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Classical Newton Polygons:

(1) DEFINITION

• Traditional Approach: a graphic represen-

tation of a sequence of rational numbers

λ1 ≥ λ2 ≥ . . . ≥ λn.

• Lie Theoretic Approach: a sequence λ1 ≥
λ2 ≥ . . . ≥ λn of non-increasing rational

numbers corresponds to a rational point

in the Weyl chamber of the group GLn;

or more canonically a Weyl orbit in coroot

space t
R

.
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Illustrate the two equivalent definitions of New-

ton polygons in graph no. ?

2-1



(2) PARTIAL ORDERING

Say we have a Newton polygon NP1 with slopes
λ1 ≥ λ2 ≥ . . . ≥ λn and a Newton polygon NP2
with slopes µ1 ≥ µ1 ≥ . . . ≥ µn, corresponding
to points x1, x2 in the Weyl chamber of GLn.

Then the convex hull of the Weyl orbit of x1
contains the convex hull of the Weyl orbit of
x2 if and only if

k∑
j=1

λj ≥
k∑

j=1

µj, ∀ k = 1, . . . , n− 1,

and
n∑

j=1

λj =
n∑

j=1

µj .

Graphically, this means that NP1 lies above
NP2. We say that x1 � x2 if this is the case;
this defines a partial ordering on the set of all
such Newton polygons N.
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Illustrate the two equivalent definitions of the

partial ordering in graph no. ?

3-1



(3) INTEGRAL NEWTON POLYGONS

The Newton polygons one encounters in appli-

cation usually satisfy an extra integrality con-

dition, namely the denominator of each ‘slope’

λi divides its multiplicity. If this condition is

satisfied, we say that the Newton polygon is

integral. Denote by N
Z

the set of all integral

Newton polygons (for a fixed n).

• The poset N
Z

forms a lattice.

(Actually, the same is true for the set N of

all Newton polygons. But the “meet” opera-

tion on N
Z

is not the restriction of the meet

operation on N; the “join” operation is.)
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Notice that the dual meaning of “lattice” is

reflected here.
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(4) Two combinatorial properties of integral

Newton polygons (possibly not “well-known”):

• The poset N
Z

is ranked, in the sense that

any two maximal chains in a given segment

have the same length.

• The length of a segment [x2, x1] in N
Z

is

given by the number of integral points which

lie strictly above NP2 and on or below NP1.
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Motivations

Let Sh(G,X) be a Shimura variety, and let p >

0 be a prime number where Sh(G,X) has good

reduction.

1. Generalize the notion of Newton polygons,

so as to predict which “generalized isogeny

classes” should occur in the family of mo-

tives with G-structure attached to the re-

duction of Sh(G,X) modulo p. (This has

been solved by the works of Kottwitz and

Rapoport-Richartz. We shall make things

somewhat more explicit.)

2. Find a formula which predicts the dimen-

sion of the various Newton strata of the

reduction of Sh(G,X) modulo p.
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Remark. The answer to the second question

above must extrapolate the following theorem

of Li and Oort: The supersingular locus in the

moduli space Ag of g-dimensional principally

polarized abelian varieties in characteristic p is

equal to bg
2

4 c. So part of the question is to find

a group-theoretic interpretation of the number

bg
2

4 c.
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Notations
k — an algebraically closed field of

characteristic p > 0.
K — the fraction field of the ring of p-

adic Witt vectors W (k).
K — an algebraic closure of K.
F — a finite extension of Qp in K.
L — the compositum of K and F in K.
σ — the Frobenius automorphism of

L/F .
Γ — the Galois group of F/F .
D — the proalgebraic torus with char-

acter group Q.
G — a connected reductive group qua-

sisplit over F .
B(G) — the set of all σ-conjugacy classes

of G(L).
S — a maximally F -split torus in G.
T — a maximal torus of G over F which

contains S, i.e. ZG(S).
B — a Borel subgroup of G over F

which contains T .
X∗(T ) — cocharacters of T .
X∗(T ) — characters of T .

Φ — Φ(G,T ), the root system of T -
roots of G.

Φ∨ — Φ∨(G,T ), the dual root system of
Φ(G,T ) consisting of coroots.
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Φ+ — Φ+(G,T ), the B-positive roots in
Φ.

ΦF — Φ(G,S), the relative root system
of S-roots of G.

Φ∨F — Φ∨(G,S), the relative dual root
system of S-coroots of G.

Φ+
F — the B-positive roots in ΦF .

∆ — the simple roots in Φ.
∆∨ — the simple coroots in Φ∨.
∆F — the simple roots in ΦF .
∆∨

F — simple coroots in Φ∨F .
W — the Weyl group of Φ(G,T ).
WF — the Weyl group of ΦF .
C — the Weyl chamber in X∗(T )R, with

edges given by the the fundamen-
tal coweights if G is semisimple.
In general it is the inverse image
of the Weyl chamber for Gad.

C∨ — the obtuse Weyl chamber in
X∗(T )R, or the dual cone to C. It
has the simple coroots as edges
if G is semisimple. In general it
is the image of the obtuse Weyl
chamber for Gder.

CF — the Weyl chamber in X∗(S)R.
C∨F — the obtuse Weyl chamber in

X∗(S)R.
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Definition 1. Let B(G) be the set of all σ-

conjugacy classes of elements of G(L). Two

elements x, y ∈ G(L) represent the same ele-

ment in B(G) if and only if x = gyσ(g)−1 for

some g ∈ G(L), or equivalently iff the two ele-

ments xσ, yσ ∈ G(L)o 〈σ〉 are conjugate under

G(L). An element x ∈ G(L) gives, for each

finite dimension F -rational representation V of

G, a structure of σ-L-isocrystal on the space

V ⊗F K via the action of xσ ∈ G(L)o 〈σ〉.

Remark. We assumed that G is quasisplit over

F . The main reason is that a convenient de-

scription of the whole set B(G) is available un-

der this assumption.

10



For applications we are mostly interested in

the case when F = Qp, because then we will

be dealing with the usual F -isocrystals, and

also because the reductive groups attached to

Shimura varieties are defined over Q.
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Definition 2. The Newton cone N(G) is de-

fined to be

N(G) = (Int G(L)\HomL(D, G))〈σ〉

∼=
(
X∗(T )

Q
/W

)Γ

Since G is quasisplit over F , one can also iden-

tify N(G) with X∗(S)
Q
/WF , or as the set of all

rational points in CF .

Thus N(G) has a canonical structure as the set

of all rational points in a simplicial cone. Its

faces are indexed by subsets of ∆F , or equiv-

alently Γ-stable subsets of ∆.

Fact: There is a canonical map

ν̄G : B(G)→ N(G)

defined by Kottwitz, which assigns every σ-

conjugacy class b̄ ∈ B(G) its associated New-

ton point ν̄(̄b) ∈ N(G).
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Notation

(1) Let θF be a subset of ∆F and let θ be the

corresponding subset of ∆.

(2) Let Tθ =
⋂
α∈θ(Kerχα)0 be the largest sub-

torus of T killed by all characters χα with α ∈ θ,

and let SθF = (Tθ ∩ S)0.

(3) Let Mθ = ZG(Tθ) = ZG(SθF ), the standard

Levi subgroup indexed by θ; Tθ is the neutral

component of Mθ. Reflections about the root

hyperplanes in X∗(T )
R

indexed by elements in θ

generate a subgroup Wθ of W , which is canon-

ically isomorphic to the Weyl group of Mθ.

(4) The interior of CF ∩X∗(SθF )
R

in X∗(SθF )
R

is an open face of CF ; denote it by C
θ,0
F . The

closed face CF ∩ X∗(SθF )
R

will be denoted by

CθF .
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Definition 3. For each subset θF of ∆, we
have a canonical projection

πθF : X∗(T )
Q
� X∗(SθF )

defined in several equivalent ways.

(1) First form: The Galois group Γ operates
on X∗(T )

Q
via a finite quotient; the subspace

of fixed vectors is X∗(S)
Q

. This gives us a
projection

prΓ : X∗(T )
Q
� X∗(S)

Q

The finite reflection group Wθ also operated
on X∗(T )

Q
, with X∗(Tθ)Q as the subspace of

fixed vectors. This gives us a projection

prWθ : X∗(T )
Q
� X∗(Tθ)Q

Clearly X∗(SθF )
Q

= X∗(S)
Q
∩ X∗(Tθ)Q; more-

over X∗(Tθ)Q is stable under Γ since θ is. In
fact the action of Wθ on X∗(T )

Q
is normalized

by the action of Γ. We define πθF to be

πθF = prΓ ◦ prWθ =
∫
Wθ·Γ

.
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(2) Second form: The Q-vector subspace

of X∗(T )
Q

generated by coroots {α∨|α ∈ θ}
and {γ · β − β|β ∈ ∆, β /∈ θ} is a complement

to X∗(SθF )
Q

. We define πθF to be the projec-

tion to X∗(SθF ) with respect to this direct sum

decomposition.

(3) Third form: Choose and fix an admis-

sible inner product (·|·) on X∗(T )
R

, i.e. it is in-

variant under both Γ and W . Then we define

πθF to be the orthogonal projection to X∗(SθF )

with respect to (·|·).
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Definition 4. (i) For each subset θF of ∆F ,
let ΛθF = πθF (X∗(T )) be the projection of the
coweight lattice of X∗(T ) under πθF , and let
R∨θF be the projection of the coroot module
R∨(G,T ) in X∗(T )

Q
under πθF . Here R∨(G,T )

is the Z-submodule of X∗(T ) generated by Φ∨.
Clearly RθF ⊆ ΛθF ; ΛθF is a lattice in X∗(Sθ)Q,
while R∨θF is a lattice in X∗(Sθ)Q if T/S is an-
isotropic over F .

(ii) Define C
θ,0
F,Z (resp. Cθ,0

F,R∨) to be the inter-
section of ΛθF (resp. R∨θF ) with the open face

C
θ,0
F of CF . Similarly let CθF,Z (resp. CθF,R∨)

be the intersection of ΛθF (resp. R∨θF ) with the

closed face CθF of CF .

(iii) Define CF,Z (resp. CF,R∨) to be the disjoint

union of all Cθ,0F,Z (resp. Cθ,0
F,R∨), with θ running

over all subsets of ∆ stable under Γ. Since
N(G) is canonically isomorphic to the set of all
rational points of CF , CF,Z (resp. CF,R∨) can
be identified with a discrete subset of N(G);
denote it by N(G)

Z
(resp. N(G)R∨).
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Definition 5. For a give element ν ∈ CF,Z, de-

fine

CνF,Z =
{
x ∈ CF,Z | x � ν

}

CνF,R∨ =

x � ν
∣∣∣∣∣∣ ∃ θF ⊆∆F s.t. x ∈ Cθ,0F,Z
x− πθF (ν) ∈ πθF (R∨(G,T ))


The corresponding subsets in N(G)

Z
will be

denoted by N(G)ν
Z

and N(G)ν
Z,R∨ respectively.

The following proposition explains why the set

CνF,R∨ is relevant.

Proposition 1. Let b1 ∈ B(G) be a σ-conju-

gacy class, ν̄(b1) ∈ CF,Z be the representative

of the Newton point of b in CF . Then C
ν̄(b1)
F,R∨

is equal to the image of

{b ∈ B(G)|ν̄(b) � ν̄(b1), γ(b) = γ(b1)}

under the Newton map

ν̄G : B(G)→ N(G)
Z

∼= CF,Z
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Theorem 1. Let µ be a miniscule dominant

coweight, that is 〈α, µ〉 ∈ {0,1} for each root

α ∈ Φ+. Let µ\ ∈ CF,Z be the projection of µ

to CF , that is the average of Γ ·µ. Then every

y ∈ Cµ
\

F,R∨ is the projection of some element of

the Weyl orbit W · µ under πθF for a suitable

subset θF ⊆∆F .

Remark. In the situation of a Shimura vari-

ety Sh(G,X), take µ to be the coweight of G

attached to X. Theorem 1 says the predic-

tion of the generalized Grothendieck conjec-

ture of Rapoport-Richartz as to which New-

ton points will appear in the reduction modulo

p of Sh(G,X) coincides with that of the com-

plex multiplication theory and the philosophy

of motives.
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Theorem 2. Let ν be an element of CF,Z. (i)

The poset CνF,R∨ is ranked. In other words

every maximal chain between two comparable

elements have the same length.

(i) Let y, z be as in (i). Then

lengthCν
F,R∨

([y, z])

= #
(
EνF,R∨(z)− EνF,R∨(y)

)
=
∑l
i=1

(
d〈ωF,i, ν〉 − 〈ωF,i, y〉e
−d〈ωF,i, ν〉 − 〈ωF,i, z〉e

)
where ωF,1, . . . , ωF,l are the fundamental F -co-

weights. Especially

lengthCν
F,R∨

([x, ν]) =
l∑

i=1

d〈ωF,i, ν〉 − 〈ωF,i, x〉e

for any x ∈ CνF,R∨.
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Dimension of the Newton strata

Let (G,X) be a Shimura data. Assume that G

is quasisplit over Qp and splits over an unram-

ified extension of Qp. Let µ be the dominant

coweight with respect to a Qp-rational Borel

subgroup B attached to X. Let µ\ be the

Gal(Qp/Qp)-average of µ, and let M1 = ZG(µ\).

Let bM1
be the basic element in B(M1)basic

∼=
π1(M1) which corresponds to the image of µ

in π1(M1). Denote by b1 ∈ B(G) the image of

bM1
under the canonical map B(M1) → B(G).

Let b0 ∈ B(G)basic
∼= π1(G) be the basic ele-

ment in B(G) corresponding to the image of µ

in π1(G). Notice that the Newton point ν̄(b1)

of b1 is represented by µ\.
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Let Kp be a hyperspecial maximal compact
subgroup of G(Qp). Assume furthermore that
ShKp(G,X) over the reflex field E(G,X) has
good reduction at a place v over p. Let Sbasic
be the locus in the reduction of ShKp(G,X)
at v consisting of points with type b0 ∈ B(G).
More generally, for each b ∈ B(G) such that
b � b1 and γ(b) = γ(b1), let Sb be the stratum
of the reduction of ShKp(G,X) at v consisting
of points with type b.

Question. (i) Is the codimension of Sbasic in
the reduction of ShKp(G,X) equal to the length

of the poset Cµ
\

Qp,R∨
?

(ii) More generally, suppose that b is an ele-
ment of B(G) such that b ≤ b1 and γ(b) =
γ(b1). Is the codimension codim (Sb) of Sb
equal to

length
C
µ\

Qp,R∨

(
[ν̄(b), µ\]

)
?
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Remark. (i) In the Siegel case the Question

(i) is answered affirmatively by the result of Li

and Oort. The thesis work of Chia-Fu Yu con-

firms the question (i) in many cases of Shimura

varieties of PEL-type.

(ii) One expects that the generic stratum of

the reduction of ShKp(G,X) at v has type b1.

The work of Jeff Achter confirms that this for

many cases of Shimura varieties of PEL-type

even when the polarization in question is not

principal.
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(iii)The stratum with type b1 generalizes the

ordinary locus in the moduli space of principally

polarized varieties. It has long been observed

that abelian varieties of dimension g with f-

rank g−1 share many desirable properties with

ordinary abelian varieties of dimension g. They

are called “almost ordinary” abelian varieties

by some authors. An analog of “almost ordi-

nary” type in the present setting in terms of

the Newton points exists when µ\ is an edge

element: If this is the case, then there ex-

ists a unique maximal element in C
µ\

Qp,R∨
−{µ\},

namely sup (Eµ
\

F,R∨(µ\)−{µ\}). This occurs of-

ten; for instance when G is absolutely simple,

or when G is Q-simple and the reflex field is

equal to Q.
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(iv) Along the same train of thought, one may

ask whether there exists a unique minimal el-

ement in C
µ\

Qp,R∨
− {0}. The answer is yes in

some situations, for instance when G is ab-

solutely simple of type B or C in the Dynkin

classification. But the answer is no in many

cases, for instance when G is absolutely simple

of type A.
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EXAMPLES

splict C2, C3, C4

The fundamental coweights are

ω∨1 = e1, ω
∨
2 = e2, . . .

ω∨n−1 = e1 + · · ·+ en−1

µ = ω∨n = 1
2(e1 + · · ·+ en)

and the simple coroots are

α∨1 = e1 − e2, . . . , α
∨
n−1 = en−1 − en, αn = en

22



split C2

x ∈ Cµ
Z

slopes of x y ∈W · µ with πθF = x

µ = ω∨2 1,1,0,0 µ
1
2ω
∨
2 1,12,

1
2,0 µ

0 1
2,

1
2,

1
2,

1
2 any elt. in W · µ

We have

µ � 1
2ω
∨
2 � 0

In the present case C
µ
F,R∨ coincides with C

µ
F,Z.
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split C3

x ∈ Cµ
Z

slopes of x y ∈W · µ with πθF = x

µ = ω∨3 1,1,1,0,0,0 µ
1
2ω
∨
2 1,1,12,

1
2,0,0 µ

1
2ω
∨
1 1,12,

1
2,

1
2,

1
2,0 µ

2
3ω
∨
3

5
6,

5
6,

5
6,

1
6,

1
6,

1
6 does not exist

1
3ω
∨
3

2
3,

2
3,

2
3,

1
3,

1
3,

1
3

1
2(e1 + e2 − e3)

0 1
2,

1
2,

1
2,

1
2,

1
2,

1
2 any elt. in W · µ

We have

µ � 1
2ω
∨
2
� 1

2ω
∨
1

� 2
3ω
∨
3

� 1
3ω
∨
3 � 0

Except 2
3ω
∨
3 , all other elements of CµF,Z are in

C
µ
F,R∨. Clearly the Newton point 2

3ω
∨
3 does not

appear in the moduli space A3 of principally

polarized abelian threefolds (when F = Qp),

since its slopes sequence is not integral.
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split C4

x ∈ Cµ
Z

slopes of x y∈W ·µ with πθF
=x

µ = ω∨4 1,1,1,1,0,0,0,0 µ
1
2ω
∨
3 1,1,1,12,

1
2,0,0,0 µ

1
2ω
∨
2 1,1,12,

1
2,

1
2,

1
2,0,0 µ

1
3ω
∨
1 +1

3ω
∨
4 1,23,

2
3,

2
3,

1
3,

1
3,

1
3,0

1
2(e1−e2+e3+e4)

1
2ω
∨
1 1,12,

1
2,

1
2,

1
2,

1
2,

1
2,0 µ

1
2ω
∨
4

3
4,

3
4,

3
4,

3
4,

1
4,

1
4,

1
4,

1
4

1
2(e1−e2+e3+e4)

1
6ω
∨
3

2
3,

2
3,

2
3,

1
2,

1
2,

1
3,

1
3,

1
3

1
2(e1−e2+e3−e4)

1
3ω
∨
3

5
6,

5
6,

5
6,

1
2,

1
2,

1
6,

1
6,

1
6 does not exist

0 1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2 any elt. of W · µ

The partial ordering of CµF,Z is as follows:

µ � 1
2ω
∨
3 �

1
2ω
∨
2 �

1
3ω
∨
1 + 1

3ω
∨
4 �

� 1
2ω
∨
1

� 1
3ω
∨
3 �

1
2ω
∨
4

� 1
6ω
∨
3 � 0
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The element 1
3ω
∨
3 is not in C

µ
F,R∨; all others are.

Notice that C
µ
F,Z is not ranked as a partially

ordered set: Both 1
3ω
∨
1 + 1

3ω
∨
4 � 1

2ω
∨
1 � 1

6ω
∨
3

and 1
3ω
∨
1 + 1

3ω
∨
4 � 1

3ω
∨
3 � 1

2ω
∨
4 � 1

6ω
∨
3

are maximal chains between 1
3ω
∨
1 + 1

3ω
∨
4 and

1
6ω
∨
3 . But Cµ

F,R∨ is ranked, once the offending

element 1
3ω
∨
3 is removed from C

µ
F,Z.
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quasisplit non-split A2, A3, A4

quasisplit A2

x ∈ Cν1
Z

slopes of x y∈W ·µ with πθF
=x

ν1 1,1,12,
1
2,0,0 µ

0 1
2,

1
2,

1
2,

1
2,

1
2,

1
2 any elt. in W · µ

quasisplit A3

x ∈ Cν1
Z

slopes of x y∈W ·µ with πθF
=x

ν1 1,1,12,
1
2,

1
2,

1
2,0,0 µ

1
2ω
∨
2

3
4,

3
4,

3
4,

3
4,

1
4,

1
4,

1
4,

1
4 µ

0 1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2 any elt. in W · µ

ν1 � 1
2ω
∨
2 � 0

27



quasisplit A4

x ∈ Cν1
Z

slopes of x y∈W ·µ with πθF
=x

ν1 1,1,12,
1
2,

1
2,

1
2,

1
2,

1
2,0,0 µ

1
4(ω∨2 +ω∨3 ) 3

4,
3
4,

3
4,

3
4,

1
2,

1
2,

1
4,

1
4,

1
4,

1
4 µ

0 1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2,

1
2 any elt. in W · µ

ν1 � 1
4(ω∨2 + ω∨3 ) � 0
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