Newton Polygons as Lattice Points by
Ching-Li Chai

Classical Newton Polygons:

(1) DEFINITION

- Traditional Approach: a graphic representation of a sequence of rational numbers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.
- Lie Theoretic Approach: a sequence $\lambda_{1} \geq$ $\lambda_{2} \geq \ldots \geq \lambda_{n}$ of non-increasing rational numbers corresponds to a rational point in the Weyl chamber of the group GL_{n}; or more canonically a Weyl orbit in coroot space $\mathfrak{t}_{\mathbb{R}}$.

Illustrate the two equivalent definitions of Newton polygons in graph no. ?

(2) PARTIAL ORDERING

Say we have a Newton polygon $N P_{1}$ with slopes $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ and a Newton polygon $N P_{2}$ with slopes $\mu_{1} \geq \mu_{1} \geq \ldots \geq \mu_{n}$, corresponding to points x_{1}, x_{2} in the Weyl chamber of GL_{n}.

Then the convex hull of the Weyl orbit of x_{1} contains the convex hull of the Weyl orbit of x_{2} if and only if

$$
\begin{aligned}
\sum_{j=1}^{k} \lambda_{j} \geq \sum_{j=1}^{k} \mu_{j}, \quad \forall k & =1, \ldots, n-1, \\
\text { and } \quad \sum_{j=1}^{n} \lambda_{j} & =\sum_{j=1}^{n} \mu_{j} .
\end{aligned}
$$

Graphically, this means that $N P_{1}$ lies above $N P_{2}$. We say that $x_{1} \succeq x_{2}$ if this is the case; this defines a partial ordering on the set of all such Newton polygons \mathcal{N}.

Illustrate the two equivalent definitions of the partial ordering in graph no. ?

(3) INTEGRAL NEWTON POLYGONS

The Newton polygons one encounters in application usually satisfy an extra integrality condition, namely the denominator of each 'slope' λ_{i} divides its multiplicity. If this condition is satisfied, we say that the Newton polygon is integral. Denote by $\mathcal{N}_{\mathbb{Z}}$ the set of all integral Newton polygons (for a fixed n).

- The poset $\mathcal{N}_{\mathbb{Z}}$ forms a lattice.
(Actually, the same is true for the set \mathcal{N} of all Newton polygons. But the "meet" operation on $\mathcal{N}_{\mathbb{Z}}$ is not the restriction of the meet operation on \mathcal{N}; the "join" operation is.)

Notice that the dual meaning of "lattice" is reflected here.
(4) Two combinatorial properties of integral Newton polygons (possibly not "well-known"):

- The poset $\mathcal{N}_{\mathbb{Z}}$ is ranked, in the sense that any two maximal chains in a given segment have the same length.
- The length of a segment $\left[x_{2}, x_{1}\right]$ in $\mathcal{N}_{\mathbb{Z}}$ is given by the number of integral points which lie strictly above $N P_{2}$ and on or below $N P_{1}$.

Motivations

Let $\operatorname{Sh}(G, X)$ be a Shimura variety, and let $p>$ 0 be a prime number where $S h(G, X)$ has good reduction.

1. Generalize the notion of Newton polygons, so as to predict which "generalized isogeny classes" should occur in the family of motives with G-structure attached to the reduction of $S h(G, X)$ modulo p. (This has been solved by the works of Kottwitz and Rapoport-Richartz. We shall make things somewhat more explicit.)
2. Find a formula which predicts the dimension of the various Newton strata of the reduction of $\operatorname{Sh}(G, X)$ modulo p.

Remark. The answer to the second question above must extrapolate the following theorem of Li and Oort: The supersingular locus in the moduli space \mathcal{A}_{g} of g-dimensional principally polarized abelian varieties in characteristic p is equal to $\left\lfloor\frac{g^{2}}{4}\right\rfloor$. So part of the question is to find a group-theoretic interpretation of the number $\left\lfloor\frac{g^{2}}{4}\right\rfloor$.

Notations

k		an algebraically closed field of characteristic $p>0$.
K		the fraction field of the ring of p dic Witt vectors $W(k)$.
$\overline{\bar{K}}$		algebraic closure of K.
F		finite extension of \mathbb{Q}_{p} in \bar{K}
L		the compositum of K and F in
σ		the Frobenius automorphism L / F.
Γ		the Galois group
\mathbb{D}		the proalgebraic torus with char acter group \mathbb{Q}.
G		a connected reductive group quasisplit over F.
$B(G)$		the set of all σ-conjugacy classes f $G(L)$.
S	-	maximally F-split torus
T		a maximal torus of G over F whic contains S, i.e. $Z_{G}(S)$.
B		a Borel subgroup of G over which contains T.
$X_{*}(T)$		characters of T.
$X^{*}(T)$		aracters of T.
Ф		(G, T), the root system oots of G.
Φ^{\vee}		$\Phi^{\vee}(G, T)$, the dual root system (G, T) consisting of coroots.

$\Phi^{+}-\Phi^{+}(G, T)$, the B-positive roots in Φ.
$\Phi_{F}-\Phi(G, S)$, the relative root system of S-roots of G.
$\Phi_{F}^{\vee}-\Phi^{\vee}(G, S)$, the relative dual root system of S-coroots of G.
$\Phi_{F}^{+} \quad$ - the B-positive roots in Φ_{F}.
$\Delta \quad-\quad$ the simple roots in Φ.
Δ^{\vee} - the simple coroots in Φ^{\vee}.
$\Delta_{F} \quad$ - the simple roots in Φ_{F}.
Δ_{F}^{\vee} - simple coroots in Φ_{F}^{\vee}.
W - the Weyl group of $\Phi(G, T)$.
W_{F} - the Weyl group of Φ_{F}.
$C \quad$ - the Weyl chamber in $X_{*}(T)_{\mathbb{R}}$, with edges given by the the fundamental coweights if G is semisimple. In general it is the inverse image of the Weyl chamber for $G^{\text {ad }}$.
C^{\vee} - the obtuse Weyl chamber in $X_{*}(T)_{\mathbb{R}}$, or the dual cone to C. It has the simple coroots as edges if G is semisimple. In general it is the image of the obtuse Weyl chamber for $G^{\text {der }}$.
$C_{F} \quad$ - the Weyl chamber in $X_{*}(S)_{\mathbb{R}}$.
C_{F}^{\vee} - the obtuse Weyl chamber in $X_{*}(S)_{\mathbb{R}}$.

Definition 1. Let $B(G)$ be the set of all σ conjugacy classes of elements of $G(L)$. Two elements $x, y \in G(L)$ represent the same element in $B(G)$ if and only if $x=\operatorname{gy\sigma }(g)^{-1}$ for some $g \in G(L)$, or equivalently iff the two elements $x \sigma, y \sigma \in G(L) \rtimes\langle\sigma\rangle$ are conjugate under $G(L)$. An element $x \in G(L)$ gives, for each finite dimension F-rational representation V of G, a structure of σ - L-isocrystal on the space $V \otimes_{F} K$ via the action of $x \sigma \in G(L) \rtimes\langle\sigma\rangle$.

Remark. We assumed that G is quasisplit over F. The main reason is that a convenient description of the whole set $B(G)$ is available under this assumption.

For applications we are mostly interested in the case when $F=\mathbb{Q}_{p}$, because then we will be dealing with the usual F-isocrystals, and also because the reductive groups attached to Shimura varieties are defined over \mathbb{Q}.

Definition 2. The Newton cone $\mathcal{N}(G)$ is defined to be

$$
\begin{aligned}
\mathcal{N}(G) & =\left(\operatorname{Int} G(L) \backslash \operatorname{Hom}_{L}(\mathbb{D}, G)\right)^{\langle\sigma\rangle} \\
& \cong\left(X_{*}(T)_{\mathbb{Q}} / W\right)\ulcorner
\end{aligned}
$$

Since G is quasisplit over F, one can also identify $\mathcal{N}(G)$ with $X_{*}(S)_{\mathbb{Q}} / W_{F}$, or as the set of all rational points in C_{F}.

Thus $\mathbb{N}(G)$ has a canonical structure as the set of all rational points in a simplicial cone. Its faces are indexed by subsets of Δ_{F}, or equivalently Γ-stable subsets of Δ.

Fact: There is a canonical map

$$
\bar{\nu}_{G}: B(G) \rightarrow \mathcal{N}(G)
$$

defined by Kottwitz, which assigns every σ conjugacy class $\bar{b} \in B(G)$ its associated Newton point $\bar{\nu}(\bar{b}) \in \mathcal{N}(G)$.

Notation

(1) Let θ_{F} be a subset of Δ_{F} and let θ be the corresponding subset of Δ.
(2) Let $T_{\theta}=\bigcap_{\alpha \in \theta}\left(\operatorname{Ker} \chi_{\alpha}\right)^{0}$ be the largest subtorus of T killed by all characters χ_{α} with $\alpha \in \theta$, and let $S_{\theta_{F}}=\left(T_{\theta} \cap S\right)^{0}$.
(3) Let $M_{\theta}=Z_{G}\left(T_{\theta}\right)=Z_{G}\left(S_{\theta_{F}}\right)$, the standard Levi subgroup indexed by $\theta ; T_{\theta}$ is the neutral component of M_{θ}. Reflections about the root hyperplanes in $X_{*}(T)_{\mathbb{R}}$ indexed by elements in θ generate a subgroup W_{θ} of W, which is canonically isomorphic to the Weyl group of M_{θ}.
(4) The interior of $C_{F} \cap X_{*}\left(S_{\theta_{F}}\right)_{\mathbb{R}}$ in $X_{*}\left(S_{\theta_{F}}\right)_{\mathbb{R}}$ is an open face of C_{F}; denote it by $C_{F}^{\theta, 0}$. The closed face $C_{F} \cap X_{*}\left(S_{\theta_{F}}\right)_{\mathbb{R}}$ will be denoted by C_{F}^{θ}.

Definition 3. For each subset θ_{F} of Δ, we have a canonical projection

$$
\pi_{\theta_{F}}: X_{*}(T)_{\mathbb{Q}} \rightarrow X_{*}\left(S_{\theta_{F}}\right)
$$

defined in several equivalent ways.
(1) First form: The Galois group Γ operates on $X_{*}(T)_{\mathbb{Q}}$ via a finite quotient; the subspace of fixed vectors is $X_{*}(S)_{\mathbb{Q}}$. This gives us a projection

$$
\mathrm{pr}\left\ulcorner: X_{*}(T)_{\mathbb{Q}} \rightarrow X_{*}(S)_{\mathbb{Q}}\right.
$$

The finite reflection group W_{θ} also operated on $X_{*}(T)_{\mathbb{Q}}$, with $X_{*}\left(T_{\theta}\right)_{\mathbb{Q}}$ as the subspace of fixed vectors. This gives us a projection

$$
\operatorname{pr}^{W_{\theta}}: X_{*}(T)_{\mathbb{Q}} \rightarrow X_{*}\left(T_{\theta}\right)_{\mathbb{Q}}
$$

Clearly $X_{*}\left(S_{\theta_{F}}\right)_{\mathbb{Q}}=X_{*}(S)_{\mathbb{Q}} \cap X_{*}\left(T_{\theta}\right)_{\mathbb{Q}}$; moreover $X_{*}\left(T_{\theta}\right)_{\mathbb{Q}}$ is stable under Γ since θ is. In fact the action of W_{θ} on $X_{*}(T)_{\mathbb{Q}}$ is normalized by the action of Γ. We define $\pi_{\theta_{F}}$ to be

$$
\pi_{\theta_{F}}=\mathrm{pr}\left\ulcorner\circ \mathrm{pr}^{W_{\theta}}=\int_{W_{\theta} \cdot \Gamma} .\right.
$$

(2) Second form: The \mathbb{Q}-vector subspace of $X_{*}(T)_{\mathbb{Q}}$ generated by coroots $\left\{\alpha^{\vee} \mid \alpha \in \theta\right\}$ and $\{\gamma \cdot \beta-\beta \mid \beta \in \Delta, \beta \notin \theta\}$ is a complement to $X_{*}\left(S_{\theta_{F}}\right)_{\mathbb{Q}}$. We define $\pi_{\theta_{F}}$ to be the projection to $X_{*}\left(S_{\theta_{F}}\right)$ with respect to this direct sum decomposition.
(3) Third form: Choose and fix an admissible inner product $(\cdot \mid \cdot)$ on $X_{*}(T)_{\mathbb{R}}$, i.e. it is invariant under both Γ and W. Then we define $\pi_{\theta_{F}}$ to be the orthogonal projection to $X *\left(S_{\theta_{F}}\right)$ with respect to ($\cdot \mid \cdot$).

Definition 4. (i) For each subset θ_{F} of Δ_{F}, let $\wedge_{\theta_{F}}=\pi_{\theta_{F}}\left(X_{*}(T)\right)$ be the projection of the coweight lattice of $X_{*}(T)$ under $\pi_{\theta_{F}}$, and let $R_{\theta_{F}}^{V}$ be the projection of the coroot module $R^{\vee}(G, T)$ in $X_{*}(T)_{\mathbb{Q}}$ under $\pi_{\theta_{F}}$. Here $R^{\vee}(G, T)$ is the \mathbb{Z}-submodule of $X_{*}(T)$ generated by Φ^{\vee}. Clearly $R_{\theta_{F}} \subseteq \wedge_{\theta_{F}} ; \wedge_{\theta_{F}}$ is a lattice in $X_{*}\left(S_{\theta}\right)_{\mathbb{Q}}$, while $R_{\theta_{F}}^{\vee}$ is a lattice in $X_{*}\left(S_{\theta}\right)_{\mathbb{Q}}$ if T / S is anisotropic over F.
(ii) Define $C_{F, \mathbb{Z}}^{\theta, 0}$ (resp. $C_{F}^{\theta, 0}$) to be the intersection of $\Lambda_{\theta_{F}}$, (resp. $\left.R_{\theta_{F}}^{\vee}\right)$ with the open face $C_{F}^{\theta, 0}$ of C_{F}. Similarly let $C_{F, \mathbb{Z}}^{\theta}$ (resp. $C_{F, R^{\vee}}^{\theta}$) be the intersection of $\Lambda_{\theta_{F}}$ (resp. $R_{\theta_{F}}^{\vee}$) with'the closed face C_{F}^{θ} of C_{F}.
(iii) Define $C_{F, \mathbb{Z}}$ (resp. $C_{F, R^{\vee}}$) to be the disjoint union of all $C_{F, \mathbb{Z}}^{\theta, 0}$ (resp. $C_{F, R^{\vee}}^{\theta, 0}$), with θ running over all subsets of Δ stable under Γ. Since $\mathcal{N}(G)$ is canonically isomorphic to the set of all rational points of $C_{F}, C_{F, \mathbb{Z}}$ (resp. $C_{F, R^{\vee}}$) can be identified with a discrete subset of $\mathcal{N}(G)$; denote it by $\mathcal{N}(G)_{\mathbb{Z}}$ (resp. $\left.\mathcal{N}(G)_{R^{\vee}}\right)$.

Definition 5. For a give element $\nu \in \mathfrak{C}_{F, \mathbb{Z}}$, define

$$
\left.\begin{array}{c}
C_{F, \mathbb{Z}}^{\nu}=\left\{x \in C_{F, \mathbb{Z}} \mid x \preceq \nu\right\} \\
C_{F, R^{\vee}}^{\nu}=\left\{x \preceq \nu \left\lvert\, \begin{array}{c}
\exists \theta_{F} \subseteq \Delta_{F} \text { s.t. } x \in C_{F}^{\theta, 0} \\
x-\pi_{\theta_{F}}(\nu) \in \pi_{\theta_{F}}\left(R^{\vee}(G, T)\right)
\end{array}\right.\right\}
\end{array}\right\}
$$

The corresponding subsets in $\mathcal{N}(G)_{\mathbb{Z}}$ will be denoted by $\mathcal{N}(G)_{\mathbb{Z}}^{\nu}$ and $\mathcal{N}(G)_{\mathbb{Z}, R^{\vee}}^{\nu}$ respectively.

The following proposition explains why the set $C_{F, R^{\vee}}^{\nu}$ is relevant.
Proposition 1. Let $b_{1} \in B(G)$ be a σ-conjugacy class, $\bar{\nu}\left(b_{1}\right) \in C_{F, \mathbb{Z}}$ be the representative of the Newton point of b in C_{F}. Then $C_{F, R}^{\bar{\nu}\left(b_{1}\right)}$ is equal to the image of

$$
\left\{b \in B(G) \mid \bar{\nu}(b) \preceq \bar{\nu}\left(b_{1}\right), \gamma(b)=\gamma\left(b_{1}\right)\right\}
$$

under the Newton map

$$
\bar{\nu}_{G}: B(G) \rightarrow \mathcal{N}(G)_{\mathbb{Z}} \cong C_{F, \mathbb{Z}}
$$

Theorem 1. Let μ be a miniscule dominant coweight, that is $\langle\alpha, \mu\rangle \in\{0,1\}$ for each root $\alpha \in \Phi^{+}$. Let $\mu^{\natural} \in C_{F, \mathbb{Z}}$ be the projection of μ to C_{F}, that is the average of $\Gamma \cdot \mu$. Then every $y \in C_{F, R^{\vee}}^{\mu^{\natural}}$ is the projection of some element of the Weyl orbit $W \cdot \mu$ under $\pi_{\theta_{F}}$ for a suitable subset $\theta_{F} \subseteq \Delta_{F}$.

Remark. In the situation of a Shimura variety $\operatorname{Sh}(G, X)$, take μ to be the coweight of G attached to X. Theorem 1 says the prediction of the generalized Grothendieck conjecture of Rapoport-Richartz as to which Newton points will appear in the reduction modulo p of $\operatorname{Sh}(G, X)$ coincides with that of the complex multiplication theory and the philosophy of motives.

Theorem 2. Let ν be an element of $C_{F, \mathbb{Z}}$. (i) The poset $C_{F, R^{\vee}}^{\nu}$ is ranked. In other words every maximal chain between two comparable elements have the same length.
(i) Let y, z be as in (i). Then
length $_{C_{F, R}^{\nu}}([y, z])$

$$
\begin{aligned}
& =\#\left(E_{F, R}^{\nu \vee}(z)-E_{F, R^{\vee}}^{\nu}(y)\right) \\
& =\sum_{i=1}^{l}\binom{\left\lceil\left\langle\omega_{F, i}, \nu\right\rangle-\left\langle\omega_{F, i}, y\right\rangle\right\rceil}{-\left\lceil\left\langle\omega_{F, i}, \nu\right\rangle-\left\langle\omega_{F, i}, z\right\rangle\right\rceil}
\end{aligned}
$$

where $\omega_{F, 1}, \ldots, \omega_{F, l}$ are the fundamental F-coweights. Especially

$$
\operatorname{length}_{C_{F, R^{\bigvee}}^{\nu}}([x, \nu])=\sum_{i=1}^{l}\left\lceil\left\langle\omega_{F, i}, \nu\right\rangle-\left\langle\omega_{F, i}, x\right\rangle\right\rceil
$$

for any $x \in C_{F, R^{\vee}}^{\nu}$.

Dimension of the Newton strata

Let (G, X) be a Shimura data. Assume that G is quasisplit over \mathbb{Q}_{p} and splits over an unramified extension of \mathbb{Q}_{p}. Let μ be the dominant coweight with respect to a \mathbb{Q}_{p}-rational Borel subgroup B attached to X. Let μ^{\natural} be the $\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$-average of μ, and let $M_{1}=Z_{G}\left(\mu^{\mathrm{y}}\right)$. Let $b_{M_{1}}$ be the basic element in $B\left(M_{1}\right)_{\text {basic }} \cong$ $\pi_{1}\left(M_{1}\right)$ which corresponds to the image of μ in $\pi_{1}\left(M_{1}\right)$. Denote by $b_{1} \in B(G)$ the image of $b_{M_{1}}$ under the canonical map $B\left(M_{1}\right) \rightarrow B(G)$. Let $b_{0} \in B(G)_{\text {basic }} \cong \pi_{1}(G)$ be the basic element in $B(G)$ corresponding to the image of μ in $\pi_{1}(G)$. Notice that the Newton point $\bar{\nu}\left(b_{1}\right)$ of b_{1} is represented by μ^{\natural}.

Let K_{p} be a hyperspecial maximal compact subgroup of $G\left(\mathbb{Q}_{p}\right)$. Assume furthermore that $\mathrm{Sh}_{K_{p}}(G, X)$ over the reflex field $E(G, X)$ has good reduction at a place v over p. Let $\mathcal{S}_{\text {basic }}$ be the locus in the reduction of $\mathrm{Sh}_{K_{p}}(G, X)$ at v consisting of points with type $b_{0} \in B(G)$. More generally, for each $b \in B(G)$ such that $b \preceq b_{1}$ and $\gamma(b)=\gamma\left(b_{1}\right)$, let \mathcal{S}_{b} be the stratum of the reduction of $\mathrm{Sh}_{K_{p}}(G, X)$ at v consisting of points with type b.

Question. (i) Is the codimension of $\mathcal{S}_{\text {basic }}$ in the reduction of $\mathrm{Sn}_{K_{p}}(G, X)$ equal to the length of the poset $C_{\mathbb{Q}_{p}, R^{\vee}}^{\mu^{\natural}}$?
(ii) More generally, suppose that b is an element of $B(G)$ such that $b \leq b_{1}$ and $\gamma(b)=$ $\gamma\left(b_{1}\right)$. Is the codimension $\operatorname{codim}\left(\mathcal{S}_{b}\right)$ of \mathcal{S}_{b} equal to

$$
\text { length }_{C_{\mathbb{Q} p, R^{\vee}}^{\mu^{\natural}}}\left(\left[\bar{\nu}(b), \mu^{\natural}\right]\right)
$$

Remark. (i) In the Siegel case the Question (i) is answered affirmatively by the result of Li and Oort. The thesis work of Chia-Fu Yu confirms the question (i) in many cases of Shimura varieties of PEL-type.
(ii) One expects that the generic stratum of the reduction of $\mathrm{Sh}_{K_{p}}(G, X)$ at v has type b_{1}. The work of Jeff Achter confirms that this for many cases of Shimura varieties of PEL-type even when the polarization in question is not principal.
(iii)The stratum with type b_{1} generalizes the ordinary locus in the moduli space of principally polarized varieties. It has long been observed that abelian varieties of dimension g with f rank $g-1$ share many desirable properties with ordinary abelian varieties of dimension g. They are called "almost ordinary" abelian varieties by some authors. An analog of "almost ordinary" type in the present setting in terms of the Newton points exists when μ^{\natural} is an edge element: If this is the case, then there exists a unique maximal element in $C_{\mathbb{Q}_{p}, R^{\vee}}^{\mu^{\natural}-\left\{\mu^{\natural}\right\} \text {, }}$ namely $\sup \left(E_{F, R^{\vee}}^{\mu^{\natural}}\left(\mu^{\natural}\right)-\left\{\mu^{\natural}\right\}\right)$. This occurs often; for instance when G is absolutely simple, or when G is \mathbb{Q}-simple and the reflex field is equal to \mathbb{Q}.
(iv) Along the same train of thought, one may ask whether there exists a unique minimal element in $C_{\mathbb{Q}_{p}, R^{\vee}}^{\mu^{\natural}}-\{0\}$. The answer is yes in some situations, for instance when G is absolutely simple of type B or C in the Dynkin classification. But the answer is no in many cases, for instance when G is absolutely simple of type A.

EXAMPLES

splict C_{2}, C_{3}, C_{4}

The fundamental coweights are

$$
\begin{gathered}
\omega_{1}^{\vee}=e_{1}, \omega_{2}^{\vee}=e_{2}, \ldots \\
\omega_{n-1}^{\vee}=e_{1}+\cdots+e_{n-1} \\
\mu=\omega_{n}^{\vee}=\frac{1}{2}\left(e_{1}+\cdots+e_{n}\right)
\end{gathered}
$$

and the simple coroots are

$$
\alpha_{1}^{\vee}=e_{1}-e_{2}, \ldots, \alpha_{n-1}^{\vee}=e_{n-1}-e_{n}, \alpha_{n}=e_{n}
$$

split C_{2}

$x \in C_{\mathbb{Z}}^{\mu}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
$\mu=\omega_{2}^{V}$	$1,1,0,0$	μ
$\frac{1}{2} \omega_{2}^{V}$	$1, \frac{1}{2}, \frac{1}{2}, 0$	μ
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any elt. in $W \cdot \mu$

We have

$$
\mu \succ \frac{1}{2} \omega_{2}^{\vee} \succ 0
$$

In the present case $C_{F, R^{\vee}}^{\mu}$ coincides with $C_{F, \mathbb{Z}}^{\mu}$.

split C_{3}

$x \in C_{\mathbb{Z}}^{\mu}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
$\mu=\omega_{3}^{V}$	$1,1,1,0,0,0$	μ
$\frac{1}{2} \omega_{2}^{V}$	$1,1, \frac{1}{2}, \frac{1}{2}, 0,0$	μ
$\frac{1}{2} \omega_{1}^{V}$	$1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0$	μ
$\frac{2}{3} \omega_{3}^{V}$	$\frac{5}{6}, \frac{5}{6}, \frac{5}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$	does not exist
$\frac{1}{3} \omega_{3}^{V}$	$\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}\right)$
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any elt. in $W \cdot \mu$

We have

$$
\mu \succ \frac{1}{2} \omega_{2}^{\vee} \succ \frac{1}{2} \omega_{1}^{\vee} \succ \frac{2}{3} \omega_{3}^{\vee} \succ \frac{1}{3} \omega_{3}^{\vee} \succ 0
$$

Except $\frac{2}{3} \omega_{3}^{\vee}$, all other elements of $C_{F, \mathbb{Z}}^{\mu}$ are in $C_{F, R^{\vee}}^{\mu}$. Clearly the Newton point $\frac{2}{3} \omega_{3}^{\vee}$ does not appear in the moduli space \mathcal{A}_{3} of principally polarized abelian threefolds (when $F=\mathbb{Q}_{p}$), since its slopes sequence is not integral.

split C_{4}

$x \in C_{\mathbb{Z}}^{\mu}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
$\mu=\omega_{4}^{V}$	$1,1,1,1,0,0,0,0$	μ
$\frac{1}{2} \omega_{3}^{V}$	$1,1,1, \frac{1}{2}, \frac{1}{2}, 0,0,0$	μ
$\frac{1}{2} \omega_{2}^{V}$	$1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0$	μ
$\frac{1}{3} \omega_{1}^{V}+\frac{1}{3} \omega_{4}^{\vee}$	$1, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0$	$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)$
$\frac{1}{2} \omega_{1}^{V}$	$1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0$	μ
$\frac{1}{2} \omega_{4}^{V}$	$\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)$
$\frac{1}{6} \omega_{3}^{V}$	$\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}\right)$
$\frac{1}{3} \omega_{3}^{V}$	$\frac{5}{6}, \frac{5}{3}, \frac{5}{6}, \frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$	does not exist
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any et. of $W \cdot \mu$

The partial ordering of $C_{F, \mathbb{Z}}^{\mu}$ is as follows:

$$
\begin{gathered}
\mu \succ \frac{1}{2} \omega_{3}^{\vee} \succ \frac{1}{2} \omega_{2}^{\vee} \succ \frac{1}{3} \omega_{1}^{\vee}+\frac{1}{3} \omega_{4}^{\vee} \succ \\
\succ \frac{1}{2} \omega_{1}^{\vee} \\
\succ \frac{1}{3} \omega_{3}^{\vee} \succ \frac{1}{2} \omega_{4}^{\vee} \succ \frac{1}{6} \omega_{3}^{\vee} \succ 0
\end{gathered}
$$

The element $\frac{1}{3} \omega_{3}^{\vee}$ is not in $C_{F, R^{\vee}}^{\mu}$; all others are. Notice that $C_{F, \mathbb{Z}}^{\mu}$ is not ranked as a partially ordered set: Both $\frac{1}{3} \omega_{1}^{\vee}+\frac{1}{3} \omega_{4}^{\vee} \succ \frac{1}{2} \omega_{1}^{\vee} \succ \frac{1}{6} \omega_{3}^{\vee}$ and $\frac{1}{3} \omega_{1}^{\vee}+\frac{1}{3} \omega_{4}^{\vee} \succ \frac{1}{3} \omega_{3}^{\vee} \succ \frac{1}{2} \omega_{4}^{\vee} \succ \frac{1}{6} \omega_{3}^{\vee}$ are maximal chains between $\frac{1}{3} \omega_{1}^{\vee}+\frac{1}{3} \omega_{4}^{\vee}$ and $\frac{1}{6} \omega_{3}^{\vee}$. But $C_{F, R^{\vee}}^{\mu}$ is ranked, once the offending element $\frac{1}{3} \omega_{3}^{\vee}$ is removed from $C_{F, \mathbb{Z}}^{\mu}$.

quasisplit non-split A_{2}, A_{3}, A_{4}

quasisplit A_{2}

$x \in C_{\mathbb{Z}}^{\nu_{1}}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
ν_{1}	$1,1, \frac{1}{2}, \frac{1}{2}, 0,0$	μ
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any elt. in $W \cdot \mu$

quasisplit A_{3}

$x \in C_{\mathbb{Z}}^{D_{1}}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
ν_{1}	$1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0$	μ
$\frac{1}{2} \omega_{2}^{V}$	$\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	μ
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any elt. in $W \cdot \mu$

$$
\nu_{1} \succ \frac{1}{2} \omega_{2}^{\vee} \succ 0
$$

quasisplit A_{4}

$x \in C_{\mathbb{Z}}^{\nu_{1}}$	slopes of x	$y \in W \cdot \mu$ with $\pi_{\theta_{F}}=x$
ν_{1}	$1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0$	μ
$\frac{1}{4}\left(\omega_{2}^{\vee}+\omega_{3}^{\vee}\right)$	$\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	μ
0	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	any lt. in $W \cdot \mu$

$$
\nu_{1} \succ \frac{1}{4}\left(\omega_{2}^{\vee}+\omega_{3}^{\vee}\right) \succ 0
$$

