Hecke orbits as Shimura
 VARIETIES IN POSITIVE
 CHARACTERISTIC

Ching-Li Chai

ICM 2006, Madrid

§1. Introduction

p : a fixed prime number,
\mathcal{M} : a modular variety of PEL type over $\mathbb{F}:=\mathbb{F}_{p}^{\text {alg }}$,
G : reductive group over \mathbb{Q} attached to the PEL type

Want to study:

- Hecke symmetries: prime-to- p Hecke correspondences on \mathcal{M} coming from the action of $G\left(\mathbb{A}_{f}^{(p)}\right)$ on the prime-to- p tower of \mathcal{M},
- Leaves: subvarieties of \mathcal{M}, defined by fixing an isomorphism type of p-divisible group with prescribed symmetries, i.e. fix all p-adic invariants.

Themes:

(1) Hecke symmetries on \mathcal{M} determines the "foliation structure" by leaves:

Every Hecke orbit is dense in the leaf containing it. (Oort's Hecke orbit conjecture)
(2) Tools for the Hecke orbit problems:
monodromy, canonical coordinates, local rigidity, may be useful elsewhere.
(3) Leaves \approx Shimura varieties in char. p
\rightsquigarrow the reduction mod p of a Shimura variety X
$=\coprod_{\text {infinite }}$ char. p renderings of X.
(c.f. Indra's Pearls)
§2 Hecke symmetry on modular varieties Unramified PEL data $\left(B, *, \mathcal{O}_{B}, V, V_{\mathbb{Z}_{p}},\langle\cdot, \cdot\rangle, h\right)$:

- B - a finite dim. semisimple \mathbb{Q}-algebra unramified at p,
- \mathcal{O}_{B} - a maximal order of B maximal at p,
- * - a positive involution on B preserving \mathcal{O}_{B},
- V - a B-module of finite dimension over \mathbb{Q},
- $\langle\cdot, \cdot\rangle$ - a \mathbb{Q}-valued nondegen. alternating form on V compatible with $(B, *)$,
- $V_{\mathbb{Z}_{p}}$ - a self-dual \mathbb{Z}_{p}-lattice in $V_{\mathbb{Q}_{p}}$ stable under \mathcal{O}_{B}
- $h: \mathbb{C} \rightarrow \operatorname{End}_{B_{\mathbb{R}}}\left(V_{\mathbb{R}}\right)$, a $*$-homomorphism s.t.

$$
(v, w) \mapsto\langle v, h(\sqrt{-1}) w\rangle
$$

is a pos. definite symmetric form on $V_{\mathbb{R}}$

Modular varieties of PEL type

Given an unramified PEL data \rightsquigarrow

- $G=$ unitary group attached to $\left(\operatorname{End}_{B}(V), *\right)$,
- $\widetilde{\mathcal{M}}=\left(\mathcal{M}_{K^{p}}\right)$, a tower of modular varieties over \mathbb{F} indexed by the set of all compact open subgroups K^{p} of $G\left(\mathbb{A}_{f}^{p}\right)$, where
- $\mathbb{A}_{f}^{p}=\prod_{\ell \neq p}^{\prime} \mathbb{Q}_{\ell}$
- $\mathcal{M}_{K^{p}}$ classifies abelian varieties with endomorphisms by \mathcal{O}_{B}, plus prime-to- p polarization and level structure, whose H_{1} is modeled on the given PEL datum.

Hecke symmetries

(1) The group $G\left(\mathbb{A}_{f}^{p}\right)$ operates on the projective system $\widetilde{\mathcal{M}}$.
(2) If a level subgroup K_{0}^{p} is fixed, then on $\mathcal{M}_{K_{0}^{p}}$ the remnant from the action of $G\left(\mathbb{A}_{f}^{p}\right)$ takes the form of a family of finite étale algebraic correspondences on $\mathcal{M}_{K_{0}^{p}}$; they are known as Hecke correspondences.
(3) Given a point $x \in \mathcal{M}_{K_{0}^{p}}(\mathbb{F})$, let \tilde{x} be a lift of x in $\widetilde{\mathcal{M}}(\mathbb{F})$. Define the prime-to-p Hecke orbit $\mathcal{H}^{p} \cdot x$ of x to be the image in $\mathcal{M}_{K_{0}^{p}}(\mathbb{F})$ of the $G\left(\mathbb{A}_{f}^{p}\right)$-orbit of \tilde{x}; it is a countable set.

Example. Siegel modular varieties $\mathcal{A}_{g, n}$,
$(n, p)=1, n \geq 3$

- $\mathcal{A}_{g, n}$ classifies g-dimensional principally polarized abelian varieties (A, λ) with a symplectic level- n structure η.
- Two \mathbb{F}-points $\left[\left(A_{1}, \lambda_{1}, \eta_{1}\right)\right]$, $\left[\left(A_{2}, \lambda_{2}, \eta_{2}\right)\right]$ in $\mathcal{A}_{g, n}$ are in the same prime-to- p Hecke orbit iff \exists a prime-to- p quasi-isogeny $\beta\left(=" \beta_{2} \circ \beta_{1}^{-1 ")}\right.$

$$
\beta: A_{1} \stackrel{\beta_{1}}{\longleftarrow} A_{3} \xrightarrow{\beta_{2}} A_{2}
$$

defined by prime-to-p isogenies β_{1} and β_{2} s.t. β respects the principal polarizations λ_{1} and λ_{2}, i.e. $\beta_{1}^{*}\left(\lambda_{1}\right)=\beta_{2}^{*}\left(\lambda_{2}\right)$.

PEL datum:
$B=\mathbb{Q}, V=2 g$-dim. v.s. over $\mathbb{Q}, G=\mathrm{Sp}_{2 g}$.

Example. Hilbert modular varieties $\mathcal{M}_{E, d, n}$
F_{1}, \ldots, F_{r} : totally real number fields,
$E=F_{1} \times \cdots \times F_{r}, \mathcal{O}_{E}=\mathcal{O}_{F_{1}} \times \cdots \times \mathcal{O}_{F_{r}}$,
$d, n \geq 1$, integers, $\operatorname{gcd}(d n, p)=1$.
Hilbert modular variety $\mathcal{M}_{E, d, n}$ over \mathbb{F} :
classifies quadruples $(A \rightarrow S, \iota, \lambda, \eta)$, where

- $A \rightarrow S$ is an abelian scheme, $\operatorname{dim}(A \rightarrow S)=[E: \mathbb{Q}]$,
- $\iota: \mathcal{O}_{E} \rightarrow \operatorname{End}(A)$ is a ring homomorphism,
- λ is an \mathcal{O}_{E}-linear polarization on A of degree d,
- η is a level- n structure.

PEL datum:
$B=E, V=$ free E-module of rank two,
$G=\prod_{E / \mathbb{Q}} \mathrm{SL}_{2}$.

§3 Leaves and the Hecke orbit conjecture

$\mathcal{M}=\mathcal{M}_{K_{0}^{p}}$, a modular variety of PEL type over \mathbb{F}
$x_{0}=\left[\left(A_{0}, \lambda_{0}, \iota_{0}, \eta_{0}\right)\right] \in \mathcal{M}(\mathbb{F})$
DEF 1. The leaf $\mathcal{C}_{\mathcal{M}}\left(x_{0}\right)$ in \mathcal{M} passing through x_{0} is the reduced locally closed subscheme of \mathcal{M} smooth over \mathbb{F} such that $\mathcal{C}_{\mathcal{M}}\left(x_{0}\right)(\mathbb{F})$ consists of all points $x=[(A, \lambda, \iota, \eta)] \in \mathcal{C}_{\mathcal{M}}\left(x_{0}\right)(\mathbb{F})$ s.t.

$$
\left.(A, \lambda, \iota)\left[p^{\infty}\right]\right) \cong\left(A_{0}, \lambda_{0}, \iota_{0}\right)\left[p^{\infty}\right]
$$

where $(A, \lambda, \iota)\left[p^{\infty}\right]$ is the \mathcal{O}_{B}-linear polarized p-divisible group attached to (A, λ, ι).

Oort's Hecke orbit conjecture

CONJ 1 (HO). Every prime-to-p Hecke orbit in a modular variety of PEL type \mathcal{M} over \mathbb{F} is dense in the leaf in \mathcal{M} containing it.

CONJ ($\mathrm{HO}_{\mathrm{ct}}$). The closure of any prime-to- p Hecke orbit in the leaf \mathcal{C} containing it is an open-and-closed subset of \mathcal{C}, i.e. it is a union of irreducible components of the smooth variety \mathcal{C}.

CONJ ($\mathrm{HO}_{\mathrm{dc}}$). Every prime-to- p Hecke orbit in a leaf \mathcal{C} meets every irreducible component of \mathcal{C}.

Clearly $\mathrm{HO} \Longleftrightarrow \mathrm{HO}_{\mathrm{ct}}+\mathrm{HO}_{\mathrm{dc}}$.

Remark. Conj. $\mathrm{HO}_{\mathrm{dc}}$ is an irreducibility statement.
Let $Z\left(x_{0}\right)$ be the Zariski closure of the prime-to- p Hecke orbit of x_{0} for the group $G_{\text {der }}^{\text {sc }}$ in the leaf $\mathcal{C}\left(x_{0}\right)$.
PROP 2. Assume that the prime-to-p Hecke orbit of x_{0} with respect to every simple factor of $G_{\text {der }}^{\mathrm{sc}}$ is infinite. Then $Z\left(x_{0}\right)$ is irreducible, and the Zariski closure of the ℓ-adic monodromy group of $Z\left(x_{0}\right)$ is $G_{\text {der }}\left(\mathbb{Q}_{\ell}\right)$ for every prime number $\ell \neq p$.

Note. Irreducibility of $Z\left(x_{0}\right)$ uses: $G_{\text {der }}^{\mathrm{sc}}\left(\mathbb{Q}_{\ell}\right)$ has no proper subgroup of finite index.

Evidence of the Hecke orbit conjecture

THM 3 ($\left.\mathrm{HO}^{\text {siegel }}\right)$. Conjecture HO holds for Siegel modular varieties.

THM 4 ($\mathrm{HO}^{\text {hilbert }}$). Conjecture HO holds for the Hilbert modular varieties attached to a finite product $F_{1} \times \cdots \times F_{r}$ of totally real fields. Here the prime p may be ramified in any or all of F_{1}, \cdots, F_{r}.

Remark. (i) Thm. 3 is joint work with F. Oort.
(ii) Thm. 4 is joint work with C.-F. Yu. The proof of $\mathrm{HO}_{\mathrm{dc}}^{\text {hilbert }}$ is due to C.-F. Yu.
(iii) The proof of $\mathrm{HO}_{\mathrm{ct}}^{\text {siegelel }}$ uses $\mathrm{HO}^{\text {hilbert }}$.

$\S 4$ Canonical coordinates on leaves

Recall classical Serre-Tate coordinates:
A_{0} : ordinary abelian variety over $k \supset \mathbb{F}_{p}$,

$$
k=k^{\mathrm{alg}}, g=\operatorname{dim}\left(A_{0}\right) .
$$

$\rightsquigarrow \quad \operatorname{DEF}\left(A_{0}\right)=\operatorname{DEF}\left(A_{0}\left[p^{\infty}\right]\right) \cong \mathbb{G}_{m}^{g^{2}}$.

Phenomenon:
\exists generalization to leaves, so that every local jet space of a leaf \mathcal{C} in \mathcal{M} is "built up" from p-divisible formal groups via a family of fibrations.
$\mathcal{C}=$ a leaf in $\mathcal{M}, \tilde{X}=\left.A_{\text {univ }}\left[p^{\infty}\right]\right|_{\mathcal{C}} \rightarrow \mathcal{C}$.
PROP 5. (i) $\exists p$-divisible groups

$$
0=\tilde{X}_{0} \subset \tilde{X}_{1} \subset \tilde{X}_{2} \subset \cdots \subset \tilde{X}_{m}=\tilde{X}
$$

over \mathcal{C} s.t. $\tilde{Y}_{i}:=\tilde{X}_{i} / \tilde{X}_{i-1}$ is a non-trivial isoclinic p-divisible group over \mathcal{C} of slope μ_{i}, \forall $i=1, \ldots, m, 1 \geq \mu_{1}>\cdots>\mu_{m} \geq 0$.
(ii) The filtration

$$
0=\tilde{X}_{0} \subset \tilde{X}_{1} \subset \tilde{X}_{2} \subset \cdots \tilde{X}_{m}=\tilde{X}
$$

is uniquely determined by $\tilde{X} \rightarrow \mathcal{C}$. Each subgroup $\tilde{X}_{i} \subseteq \tilde{X}$ is stable under the natural action of \mathcal{O}_{B}.
(iii) $\tilde{Y}_{i} \rightarrow \mathcal{C}$ is geometrically constant $\forall i$, hence it is the twist of a constant p-divisible group by a smooth étale \mathbb{Z}_{p}-sheaf over \mathcal{C}.

Local moduli on a leaf comes from deformation of the slope filtration

Explain the two-slope case:

- X, Y : isoclinic p-div. group over \mathbb{F} with slopes $\mu_{X}<\mu_{Y}$ and heights h_{X}, h_{Y},
- $\mathrm{DE}(X, Y)=$ deformation functor of the filtration $0=Y \subset X \times Y$, i.e. deform by extensions; it is a commutative smooth formal group over \mathbb{F} via Baer sum construction,
- $\mathrm{DE}(X, Y)_{\text {pdiv }}=$ the maximal p-divisible subgroup of $\mathrm{DE}(X, Y)$,
- $\mathrm{M}(X), \mathrm{M}(Y)$: Cartier module of X, Y,
- $H_{\mathbb{Q}}:=\operatorname{Hom}_{W(k)}(\mathrm{M}(X), \mathrm{M}(Y)) \otimes \mathbb{Q}$ with operators F, V, defined by

$$
\begin{aligned}
& (V \cdot h)(u)=V\left(h\left(V^{-1} u\right)\right) \\
& (F \cdot h)(u)=F(h(V(u))
\end{aligned}
$$

THM 6. (i) The p-divisible formal group
$\mathrm{DE}(X, Y)_{\text {pdiv }}$ is isoclinic of slope $\mu_{Y}-\mu_{X}$; its height is $h_{X} \cdot h_{Y}$.
(ii) The Cartier module of $\mathrm{DE}(X, Y)_{\text {pdiv }}$ is naturally isomorphic to the maximal $W(k)$-submodule of

$$
\operatorname{Hom}_{W(k)}(\mathrm{M}(X), \mathrm{M}(Y))
$$

stable under the F and V.
(iii) Suppose that $Y=X^{t}, A_{0}\left[p^{\infty}\right] \cong X \times Y$.

Then
$\mathcal{C}^{/ x_{0}} \cong \mathrm{DE}\left(X, X^{t}\right)_{\text {pdiv }}^{\text {sym }} \subset \mathrm{DE}\left(X, X^{t}\right)_{\text {pdiv }}$.
(iv) The Cartier module of $\mathrm{DE}\left(X, X^{t}\right)_{\text {pdiv }}^{\text {sym }}$ is the maximal $W(k)$-submodule of

$$
\operatorname{Hom}_{W(k)}\left(\mathrm{S}^{2}(\mathrm{M}(X)), W(k)\right)
$$

stable under F and V.

§5 Hypersymmetric points

B : a simple algebra over $\mathbb{Q}, \mathcal{O}_{B}$: an order of B. $k \supset \mathbb{F}_{p}, k=k^{\mathrm{alg}}$.
DEF 2. (i) An \mathcal{O}_{B}-linear abelian variety (A, ι) over k is B-hypersymmetric, or hypersymmetric for short, if the canonical map

$$
\operatorname{End}_{\mathcal{O}_{B}}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \rightarrow \operatorname{End}_{\mathcal{O}_{B}}\left(A\left[p^{\infty}\right]\right)
$$

is an isomorphism.
(ii) A point $x \in \mathcal{M}(k)$ is hypersymmetric if the underlying \mathcal{O}_{B}-linear abelian variety $\left(A_{x}, \iota_{x}\right)$ is hypersymmetric.

Remark. (i) When $B=\mathbb{Q}$, an abelian variety A is hypersymmetric iff

- $A \sim B_{1} \times \cdots \times B_{r}, B_{i}$ defined over a finite field $\forall i$,
- $\operatorname{Fr}_{B_{i}}$ has at most two eigenvalues $\forall i$,
- B_{i} and B_{j} share no common slope if $i \neq j$.
(ii) Hypersymmetric points exist on every leaf on
$\mathcal{A}_{g, n}$. This statement does not hold for Hilbert modular varieties $\mathcal{M}_{E, n}$.
§6 Action of stabilizer subgroup and rigidity
\mathcal{M} : modular variety of PEL type over \mathbb{F}
$x=\left[\left(A_{x}, \iota_{x}, \lambda_{x}, \eta_{x}\right)\right] \in \mathcal{M}(\mathbb{F})$
DEF. (i) $\mathrm{G}_{\mathrm{x}}\left(\mathbb{Z}_{p}\right):=\operatorname{Aut}\left(\left(A_{x}, \iota_{x} \lambda_{x}\right)\left[p^{\infty}\right]\right)$, called the local p-adic automorphism group at x.
(ii) $\mathrm{H}_{\mathrm{x}}:=\mathrm{U}\left(\operatorname{End}_{\mathcal{O}_{B}}\left(A_{x}\right) \otimes \mathbb{Q}, *_{x}\right)$, the unitary group attached to above s.s. algebra with involution, $*$ = Rosati.
(iii) $\mathrm{H}_{x}\left(\mathbb{Z}_{p}\right):=\mathrm{H}_{\mathrm{x}}\left(\mathbb{Q}_{p}\right) \cap \mathrm{G}_{\mathrm{x}}\left(\mathbb{Z}_{p}\right)$, called the local stabilizer subgroup at x.
- Have a natural action of $\mathrm{G}_{\mathrm{x}}\left(\mathbb{Z}_{p}\right)$ on $\mathcal{M}^{/ x}$ from the Serre-Tate theorem.
Example: Lubin-Tate moduli space, with action by \mathcal{O}_{D},
$D=$ central division algebra over \mathbb{Q}_{p} with inv. $1 / h$.

PROP 7 (Local stabilizer principle). Let Z be a closed subvariety of \mathcal{M} stable under all prime-to-p Hecke correspondence. Then $\forall x \in Z(\mathbb{F})$, the formal subscheme $Z^{/ x} \subset \mathcal{M}^{/ x}$ is stable under the action of the subgroup $\mathrm{H}_{x}\left(\mathbb{Z}_{p}\right)$ of $\mathrm{G}_{\mathrm{x}}\left(\mathbb{Z}_{p}\right)$.

Remark. (1) Prop. 7 is an analog of: If a Lie group G operates on a manifold M and N is a submanifold stable under G, then $\mathrm{T}_{y}(N)$ is stable under $G_{y} \forall y \in N$.
(2) The local stabilizer principle can be effectively deployed when combined with the local rigidity result below, resulting in a linearization of the Hecke orbit problem.

$$
k=k^{\mathrm{alg}} \supset \mathbb{F}
$$

X : a p-divisible formal group over k,
H : a connected reductive linear alg. group over \mathbb{Q}_{p}, $\rho: H\left(\mathbb{Q}_{p}\right) \rightarrow\left(\operatorname{End}_{k}(X) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}\right)^{\times}$, a rational linear repr. of $H\left(\mathbb{Q}_{p}\right)$ s.t.

$$
\left(\text { reg. repr. of } \operatorname{End}_{k}^{0}(X)\right) \circ \rho
$$

does not contain $\mathbf{1}_{H\left(\mathbb{Q}_{p}\right)}$.
$H\left(\mathbb{Z}_{p}\right):=\rho^{-1}\left(\operatorname{End}_{k}(X)\right)$,
Z : an irreducible closed formal subscheme of X.
THM 8 (Local rigidity). Assume that Z is stable under the natural action of an open subgroup U of $H\left(\mathbb{Z}_{p}\right)$ on X. Then Z is a p-divisible formal subgroup of X.
§7 Open questions and outlook

A. Tate-linear subvarieties

DEF. An irreducible closed subscheme $Z \subset \mathcal{A}_{g, n}^{\text {ord }}$ over \mathbb{F} is Tate-linear if $\forall x \in Z(\mathbb{F})$ s.t. $Z^{/ x}$ is a formal subtorus of the Serre-Tate formal torus $\mathcal{A}_{g, n}^{\text {ord }}$

REM. The condition above is independent of the choice of $x \in Z(\mathbb{F})$.
Question. Is every Tate-linear subvariety $Z \subset \mathcal{A}_{g, n}^{\text {ord }}$ over \mathbb{F} the reduction of a Shimura subvariety of $\mathcal{A}_{g, n}^{\text {ord }}$ over $\overline{\mathbb{Q}}$?

REM. One can formulate a similar question, replacing $\mathcal{A}_{g, n}^{\text {ord }}$ by a leaf \mathcal{C} in $\mathcal{A}_{g, n}$.
p-ADIC MONODROMY
\mathcal{M} : modular var. of PEL type s.t. $G^{\text {der }}$ is \mathbb{Q}-simple,
$Z=$ Zariski closure of $\mathcal{H}^{p}(x)$ in $\mathcal{C}(x) \subset \mathcal{M}$,
$\rho_{p, Z}: \pi_{1}(Z, x) \rightarrow \operatorname{Aut}\left(\left(A_{x}, \iota_{x}, \lambda_{x}\right)\left[p^{\infty}\right]\right)$, the p-adic monodromy of Z,

CONJ 9. If $\operatorname{dim}(Z)>0$, then the image of $\rho_{p, Z}$ is an open subgroup of $\operatorname{Aut}\left(\left(A_{x}, \iota_{x}, \lambda_{x}\right)\left[p^{\infty}\right]\right)$.

Remark. (1) Conj. 9 implies $\mathrm{HO}_{\mathrm{ct}}$ for Z.
(2) There is a stronger version of Conj. 9: $\rho_{p, Z}$ is surjective.
(3) If x is a hypersymmetric point on a leaf \mathcal{C}, then

$$
\rho_{p, \mathcal{C}}: \pi_{1}(\mathcal{C}, x) \rightarrow \operatorname{Aut}\left(\left(A_{x}, \iota_{x}, \lambda_{x}\right)\left[p^{\infty}\right]\right)
$$

