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Some familiar whole numbers

§1. Examples of numbers

2, the only even prime number.

30, the largest positive integer m such that every positive
integer between 2 and m and relatively prime to m is a
prime number.

1729 = 123 +13 = 103 +93,
the taxi cab number. As Ramanujan remarked to Hardy,
it is the smallest positive integer which can be expressed
as a sum of two positive integers in two different ways.

A TOUR OF
FERMAT’S WORLD

Ching-Li Chai

Samples of numbers

More samples in
arithemetic

Congruent numbers

Fermat’s infinite
descent

Counting solutions

Zeta functions and
their special values

Modular forms and
L-functions

Elliptic curves,
complex
multiplication and
L-functions

Weil conjecture and
equidistribution

Some familiar algebraic irrationals

√
2, the Pythagora’s number, often the first irrational

numbers one learns in school.
√
−1, the first imaginary number one encountered.

1+
√

5
2 , the golden number, a root of the quadratic

polynomial x2− x−1.
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Some familiar transcendental numbers

1+10+10−2 +10−6 +10−24 + · · ·+10−n! + · · ·, a
Liouville number.

e = exp(1) =
∞

∑
n=0

1
n!

, the base of the natural logarithm.

π , area of a circle of radius 1. Zu Chungzhi (429–500)
gave two approximating fractions,

22
7

and
355
113

(both bigger than π), and obtained

3.1415926 < π < 3.1415927.
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Triangular numbers and Mersenne numbers

§2. Some families of numbers

1,3,6,10,15,21,28,36,45,55,66,78,91, . . ., the triangular
numbers, ∆n =

n(n+1)
2 .

2,3,5,7,11,13,17,19,23,29,31,37,41, . . ., the prime
numbers.

2p−1 (p is a prime number) are the Mersenne numbers.
If Mp := 2p−1 is a prime number (a Mersenne prime),
then

∆M =
1
2

M(M+1) = 2p−1(2p−1)

is an even perfect number. For instance Mp is a Mersenne
prime for p = 2,3,5,7,13,17,19,31,61,89,107,127,521
and 74207281.

Open question: are there infinitely many Mersenne
primes?
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Fermat numbers

3,5,17,257,65537,4294967297 are the first few Fermat
numbers,

Fr = 22r
+1.

Not all Fermat numbers are primes; Euler found in 1732 that

232 +1 = 4294967297 = 641×6700417.

If a prime number p is a Fermat number, then the regular
p-gon’s can be constructed with ruler and compass. For
instance Fr is a prime number for r = 0,1,2,3,4,5,65537.

Open question: are there infinitely many Fermat primes?
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Figure: Fermat
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Partition numbers

The partition numbers p(n) is defined as the number of
unordered partitions of a whole integer n. Its generating series
is

∞

∑
n=0

p(n)xn =
∞

∏
n=1

(1− xm)−1

e.g. (1,1,1,1),(2,1,1,1),(2,2),(3,1),(4) are the five ways to
partition 4, so p(4) = 5.

Ramanujan showed

p(n)∼ 1
4n
√

3
eπ

√
2n/3
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Figure: Ramanujan
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Hans Rademacher proved the following exact formula for p(n):

p(n) =
1

π
√

2

∞

∑
k=1

k1/2 Ak(n)
d
dn

sinh
(

π
√

2n−1/12√
3k

)
√

n− 1/24

where
Ak(n) = ∑

0≤m<k,(m,k)=1
eπ
√
−1[s(m,k)−2nm/k]

and the Dedekind sum s(m,k) is by definition

s(m,k) = ∑
1≤j≤k−1

sawt(j/k)sawt(mj/k)

sawt(x) = x−bxc− 1
2 if x 6∈ Z, sawt(x) = 0 if x ∈ Z
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Figure: Rademacher



A TOUR OF
FERMAT’S WORLD

Ching-Li Chai

Samples of numbers

More samples in
arithemetic

Congruent numbers

Fermat’s infinite
descent

Counting solutions

Zeta functions and
their special values

Modular forms and
L-functions

Elliptic curves,
complex
multiplication and
L-functions

Weil conjecture and
equidistribution

Ramanujan numbers

1,−24,252,−1472,4830,−6048, . . . , are the first few
Ramanujan numbers, defined by

∞

∑
n=1

τ(n)xn = x

[
∞

∏
n=1

(1− xn)

]24

Ramanujan conjectured that there is a constant C > 0 such that

τ(p)≤ C p11/2

for every prime number p.

Ramanujan’s conjecture was proved by Deligne in 1974 (as a
consequence of his proof of the Weil conjecture) with C = 2.
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Bernouli numbers

The Bernouli numbers are defined by

x
ex−1

=
∞

∑
n=0

Bn

n!
xn

B0 = 1, B1 =−1
2 , B2 =

1
6 , B4 =− 1

30 , B6 =
1

42 , B8 =− 1
30 ,

B12 =− 691
2730 , B14 =

7
6 .

Remark. The Bernouli numbers are essentially the values of
the Riemann zeta function at negative odd integers.
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Heegner numbers

−1,−2,−3,−7,−11,−19,−43,−67,−163 are the nine
Heegner numbers; they are the only negative integers −d such
that the class number of the imaginary quadratic fields
Q(
√
−d) is equal to one.

For the larger Heegner numbers, eπ
√

d is close to an integer; e.g.

eπ
√

67 = 147197952743.99999866

eπ
√

163 = 161537412640768743.99999999999925007
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Two simple diophantine equations

§2. Some Diophantine equations

The equation
x2 + y2 = z2

has lots of integer solutions. The primitive ones with x odd
and y even are given by the formula

x = st, y = s2−t2
2 , z = s2+t2

2 , s > t odd, gd(s, t) = 1

(Fermat) The equation

x4− y4 = z2

has no non-trivial integer solution.
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Primes of the form Ax2 +By2

(Fermat)

p = x2 + y2 ⇐⇒ p≡ 1 (mod 4)

p = x2 +2y2 ⇐⇒ p≡ 1 or 3 (mod 8)

p = x2 +3y2 ⇐⇒ p = 3 or p≡ 1 (mod 3)

(Euler)

p = x2 +5y2 ⇐⇒ p≡ 1,9 (mod 20)

2p = x2 +5y2 ⇐⇒ p≡ 3,7 (mod 20)

p = x2 +14y2 or p = 2x2 +7y2⇐⇒
p≡ 1,9,15,23,25,39 (mod 56)

A TOUR OF
FERMAT’S WORLD

Ching-Li Chai

Samples of numbers

More samples in
arithemetic

Congruent numbers

Fermat’s infinite
descent

Counting solutions

Zeta functions and
their special values

Modular forms and
L-functions

Elliptic curves,
complex
multiplication and
L-functions

Weil conjecture and
equidistribution

Figure: Euler
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Primes of the form Ax2 +By2, continued

p = x2 +27y2 ⇐⇒ p≡ 1 (mod 3) and 2 is a

cubic residue (mod p)

p = x2 +64y2 ⇐⇒ p≡ 1 (mod 4) and 2 is a

biquadratic residue (mod p)

(Kronecker)

p = x2 +31y2 ⇐⇒ (x3−10x)2 +31(x2−1)2 ≡ 0

(mod p) for some integer x
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Some formulas discovered by Euler

π

4 = 1− 1
3 +

1
5 −

1
7 + . . .

1+ 1
22 +

1
32 +

1
42 + . . .= π2

6

1+ 1
24 +

1
34 +

1
44 + . . .= π4

90

• 1−2k +3k−4k + . . .=− (1−2k+1)
k+1 Bk+1

for k ≥ 1; in particular it vanishes if k is even.

1
π2k (1+ 1

22k +
1

32k +
1

42k + . . .) ∈Q for every integer k ≥ 1.

∏
∞
n=1 (1− xn) = ∑n∈Z (−1)n xn(3n+1)/2
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Prelude to congruent numbers

§3. Congruent numbers.
The equation

y2z = x3−n2xz, n square free,

may or may not have a non-trivial (i.e. xyz 6= 0) integer
solution—depending on whether n is a congruent number, to be
discussed next.
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Congruent numbers: definition and examples

A square free whole number n > 0 is a congruent number if
there is a right triangle with rational sides whose area is n.

For instance 5 is a congruent number, because
(20/3)2 +(3/2)2 = (41/6)2. Similarly 6 is a congruent number
because 32 +42 = 52.

5,6,7,13,14,15,20,21,22,23,24,28,29,30,31,34,37,38,39,
41,45,46,47 are the beginning of (the sequence of) congruent
numbers.
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157 as a congruent numbers

The number 157 is a congruent number, but the “simplest”
non-trivial rational solution to a2 +b2 = c2 with a ·b = 314 is

a =
157841 ·4947203 ·526771095761

2 ·32 ·5 ·13 ·17 ·37 ·101 ·17401 ·46997 ·356441

b =
22 ·32 ·5 ·13 ·17 ·37 ·101 ·157 ·17401 ·46997 ·356441

157841 ·4947203 ·526771095761

c= 20085078913·1185369214457·9425458255024420419074801
2·32 ·5·13·17·37·101·17401·46997·356441·157841·4947203·526771095761

The point: although 157 is not a large number, the solution
involved may have very large numerators and denominators. In
particular it may not be easy to either determine or search for
congruent numbers.
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Congruent number problem

Congruence number problem: find an (easily checkable)
criterion for a square free positive integer to be a congruence
number.

Reformulation in terms of rational points on (a special kind
of) elliptic curves: a positive square free integer n is a
congruent number if and only if the equation

y2 = x3−n2x

has a solution (x,y) in rational numbers with y 6= 0. (Then there
are infinitely many such rational solutions.)
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Tunnell’s theorem on congruent numbers

Theorem (Tunnell 1983) If n is a square free positive
congruence number, then

#{x,y,z∈Z|n=2x2+y2+32z2}=(1/2)·#{(x,y,z∈Z|n=2x2+y2+8z2}

if n is odd, and

#{x,y,z∈Z|n/2=4x2+y2+32z2}=(1/2)·#{(x,y,z∈Z|n/2=2x2+y2+8z2}

if n is even. Conversely if the Birch-Swinnerton-Dyer
conjecture holds (for the elliptic curve y2 = x3−n2x), then
these equalities imply that n is a congruent number.
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Fermat’s Last Theorem

(Fermat’s Last Theorem, now a theorem of
Wiles+Taylor-Wiles)

xp + yp + zp = 0

has no non-trivial integer solution if p is an odd prime number.

Proved by Wiles and Taylor/Wiles in 1994, more than 300
years after Fermat wrote the assertion at the margin of his
personal copy of the 1670 edition of Diophantus.

Question/Discussion: Why should anyone care?
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Fermat’s infinite descent illustrated

§4. Fermat’s infinite descent
We will explain how to use Fermat’s method of infinite descent,
which he is jusifiably proud of, to show that the Diophantine
equation

x4− y4 = z2

has no non-trivial integer solution.

May assume gcd(x,y,z) = 1. The either x,y are both odd, or x
is odd and y is even. We will consider only the first case that
x,y are both odd.
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Step 1.

(x2 + y2) · (x2− y2) = z2 =⇒ ∃u,v such that gcd(u,v) = 1,
x2 + y2 = 2u2, x2− y2 = 2v2 and z = 2uv.

2v2 = (x+ y) · (x− y) =⇒ ∃r,s such that x+ y = r2,
x− y = 2s2, v = rs (adjust the signs).

The original equation becomes r4 +4s4 = 4u2. Write r = 2t,
the equation becomes

s4 +4t4 = u2

and we have

x = 2t2 + s2, y = 2t2− s2, z = 4tsu ,

gcd(s, t,u) = 1.
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Step 2.

From s4 +4t4 = u2, gcd(s, t,u) = 1, it is easy to see that u and
s are both odd. May assume u > 0.

4t2 = (u− s2)(u+ s2) =⇒ ∃a,b such that u− s2 = 2b2,
u+ s2 = 2a2, t2 = ab, gcd(a,b) = 1.

t2 = ab =⇒ ∃x1,y1 such that a = x2
1, b = y2

1 and t = x1y1.. It
follows that u = x4

1 + y4
1 and

x4
1− y4

1 = s2 .

Let z1 = s. Then (x1,y1,z1) is an integer solution of the original
equation x4− y4 = z2, with |x1| strictly smaller.
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Fermat’s infinite descent, continuted

Conclusion. Starting with a non-trivial solution, we obtain an
infinite sequence of non-trivial solutions
(x,y,z),(x1,y1,z1),(x2,y2,z2),(x3,y3,z3), . . . such that the
|x|> |x1|> |x2|> |x3|> · · ·. That’s impossible. Q.E.D.

(We leave it to the reader to check that if we start with a
non-trivial solution of x4− y4 = z2 such that x is odd and y is
even, the same argument will also lead us to another non-trivial
solution such that the absolute value of x decreases. )
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An intrinsic description of infinite descent

Remark. Consider algebraic varieties X1 : x4− y4 = z2 and
X2 : s4 +4t4 = u2; and maps f : X1→ X2

f : (x,y,z) 7→ (s, t,u) = (z,xy,x4 + y4)

and g : X2→ X1

g : (s, t,u) 7→ (s2 +2t2,s2−2t2,4stu)

The varieties X1 and X2 correspond to elliptic curves E1,E2
over Q with complex multiplication; they become isomorphic
over Q( 4

√
−4).

The maps f ,g correspond to “multiplication by (1+
√
−1) and

(1−
√
−1)” respectively. Their composition is “multiplication

by 2”, defined over Q.
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Sum of two squares
§5. Counting solutions.

Notation. For each integer k ≥ 1, let rk(n) be the number of
k-tuples (x1, . . . ,xn) ∈ Zk such that

x2
1 + . . .+ x2

k = n .

Write n = 2f ·n1 ·n2, where every prime divisor of n1 is ≡ 1
(mod 4) and every prime divisor of n2 is ≡ 3 (mod 4)).

Fermat showed that r2(n)> 0 (i.e. n is a sum of two
squares) if and only if every prime divisor p of n2 occurs
in n2 to an even power.

Assume this is the case, Jacobi obtained

r2(n) = 4d(n1)

where d(n1) is the number of divisors of n1.
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Sum of four squares

Lagrange showed that r4(n)> 0 for every n ∈ Z.

Jacobi obtained
r4(n) = 8σ

′(n)

where σ ′(n) is the sum of divisors of n which are not
divisible by 4. More explicitly,

r4(n) =
{

8 ·∑d|n d n odd
24 ·∑d|n,d odd d n even
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Sum of three squares

Legendre showed that n is a sum of three squares if and
only if n is not of the form 4a(8m+7), and
r3(4an) = r3(n).

Let Rk(n) be the number of primitive solutions of
x2

1 + · · ·+ x2
k = n, i.e. gcd(x1, . . . ,xk) = 1. Then

R3(n) =


24∑

bn/4c
s=1

( s
n

)
n≡ 1,2 (mod 4)

8∑
bn/2c
s=1

( s
n

)
n≡ 3 (mod 8)

More conceptually, if n is squre free, then

r3(n) =


24 ·h(Q(

√
−n)) for n≡ 3 (mod 8)

12 ·h(Q(
√
−n)) for n≡ 1,2,5,6 (mod 8)

0 for n≡ 7 (mod 8)

where h(Q(
√
−n) is the class number of Q(

√
−n).
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Mod p points for a CM elliptic curve

For the elliptic curve E be the elliptic curve E = {y2 = x3 + x},
which hascomplex multiplication by Z[

√
−1] with

√
−1 acting

by (x,y) 7→ (−x,
√
−1y), we have

#E(Fp) = 1+p−ap, −2
√

p≤ ap ≤ 2
√

p

for all prime numbers p.
(This is a general perperty of elliptic curves, due to Hasse. The
CM property allows us to give an explicit formula for ap’s.)

For odd p we have

ap = ∑
u∈Fp

(
u3 +u

p

)
=

{
0 if p≡ 3 (mod 4)
−2a if p = a2 +4b2 with a≡ 1 (mod 4)
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The Riemann zeta function

§6. Zeta functions and their special values

The Riemann zeta function ζ (s) is a meromorphic function on
C with only a simple pole at s = 0 (and holomorphic
elsewhere),

ζ (s) = ∑
n≥1

n−s = ∏
p
(1−p−s)−1 for Re(s)> 1,

such that the function ξ (s) = π−s/2 ·Γ(s/2) ·ζ (s) satisfies

ξ (1− s) = ξ (s) .

Here Γ(s) =
∫

∞

0
e−tts−1dt for Re(s)> 0, extended to C by

Γ(s+1) = sΓ(s).
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Figure: Riemann
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Dirichlet L-functions

Similar properties hold for the Dirichlet L-function

L(χ,s) = ∑
n∈N,(n,N)=1

χ(n) ·n−s Re(s)> 1

for a primitive Dirichlet character χ : (Z/NZ)×→ C×1 .

(Here C×1 denotes the set of all complex numbers with absolute
value 1, (Z/NZ)× is the set of all integers modulo N which are
prime to N, and χ is a function compatible with the rules of
multiplication for both its source and target.)



A TOUR OF
FERMAT’S WORLD

Ching-Li Chai

Samples of numbers

More samples in
arithemetic

Congruent numbers

Fermat’s infinite
descent

Counting solutions

Zeta functions and
their special values

Modular forms and
L-functions

Elliptic curves,
complex
multiplication and
L-functions

Weil conjecture and
equidistribution

Figure: Dirichlet
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L-functions and distribution of prime numbers

Theme. Zeta and L-values often contain deep
arithmetic/geometric information.

Dirichlet’s theorem for primes in arithmetic progression
↔ L(χ,1) 6= 0 ∀ Dirichlet character χ .

The prime number theorem
↔ zero free region of ζ (s) near {Re(s) = 1}.

Riemann’s hypothesis ↔ (estimate of) the second term
in the asymptotic expansion of

π(x) := #{p prime |p≤ x}
Note: the first/main term in expansion of π(x) is

Li(x) :=
∫ x

2
dt

log t ∼
x

logx +
x

(logx)2 +
2x

(logx)3 +
6x

(logx)4 + · · ·
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More magical properties of zeta values

Certain values of zeta or L-functions tend to be rational or
algebraic numbers, or becomes rational/algebraic after
suitable transcendental factors are removed.

These special zeta values contains deep information such
as class numbers, Mordell-Weil group, Selmer group,
Tate-Shafarevich group, etc.

Examples. (a) Leibniz’s formula: Z[
√
−1] is a PID (because

the formula implies that the class number h(Q(
√
−1)) is 1).

(b) Bk/k appears in the formula for the number of
(isomorphism classes of) exotic (4k−1)-spheres.
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Bernouli numbers as zeta values

Recall that the Bernoulli numbers Bn are defined by

x
ex−1

= ∑
n∈N

Bn

n!
· xn

B0 = 1, B1 =−1/2, B2 = 1/6, B4 =−1/30, B6 = 1/42,
B8 =−1/30, B10 = 5/66, B12 =−691/2730.

(i) (Euler) ζ (1− k) =−Bk/k ∀ even integer k > 0.

(ii) (Leibniz’s formula, 1678; Madhava, ∼ 1400)

1− 1
3 +

1
5 −

1
7 + · · ·=

π

4
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Euler’s evaluation of zeta values.

Insert a factor tk into the fomal infinite series for ζ (−n) and

evaluate at t = 1: ζ (−k) =
∞

∑
n=1

nk =

(
∞

∑
n=1

nktn

)∣∣∣∣∣
t=1

From
(
t d

dt

)k
tn = nktn, we get

ζ (−k) =
(

t
d
dt

)k
(

∞

∑
n=1

tn

)∣∣∣∣∣
t=1

=

(
t

d
dt

)k( t
1− t

)∣∣∣∣∣
t=1

Let t = ex, so t d
dt =

d
dx and

ζ (−k) =
(

d
dx

)k( ex

1− ex

)∣∣∣∣∣
x=0

=−Bk+1

k+1

for k > 0. Esp. ζ (−k) ∈Q , ζ (−2k) = 0 ∀ k > 0.
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Congruence of zeta values

Theme. Special zeta or L-values satisfy strong congruence
properties—causing them to have p-adic avatars (called p-adic
L-functions) which interpolate complex L-functions

Example. (Kummer congruence)

(i) ζ (m) ∈ Z(p) for m≤ 0 with m 6≡ 1 (mod p−1)

(ii) ζ (m)≡ ζ (m′) (mod p) for all m,m′ ≤ 0 with
m≡ m′ 6≡ 1 (mod p−1).
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Examples of p-adic properties of zeta values

EXAMPLES OF KUMMER CONGRUENCE.

ζ (−1) =− 1
22 ·3

; −1≡ 1 (mod p−1) only for p = 2,3.

ζ (−11) =
691

23 ·32 ·5 ·7 ·13
; −11≡ 1 (mod p−1) holds

only for p = 2,3,5,7,13.

ζ (−5) =− 1
22 ·32 ·7

≡ ζ (−1) (mod 5), and we have

−1≡−5 (mod 5).
(This congruence holds because 3 ·7≡ 1 (mod 5).)

EXAMPLE. (Kummer’s criterion) The prime factor 691 of the
numerator of ζ (−11) implies that 691 divides the class number
of Q(e2π

√
−1/691). (One such congruence for a ζ (m), e.g.

m =−11, sufficies.)
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Figure: Kummer
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Modular forms and Hecke symmetry

§7. Modular forms and L-functions

Let Γ⊂ SL2(Z) be a congruence subgroup of SL2(Z), i.e. Γ

contains all elements which are ≡ I2 (mod N) for some N.

(a) A holomorphic function f (τ) on the upper half plane H is
said to be a modular form of weight k and level Γ if

f ((aτ +b)(cτ +d)−1) = (cτ +d)k · f (τ) ∀γ =

(
a b
c d

)
∈ Γ

and has moderate growth at all cusps.
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Modular forms and L-functions

(c) The L-function

Lf (s) = ∑
n≥1

an n−s

attached to a cusp form

f = ∑
n≥1

an e2π
√
−1τ ∀τ ∈H

of weight k for Γ = SL2(Z), which is a common eigenvector of
all Hecke correspondences, admits an Euler product

Lf (s) = ∏
p
(1−ap p−s +pk−1−2s)−1



A TOUR OF
FERMAT’S WORLD

Ching-Li Chai

Samples of numbers

More samples in
arithemetic

Congruent numbers

Fermat’s infinite
descent

Counting solutions

Zeta functions and
their special values

Modular forms and
L-functions

Elliptic curves,
complex
multiplication and
L-functions

Weil conjecture and
equidistribution

The Ramanujan τ function

Example. Weight 12 cusp forms for SL2(Z) are constant
multiples of

∆ = q ·∏
m≥1

(1−qm)24 = ∑
n

τ(n)qn

and
Tp(∆) = τ(p) ·∆ ∀p,

where Tp is the Hecke operator represented by
(

p 0
0 1

)
.

Let L(∆,s) = ∑n≥1 an ·n−s. We have

L(∆,s) = ∏
p
(1− τ(p)p−s +p11−2s)−1.
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How to count number of sum of squares

Method. Explicitly identify k-th power the theta series

θ
k(τ) =

(
∑

m∈N
qm2)k where q = e2π

√
−1τ = ∑

n∈N
rk(n)qn

with a modular form obtained in a different way, such as
Eisenstein series.
(Because θ(τ) is a modular form of weight 1/2, its k-th power
is a modular form of weight k/2. Modular forms of a given
weight for a given congruence subgroup form a finite
dimensional vector space.)
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Counting congruence solutions

(a) Count the number of congruence solutions of a given
diophantine equation modulo a (fixed) prime number p

(b) Identify the L-function for a given diophantine equation
(basically the generating function for the number of
congruence solutions modulo p as p varies)

with
an L-function coming from harmonic analysis. (The latter is
associated to a modular form).

Remark. (b) is an essential aspect of the Langlands program.
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Elliptic curves basics

§9. Elliptic curves, complex multiplication and L-functions

Equivalent definitions of an elliptic curve E :

a projective curve with an algebraic group law;

a projective curve of genus one together with a rational
point (= the origin);

over C: a complex torus of the form Eτ = C/Zτ +Z,
where τ ∈ H := upper-half plane;

over a field F with 6 ∈ F×: given by an affine equation

y2 = 4x3−g2 x−g3, g2,g3 ∈ F .
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Weistrass theory
For Eτ = C/Zτ +Z, let

xτ(z) = ℘(τ,z)

=
1
z2 + ∑

(m,n)6=(0,0)

(
1

(z−mτ−n)2 −
1

(mτ +n)2

)
yτ(z) = d

dz℘(τ,z)

Then Eτ satisfies the Weistrass equation

y2
τ = 4x3

τ −g2(τ)xτ −g3(τ)

with

g2(τ) = 60 ∑
(0,0)6=(m,n)∈Z2

1
(mτ +n)4

g3(τ) = 140 ∑
(0,0)6=(m,n)∈Z2

1
(mτ +n)6
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The j-invariant
Elliptic curves are classified by their j-invariant

j = 1728
g3

2

g3
2−27g2

3

Over C, j(Eτ) depends only on the lattice Zτ +Z of Eτ . So j(τ)
is a modular function for SL2(Z):

j
(

aτ +b
cτ +d

)
= j(τ)

for all a,b,c,d ∈ Z with ad−bc = 1.

We have a Fourier expansion

j(τ) =
1
q
+744+196884q+21493760q2 + · · · ,

where q = qτ = e2π
√
−1τ .
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Elliptic curves with complex multiplication

An elliptic E over C is said to have complex multiplication if its
endomorphism algebra End0(E) is an imaginary quadratic field.

Example. Consequences of
• j(C/OK) is an algebraic integer
• K · j(C/OK) = the Hilbert class field of K.

eπ
√

67 = 147197952743.9999986624542245068292613 · · ·

j
(
−1+

√
−67

2

)
=−147197952000 =−215 ·33 ·53 ·113

eπ
√

163 = 262537412640768743.99999999999925007259719 . . .

j
(
−1+

√
−163

2

)
=−262537412640768000 =

−218 ·33 ·53 ·233 ·293
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A CM curve and its associated modular form

We have seen that the number of congruent points on the
elliptic curve E = y2 = x3 + x is given by

#E(Fp) = 1+p−ap

and for odd p we have

ap = ∑
u∈Fp

(
u3 +u

p

)
=

{
0 if p≡ 3 (mod 4)
−2a if p = a2 +4b2 with a≡ 1 (mod 4)
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A CM curve and its associated modular form,
continued

The L-function L(E,s) attached to E with

∏
p odd

(1−app−s +p1−2s)−1 = ∑
n

an ·n−s

is equal to a Hecke L-function L(ψ,s), where the Hecke
character ψ is the given by

ψ(a) =

{
0 if 2|N(a)

λ if a= (λ ), λ ∈ 1+4Z+2Z
√
−1

The function fE(τ) = ∑n an ·qn is a modular form of weight 2
and level 4, and

fE(τ) = ∑
a

ψ(a) ·qN(a) = ∑
a≡1 (mod 4)
b≡0 (mod 2)

a ·qa2+b2
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Estimates of Fourier coefficients by Weil
conjecture

§10. Weil conjecture and equidistribution
Let ∆(τ) = ∑n≥1 τ(n)e2π

√
−1 be the normalized cusp form of

weight 12 whose Fourier coefficients are the Ramanujan
numbers τ(n); they are eigenvalues of Hecke operators Tn.

(Eichler & Shimura) τ(p) = αp +αp for each prime
number p, where αp is the eigenvalues of a “Frobenius
operator for p”.

(Deligne) Deligne showed that the Ramanujan conjecture
|τ(p)| ≤ C ·p11/2 is a consequence of Weil’s conjecture
(which asserts that |αp|= p11/2 in this case). Then he
proved Weil’s conjecture in 1974.
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Equidistribution

Remark. Similar estimates of Fourier coefficients of modular
forms also follows from Weil’s conjecture. This gives the best
possible estimates of Fourier coefficients by algebraic methods.
(Estimates obtained by analytic methods so far are very far off.)

Question In what sense is the above estimate “best possible”?

ANSWER. The family of real numbers {τ(p)/√p} is
equidistributed in [−2,2] with respect to the measure
1

2π

√
4− t2dt, i.e.

lim
x→∞

1
#{p : p≤ x} ∑

p≤x
f (ap/

√
p) =

1
2π

∫ 2

−2
f (t)
√

4− t2dt

for every continuous function f (t) on [−2,2].
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