_B(V), *)$,
- $\widetilde{\mathcal{M}} = \left(\mathcal{M}_{K^p}\right)$, a tower of modular varieties over \mathbb{F} indexed by the set of all compact open subgroups K^p of $G(\mathbb{A}_f^p)$, where

-
$$\mathbb{A}_f^p = \prod_{\ell \neq p}' \mathbb{Q}_\ell$$

- \mathcal{M}_{K^p} classifies abelian varieties with endomorphisms by \mathcal{O}_B , plus prime-to-ppolarization and level structure, whose H_1 is modeled on the given PEL datum.

HECKE SYMMETRIES

(1) The group $G(\mathbb{A}_{f}^{p})$ operates on the projective system $\widetilde{\mathcal{M}}$.

(2) If a level subgroup K_0^p is fixed, then on $\mathcal{M}_{K_0^p}$ the remnant from the action of $G(\mathbb{A}_f^p)$ takes the form of a family of finite étale algebraic correspondences on $\mathcal{M}_{K_0^p}$; they are known as *Hecke correspondences*. (3) Given a point $x \in \mathcal{M}_{K_0^p}(\mathbb{F})$, let \tilde{x} be a lift of x in $\widetilde{\mathcal{M}}(\mathbb{F})$. Define the *prime-to-p Hecke orbit* $\mathcal{H}^p \cdot x$ of x to be the image in $\mathcal{M}_{K_0^p}(\mathbb{F})$ of the $G(\mathbb{A}_f^p)$ -orbit of \tilde{x} ; it is a countable set. EXAMPLE. Siegel modular varieties $\mathcal{A}_{g,n}$, (n,p)=1 , $n\geq 3$

- $\mathcal{A}_{g,n}$ classifies *g*-dimensional principally polarized abelian varieties (A, λ) with a symplectic level-*n* structure η .
- Two \mathbb{F} -points $[(A_1, \lambda_1, \eta_1)]$, $[(A_2, \lambda_2, \eta_2)]$ in $\mathcal{A}_{g,n}$ are in the same prime-to-p Hecke orbit iff \exists a prime-to-p quasi-isogeny β (=" $\beta_2 \circ \beta_1^{-1}$ ")

$$\beta: A_1 \xleftarrow{\beta_1} A_3 \xrightarrow{\beta_2} A_2$$

defined by prime-to-p isogenies β_1 and β_2 s.t. β respects the principal polarizations λ_1 and λ_2 , i.e. $\beta_1^*(\lambda_1) = \beta_2^*(\lambda_2)$.

PEL datum:

 $B=\mathbb{Q}$, V = 2g-dim. v.s. over \mathbb{Q} , $G=\mathrm{Sp}_{2g}$.

EXAMPLE. Hilbert modular varieties $\mathcal{M}_{E,d,n}$

 F_1, \ldots, F_r : totally real number fields, $E = F_1 \times \cdots \times F_r$, $\mathcal{O}_E = \mathcal{O}_{F_1} \times \cdots \times \mathcal{O}_{F_r}$, $d, n \ge 1$, integers, gcd(dn, p) = 1.

Hilbert modular variety $\mathcal{M}_{E,d,n}$ over \mathbb{F} : classifies quadruples $(A \to S, \iota, \lambda, \eta)$, where

- $A \to S$ is an abelian scheme, $\dim(A \to S) = [E : \mathbb{Q}],$
- $\iota : \mathcal{O}_E \to \operatorname{End}(A)$ is a ring homomorphism,
- λ is an \mathcal{O}_E -linear polarization on A of degree d,
- η is a level-n structure.

PEL datum:

B=E , V = free $\,E\text{-module}$ of rank two, $G=\prod_{E/\mathbb{Q}}\operatorname{SL}_2.$

$\S{3}$ Leaves and the Hecke orbit conjecture

$$\mathcal{M} = \mathcal{M}_{K_0^p}$$
, a modular variety of PEL type over \mathbb{F}
$$x_0 = [(A_0, \lambda_0, \iota_0, \eta_0)] \in \mathcal{M}(\mathbb{F})$$

DEF 1. The *leaf* $\mathcal{C}_{\mathcal{M}}(x_0)$ in \mathcal{M} passing through x_0 is the reduced locally closed subscheme of \mathcal{M} *smooth* over \mathbb{F} such that $\mathcal{C}_{\mathcal{M}}(x_0)(\mathbb{F})$ consists of all points $x = [(A, \lambda, \iota, \eta)] \in \mathcal{C}_{\mathcal{M}}(x_0)(\mathbb{F})$ s.t.

$$(A, \lambda, \iota)[p^{\infty}]) \cong (A_0, \lambda_0, \iota_0)[p^{\infty}],$$

where $(A, \lambda, \iota)[p^{\infty}]$ is the \mathcal{O}_B -linear polarized p-divisible group attached to (A, λ, ι) .

OORT'S HECKE ORBIT CONJECTURE

CONJ 1 (HO). Every prime-to-p Hecke orbit in a modular variety of PEL type \mathcal{M} over \mathbb{F} is dense in the leaf in \mathcal{M} containing it.

CONJ (HO_{ct}). The closure of any prime-to-p Hecke orbit in the leaf C containing it is an open-and-closed subset of C, i.e. it is a union of irreducible components of the smooth variety C.

CONJ (HO_{dc}). Every prime-to-p Hecke orbit in a leaf \mathcal{C} meets every irreducible component of \mathcal{C} .

 $\label{eq:clearly} \text{HO} \Longleftrightarrow \text{HO}_{ct} + \text{HO}_{dc}.$

Remark. Conj. HO_{dc} is an irreducibility statement.

Let $Z(x_0)$ be the Zariski closure of the prime-to-pHecke orbit of x_0 for the group G_{der}^{sc} in the leaf $\mathcal{C}(x_0)$.

PROP 2. Assume that the prime-to-p Hecke orbit of x_0 with respect to every simple factor of G_{der}^{sc} is infinite. Then $Z(x_0)$ is irreducible, and the Zariski closure of the ℓ -adic monodromy group of $Z(x_0)$ is $G_{der}(\mathbb{Q}_{\ell})$ for every prime number $\ell \neq p$.

Note. Irreducibility of $Z(x_0)$ uses: $G_{der}^{sc}(\mathbb{Q}_{\ell})$ has no proper subgroup of finite index.

EVIDENCE OF THE HECKE ORBIT CONJECTURE

THM 3 (HO^{siegel}**).** Conjecture HO holds for Siegel modular varieties.

THM 4 ($\mathrm{HO}^{\mathrm{hilbert}}$ **).** Conjecture HO holds for the Hilbert modular varieties attached to a finite product $F_1 \times \cdots \times F_r$ of totally real fields. Here the prime p may be ramified in any or all of F_1, \cdots, F_r .

Remark. (i) Thm. 3 is joint work with F. Oort.

(ii) Thm. 4 is joint work with C.-F. Yu. The proof of $HO_{dc}^{hilbert}$ is due to C.-F. Yu.

(iii) The proof of ${\rm HO}_{\rm ct}^{\rm siegelel}\,$ uses ${\rm HO}^{\rm hilbert}$.

§4 Canonical coordinates on leaves Recall classical Serre-Tate coordinates: A_0 : ordinary abelian variety over $k \supset \mathbb{F}_p$, $k = k^{\mathrm{alg}}, g = \dim(A_0).$ $\rightarrow \quad \mathrm{DEF}(A_0) = \mathrm{DEF}(A_0[p^\infty]) \cong \mathbb{G}_m^{g^2}.$

Phenomenon:

 \exists generalization to leaves, so that every local jet space of a leaf C in \mathcal{M} is "built up" from p-divisible formal groups via a family of fibrations. \mathcal{C} = a leaf in \mathcal{M} , $\tilde{X} = A_{\text{univ}}[p^{\infty}]|_{\mathcal{C}} \to \mathcal{C}$. **PROP 5.** (i) $\exists p$ -divisible groups

$$0 = \tilde{X}_0 \subset \tilde{X}_1 \subset \tilde{X}_2 \subset \dots \subset \tilde{X}_m = \tilde{X}$$

over \mathcal{C} s.t. $\tilde{Y}_i := \tilde{X}_i / \tilde{X}_{i-1}$ is a non-trivial isoclinic p-divisible group over \mathcal{C} of slope μ_i , \forall $i = 1, \ldots, m, 1 \ge \mu_1 > \cdots > \mu_m \ge 0.$

(ii) The filtration

$$0 = \tilde{X}_0 \subset \tilde{X}_1 \subset \tilde{X}_2 \subset \cdots \tilde{X}_m = \tilde{X}$$

is uniquely determined by $\tilde{X} \to C$. Each subgroup $\tilde{X}_i \subseteq \tilde{X}$ is stable under the natural action of \mathcal{O}_B .

(iii) $\tilde{Y}_i \to \mathcal{C}$ is geometrically constant $\forall i$, hence it is the twist of a constant p-divisible group by a smooth étale \mathbb{Z}_p -sheaf over \mathcal{C} . Local moduli on a leaf comes from deformation of the slope filtration

Explain the two-slope case:

- X,Y : isoclinic $\,p{\rm -div.}$ group over $\,\mathbb F\,$ with slopes $\mu_X < \mu_Y$ and heights $\,h_X,h_Y$,
- DE(X, Y) = deformation functor of the filtration
 0 = Y ⊂ X × Y, i.e. deform by extensions; it is
 a commutative smooth formal group over 𝑘 via
 Baer sum construction,
- $DE(X, Y)_{pdiv}$ = the maximal *p*-divisible subgroup of DE(X, Y),
- M(X), M(Y): Cartier module of X, Y,
- $H_{\mathbb{Q}} := \operatorname{Hom}_{W(k)}(\operatorname{M}(X), \operatorname{M}(Y)) \otimes \mathbb{Q}$ with operators F, V, defined by

$$(V \cdot h)(u) = V(h(V^{-1}u))$$
$$(F \cdot h)(u) = F(h(V(u)))$$

- **THM 6.** (i) The *p*-divisible formal group $DE(X, Y)_{pdiv}$ is isoclinic of slope $\mu_Y - \mu_X$; its height is $h_X \cdot h_Y$.
- (ii) The Cartier module of $DE(X, Y)_{pdiv}$ is naturally isomorphic to the maximal W(k)-submodule of

$$\operatorname{Hom}_{W(k)}(\operatorname{M}(X), \operatorname{M}(Y))$$

stable under the F and V.

- (iii) Suppose that $Y = X^t$, $A_0[p^{\infty}] \cong X \times Y$. Then $\mathcal{C}^{/x_0} \cong \mathrm{DE}(X, X^t)^{\mathrm{sym}}_{\mathrm{pdiv}} \subset \mathrm{DE}(X, X^t)_{\mathrm{pdiv}}$.
- (iv) The Cartier module of ${\rm DE}(X,X^t)^{
 m sym}_{
 m pdiv}$ is the maximal W(k)-submodule of

 $\operatorname{Hom}_{W(k)}(\mathrm{S}^2(\mathrm{M}(X)), W(k))$

stable under F and V.

 $\S5$ Hypersymmetric points

B: a simple algebra over \mathbb{Q} , \mathcal{O}_B : an order of B. $k \supset \mathbb{F}_p$, $k = k^{\mathrm{alg}}$.

DEF 2. (i) An \mathcal{O}_B -linear abelian variety (A, ι) over k is *B*-hypersymmetric, or hypersymmetric for short, if the canonical map

$$\operatorname{End}_{\mathcal{O}_B}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_p \to \operatorname{End}_{\mathcal{O}_B}(A[p^{\infty}])$$

is an isomorphism.

(ii) A point $x \in \mathcal{M}(k)$ is *hypersymmetric* if the underlying \mathcal{O}_B -linear abelian variety (A_x, ι_x) is hypersymmetric.

Remark. (i) When $B = \mathbb{Q}$, an abelian variety A is hypersymmetric iff

- $A \sim B_1 \times \cdots \times B_r$, B_i defined over a finite field $\forall i$,
- Fr_{B_i} has at most two eigenvalues orall i ,
- B_i and B_j share no common slope if $i \neq j$.

(ii) Hypersymmetric points exist on every leaf on $\mathcal{A}_{g,n}$. This statement does not hold for Hilbert modular varieties $\mathcal{M}_{E,n}$.

$\S6$ Action of stabilizer subgroup and rigidity

 \mathcal{M} : modular variety of PEL type over \mathbb{F} $x = [(A_x, \iota_x, \lambda_x, \eta_x)] \in \mathcal{M}(\mathbb{F})$

DEF. (i) $G_x(\mathbb{Z}_p) := Aut((A_x, \iota_x \lambda_x)[p^\infty])$, called the *local p-adic automorphism group* at x.

(ii) $H_x := U(End_{\mathcal{O}_B}(A_x) \otimes \mathbb{Q}, *_x)$, the unitary group attached to above s.s. algebra with involution, * = Rosati.

(iii) $H_x(\mathbb{Z}_p) := H_x(\mathbb{Q}_p) \cap G_x(\mathbb{Z}_p)$, called the *local* stabilizer subgroup at x.

• Have a natural action of $G_x(\mathbb{Z}_p)$ on $\mathcal{M}^{/x}$ from the Serre-Tate theorem.

Example: Lubin-Tate moduli space, with action by \mathcal{O}_D , D= central division algebra over \mathbb{Q}_p with inv. 1/h.

PROP 7 (Local stabilizer principle). Let Z be a closed subvariety of \mathcal{M} stable under all prime-to-p Hecke correspondence. Then $\forall x \in Z(\mathbb{F})$, the formal subscheme $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the subgroup $H_x(\mathbb{Z}_p)$ of $G_x(\mathbb{Z}_p)$.

- *Remark.* (1) Prop. 7 is an analog of: If a Lie group G operates on a manifold M and N is a submanifold stable under G, then $T_y(N)$ is stable under $G_y \quad \forall y \in N$.
- (2) The local stabilizer principle can be effectively deployed when combined with the local rigidity result below, resulting in a *linearization* of the Hecke orbit problem.

 $k = k^{\text{alg}} \supset \mathbb{F}$

X: a p-divisible formal group over k,

H: a connected reductive linear alg. group over \mathbb{Q}_p , $\rho: H(\mathbb{Q}_p) \to (\operatorname{End}_k(X) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\times}$, a rational linear repr. of $H(\mathbb{Q}_p)$ s.t.

(reg. repr. of $\operatorname{End}_k^0(X)$) $\circ \rho$

does not contain $\mathbf{1}_{H(\mathbb{Q}_p)}$.

 $H(\mathbb{Z}_p) := \rho^{-1}(\operatorname{End}_k(X))$,

Z: an irreducible closed formal subscheme of X.

THM 8 (Local rigidity). Assume that Z is stable under the natural action of an open subgroup U of $H(\mathbb{Z}_p)$ on X. Then Z is a p-divisible formal subgroup of X.

$\S{\bf 7}$ Open questions and outlook

A. TATE-LINEAR SUBVARIETIES

DEF. An irreducible closed subscheme $Z \subset \mathcal{A}_{g,n}^{\mathrm{ord}}$ over \mathbb{F} is *Tate-linear* if $\forall x \in Z(\mathbb{F})$ s.t. $Z^{/x}$ is a formal subtorus of the Serre-Tate formal torus $\mathcal{A}_{g,n}^{\mathrm{ord}}$

REM. The condition above is independent of the choice of $x \in Z(\mathbb{F})$.

Question. Is every Tate-linear subvariety $Z \subset \mathcal{A}_{g,n}^{\mathrm{ord}}$ over \mathbb{F} the reduction of a Shimura subvariety of $\mathcal{A}_{g,n}^{\mathrm{ord}}$ over $\overline{\mathbb{Q}}$?

REM. One can formulate a similar question, replacing $\mathcal{A}_{q,n}^{\mathrm{ord}}$ by a leaf \mathcal{C} in $\mathcal{A}_{g,n}$.

p-adic monodromy

 \mathcal{M} : modular var. of PEL type s.t. G^{der} is \mathbb{Q} -simple,

Z = Zariski closure of $\,\mathcal{H}^p(x)$ in $\,\mathcal{C}(x)\subset\mathcal{M}$,

 $\rho_{p,Z}: \pi_1(Z, x) \to \operatorname{Aut}\left((A_x, \iota_x, \lambda_x)[p^\infty]\right)$, the p-adic monodromy of Z,.

CONJ 9. If $\dim(Z) > 0$, then the image of $\rho_{p,Z}$ is an open subgroup of $\operatorname{Aut}((A_x, \iota_x, \lambda_x)[p^{\infty}])$.

Remark. (1) Conj. 9 implies HO_{ct} for Z.

- (2) There is a stronger version of Conj. 9: $\rho_{p,Z}$ is surjective.
- (3) If x is a hypersymmetric point on a leaf ${\mathcal C}$, then

$$\rho_{p,\mathcal{C}}: \pi_1(\mathcal{C}, x) \twoheadrightarrow \operatorname{Aut}\left((A_x, \iota_x, \lambda_x)[p^\infty]\right).$$