p-adic Modular Forms and Arithmetic A conference in honor of *Haruzo Hida* on his 60th birthday

六十而耳順

(I knew the truth in all I heard when I turned sixty. Confucious)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Department of Mathematics University of Pennsylvania and Institute of Mathematics Academia Sinica

UCLA, June 22, 2012

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity

Local rigidit problems

Known results, obstacles and hope

A glympse of a ne

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit problems

Cnown results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Outline

PEL type modular varieties

I. An overview

A PEL type modular variety \mathscr{M} is the moduli space attached to a PEL input datum $\mathscr{D} = (D, *, \mathscr{O}_D, H, \langle \cdot, \cdot \rangle, h)$, whose points corresponds to abelian varieties with imposed symmetry $(A, \rho : A \rightarrow A^t, \iota : \mathcal{O}_D \rightarrow \text{End}(A)$, level structure) whose H_1 are modeled on the linear algebra structure \mathscr{D} .

Fix a prime number *p*, *unramified* for the PEL datum \mathscr{D} . We will focus on the equal characteristic *p* situation unless otherwise specified: \mathscr{M} is a moduli space over $\overline{\mathbb{F}}_{p}$.

Let $B = \text{End}_D(H)$, with involution $*_B$ induced by *. Let $G = \text{SU}(B, *_B)$ (or $\text{GU}(B, *_B)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

local Hecke

The global rigidity problem

Local rigidi problems

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

al Hecke

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Hecke symmetry

Let $\widetilde{\mathcal{M}}$ be the prime-to-*p* tower for \mathscr{M} ; it is a profinite etale Galois cover of \mathscr{M} with group $G(\hat{\mathbb{Z}}^{(p)})$. The group $G(\mathbb{A}_{f}^{(p)})$ operates on $\widetilde{\mathcal{M}}$, inducing Hecke correspondences on \mathscr{M} .

Example: $\mathcal{M} = \mathcal{A}_g$ = the moduli space classifying *g*-dimensional principally polarized abelian varieties, $G = \operatorname{Sp}_{2g}$ (or GSp_{2g})).

Local Hecke symmetry

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, t_x : \mathfrak{O}_D \to \operatorname{End}(A_x)$, level structure).

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let $H_x := U(\operatorname{End}_D^0(A_x), *_{\operatorname{Ros}})(\mathbb{Z}_{(p)})$, and let $G_x := U(\operatorname{End}_D^0(A_x[p^{\infty}]), *_{\operatorname{Ros}})(\mathbb{Z}_p).$

The Serre-Tate deformation theorem implies that there is a natural action of the compact *p*-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

This action can be regarded as a *local version* of the global Hecke symmetries. HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity

Local rigidity

Known results, obstacles and hope

A glympse of a ne

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

Local Hecke symmetry

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a new

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Local stabilizer subgroups

We call G_x the *local stabilizer subgroup* at *x*. The group H_x can be thought of as the "intersection" of G_x with the global Hecke symmetries on \mathcal{M} .

Lemma. If a closed subvariety $Z \subset \mathcal{M}$ is stable under all Hecke symmetries, then $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the *p*-adic closure of H_x in G_x .

Examples. For a "general" $x \in \mathscr{A}_g(\mathbb{F}_p)$ " (in particular x is ordinary), the Zariski closure of H_x is a g-dimensional torus, while the Zariski closure of G_x is GL_g .

For a supersingular point $x \in \mathscr{A}_g(\overline{\mathbb{F}_p})$, H_x is *p*-adically dense in G_x , and the Zariski closure of G_x is a twist of Sp_{2e} .

The global rigidity problem

(Oort's Hecke orbit conjecture)

Prediction. Let $Z \subset \mathcal{M}_{/\overline{P}_p}$ be a reduced closed subset of \mathcal{M} stable under all prime-to-p Hecke correspondences. Then Z contains the leaf C(x) passing through x for every point $x \in Z(\overline{P}_p)$.

(Every Hecke-invariant closed subset of $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is a union of leaves; the latter can be regarded as "generalized Shimura subvarieties in char. p".)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

Local Hecke symmetry

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a net approach

The Lubin-Tate

Universal isomorphism *p*-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Definition and examples of leaves

- A leaf C(x) in M/F_p is the locus in M/F_p where all p-adic invariants have the same "value" as those of x.
- The ordinary locus $\mathscr{A}_g^{\text{ord}} \subset \mathscr{A}_g_{/\overline{\mathbb{F}}_n}$ is a leaf in $\mathscr{A}_g_{\overline{\mathbb{F}}_n}$.
- The leaf passing through a *supersingular* point in \mathscr{A}_g is finite.
- The leaf passing through a point in A₂ corresponding to a 3-dimensional abelian variety with slopes {1/3,2/3} is two-dimensional. Such leaves form a one-dimensional family in the slopes {1/3,2/3} locus of A₃.

(The latter locus has dimension three.)

Strong forms of global rigidity problem

Remark. In application(s) to Iwasawa theory pioneered by Hida, certain strong versions of the global rigidity problem appear naturally:

- The assumption on Z is weakened to: Z is stable under the action of a "not-to-small" subset of Hecke correspondences.
- The desired conclusion is that Z is a union of leaves in the reduction of certain Shimura subvarieties.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Local rigidity problems

Set-up. $Z \subset \mathcal{M}^{/x}$ is a reduced closed formal subscheme of $\mathcal{M}^{/x}$, stable under the action of a "not-too-small" subgroup of G_{x} .

Restricted local rigidity problem (to make it easier): Assume in addition that $Z \subset C(x)^{/x}$.

Desired conclusion. *Z* has a (very) special form (e.g. defined by a finite collection of Tate cycles.)

Results on the restricted local rigidity problem

II. Known results, obstacles and hope

Propostion. Restricted local rigidity holds for \mathscr{A}_g , in the case when A_x has only two slopes.

- $C(x)^{/x}$ has a natural structure as a torsor for an isoclinic *p*-divisible formal group X_x .
- If $Z \subset C(x)^{/x}$ is stable under a not-too-small subgroup of G_x , then Z_x is a torsor for a *p*-divisible subgroup of X_x .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varieties

cal Hecke mmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a ne

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Restricted local rigidity: an example and consequences

An example. Let Z be an irreducible forma subscheme of a formal torus $\hat{\mathbb{G}}'_m$ over $\overline{\mathbb{F}}_p$. Suppose that Z is closed under the action of $[1 + p^m]$ for some $m \ge 2$. Then Z is a formal subtorus of $\hat{\mathbb{G}}'_m$. (exercise)

Consequence of restricted local rigidity: linearization of the global rigidity problem, helped by considerations of local and global *p*-adic monodromy.

Results on global rigidity using the Hilbert trick

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick: Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_g . (Global rigidity is substantially easier for these "small" modular varieties: see below.)

(2) This "Hilbert trick" fails for PEL modular varieties of type A or D.

(3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties assciated to semisimple groups of Q-rank one). HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidity

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

nmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

A tantalizing dream

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of p in denominators.

A glympse of a new approach

We will explain a method to obtain an approximate (or even asymptotic) formula for the action of the local stabilizer subgroup, in the first non-trivial case,

where $\mathcal{M}^{/x} = \text{Def}(G_0)$ is the Lubin-Tate moduli deformation space for a one-dimensional formal group G_0 of finite height hover $\overline{\mathbb{F}}_p$. HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidity

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

Notation

Let h be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^{h}}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$.)

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h. It is well-known that $\text{End}(G_0)$ is the maximal order of $\text{End}^0(G_0) = a$ central division algebra over \mathbb{Q}_p of dimension h^2 .

The Lubin-Tate action

Let $\mathcal{M}_h := \text{Def}(G_0)$; it is a smooth formal scheme over $W(\overline{\mathbb{F}}_p)$ of relative dimension h-1.

Let $G_{univ} \rightarrow \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact *p*-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by functoriality, as follows.

 $\forall \gamma \in \operatorname{Aut}(G_0), \exists!$ formal scheme automorphism $\rho(\gamma)$ of \mathscr{M}_h and a formal group isomorphism

$$\tilde{\rho}(\gamma): G_{\text{univ}} \to \rho(\gamma)^* G_{\text{univ}}$$

such that $\tilde{\rho}(\gamma)|_{G_0} = \gamma$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of Aut(G_0) on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer* subgroup action in chromatic homotopy theory. HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

cal Hecke

The global rigidity problem

Local rigidit

Known results,

A glympse of a nev

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ical Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a new ipproach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal p-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \tilde{R}[[x, y]]$ be the one-dimensional *p*-typical formal group law over \tilde{R} whose logarithm

$$g_{\underline{\nu}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{\nu}) \cdot x^{p^n}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{v_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION Ching-Li Chai Hecke symmetry on PEL modell varieties Local Hecke symmetry

The global rigidity problem

Local rigidit problems

> Known results, obstacles and hope

> A glympse of a net

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first tes

Remarks on the formal group law $G_{\underline{y}}$

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

$$\begin{split} u_n(\underline{v}) &= \sum_{\substack{i_1, i_2, \dots, i_{\ell} \geq i \\ i_1 + \dots + i_{\ell=n}}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_s}^{p_1 + i_2 + \dots + i_{\ell-1}} \\ &= \sum_{\substack{i_1, i_2, \dots, i_{\ell} \geq i \\ i_1 + \dots + i_{\ell=n}}} p^{-r} \cdot v_{i_1} \cdot v_{i_2}^{p_1} \cdot v_{i_3}^{p_1 + i_2} \cdots v_{i_r}^{p_{i_1} + \dots + i_{r-1}} \end{split}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \ldots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \forall j \ge 1$. (3) The formal group law $G_{\underline{v}}$ over \overline{R} is "the" universal one-dimensional *p*-typical formal group law. HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke /mmetry

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a nev ipproach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal formal group over \mathcal{M}_h made explicit

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, \dots, w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if } 1 \le i \le h-1 \\ 1 & \text{if } i = h \\ 0 & \text{if } i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with Spf(R) and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_v$.

The universal strict isomorphism

Let $\mathbb{Z}_{(p)}[\underline{v},\underline{t}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \dots; t_1, t_2, t_3, \dots]$, and let $\sigma : \mathbb{Z}_{(p)}[\underline{v},\underline{t}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(v_i) = v_i^p$ and $\sigma(t_i) = t_i^p \forall i \ge 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\underline{\nu}\underline{\iota}}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{\nu_j}{p} \cdot g_{\underline{\nu}\underline{\iota}}^{(\sigma^j)}(x^{p^j})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

ecke symmetry on

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results,

A glympse of a nev

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varietie

cal Hecke

The global rigidity

Local rigidit

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{\nu},\underline{t}} := g_{\underline{\nu},\underline{t}}^{-1} \circ g_{\underline{\nu}} \in \mathbb{Z}_{(p)}[\underline{\nu},\underline{t}][[x]]$, and defines a *strict isomorphism*

 $\alpha_{\underline{v},\underline{t}}: G_{\underline{v}} \to G_{\underline{v},\underline{t}}$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v}, \underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in *x*.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

Parameters of $G_{\underline{v},\underline{t}}$

By the universality $G_{\underline{v}}$ for *p*-typical formal group laws, there exists a unique ring homomorphism

$$\eta : \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

 $\eta_* G_{\underline{v}} = G_{\underline{v},\underline{t}}.$

The elements

$$\overline{v}_n = \overline{v}_n(\underline{v}, \underline{t}) \in \mathbb{Z}_{(p)}[\underline{v}, \underline{t}], \quad n \in \mathbb{N}_{\geq 1}$$

are the parameters of the p-typical formal group law Gy,t.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidit

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a ne approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

A known recursive formula for the parameters of $G_{\nu,t}$

$$\begin{split} \overline{\mathbf{v}}_n &= \mathbf{v}_n + p \, t_n + \sum_{i \neq j = n \atop i \neq j = 1}^{i \neq j = n} \left(\mathbf{v}_j \, t_i^{p^j} - t_i \, \overline{\mathbf{v}}_j^{p^{r-j}} \right) \\ &+ \sum_{j=1}^{n-1} a_{n-j}(\underline{\mathbf{v}}) \cdot \left(t_j^{p^{n-j}} - \overline{\mathbf{v}}_j^{p^{r-j}} \right) \\ &+ \sum_{k=2}^{n-1} a_{n-k}(\underline{\mathbf{v}}) \cdot \sum_{i \neq j = k \atop i \neq j = 1}^{i \neq j \neq k} \left(v_j^{p^{r-k}} t_i^{p^{r-i}} - t_i^{p^{r-k}} \overline{\mathbf{v}}_j^{p^{r-j}} \right) \end{split}$$

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.)

An *integral* recursion formula for $\bar{v}_n(\underline{v}, \underline{t})$

(useful for computing the Lubin-Tate action)

$$\begin{split} \tilde{v}_n &= v_n + p t_n - \sum_{j=1}^{n-1} t_j \cdot \tilde{v}_{n-j}^{p^j} + \\ &+ \sum_{l=1}^{n-1} v_l \sum_{k=1}^{n-l-1} \frac{1}{p} \cdot a_{n-k-l}(\underline{v})^{(p^l)} \cdot \left\{ (\tilde{v}_k^{(p^l)})^{p^{n-l-k}} - (\tilde{v}_k^{p^j})^{p^{n-l-k}} \right. \\ &+ \sum_{i+j=k} t_j^{p^{n-k}} \left[(\tilde{v}_i^{(p^l)})^{p^{n-l-i}} - (\tilde{v}_i^{p^j})^{p^{n-l-i}} \right] \right\} \\ &+ \sum_{l=1}^{n-1} v_l \cdot \left\{ \frac{1}{p} (\tilde{v}_{n-l}^{(p^l)} - \tilde{v}_{n-l}^{p^l}) + \sum_{i+j=n-l \atop l \neq l \neq l} t_j^{p^l} \cdot \frac{1}{p} \cdot \left[(\tilde{v}_i^{(p^l)})^{p^j} - (\tilde{v}_i^{p^l})^{p^l} \right] \right\} \end{split}$$

for every $n \ge 1$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit

Known results,

.

approach

action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

fecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity

Local rigidit

Known results, obstacles and hope

A glympse of a nev

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Step 1

Given an element $\gamma \in Aut(G_0)$, construct

- a *p*-typical one-dimensional formal group law $F = F_{\gamma}$ over *R* whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_{p}[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma$$

Here $F_{\overline{R}} = F \otimes_R \overline{R}, G_{\overline{R}} = G_R \otimes_R \overline{R}$.

Note that both the formal group law *F* over *R* and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

The formal group law $F_c, c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

(wh=1 by convention).

Let

 $\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over $\overline{R}!$) with $\psi_c|_{G_0} = [c]$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidity

Known results, obstacles and hope

A glympse of a m approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

decke symmetry on PEL moduli varieties

cal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a new

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Step 2

Compute the parameters

$$(u_i = u_i(w_1, ..., w_{h-1}))_{i \in \mathbb{N}_{\geq 1}}$$

for the *p*-typical group law $F = F_{\gamma}$ over *R*.

The above condition means that

 $\xi_* G_{\tilde{v}} = F$,

where

 $\xi = \xi_{\gamma} : \tilde{R} \to R$

is the ring homomorphism such that

$$\xi(v_i) = u_i \quad \forall i \ge 1.$$

Parameters for $F_c, c \in W(\mathbb{F}_{p^h})^{\times}$

In the case when $\gamma \in \operatorname{Aut}(G_0)$ lifts to an element [c] with $c \in W(\mathbb{F}_{p^h})^{\times} \simeq \operatorname{Aut}(G_1)$, we have the following integral recursive formula for the parameters $u_n = u_n(c; \underline{w})$.

$$\begin{split} u_n(c;\underline{w}) &= c^{-1+\sigma^n} w_n \\ &+ \sum_{j=1}^{n-1} c^{-1+\sigma^j} \cdot \frac{1}{p} \left[u_{n-j}(c;\underline{w})^{(p^j)} - u_{n-j}(c;\underline{w})^{p^j} \right] \cdot w_j \\ &+ \sum_{j=1ve}^{n-1} \sum_{i=1}^{n-j-1} \frac{1}{p} a_{n-i-j}(\underline{w})^{(p^j)} \cdot c^{-1+\sigma^{n-i}} \cdot \\ & \left[\left(u_i(c;\underline{w})^{(p^j)} \right)^{p^{n-i-j}} - \left(u_i(c;\underline{w})^{p^j} \right)^{p^{n-i-j}} \right] \cdot w_j \end{split}$$

where $w_h = 1$, $w_m = 0 \forall m \ge h + 1$ by convention.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidi problems

> inown results, bstacles and hope

A glympse of a ne upproach

The Lubin-Tate

Universal isomorphism p-typical forma group laws

Sketch of the steps

The first tes

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

cal Hecke

The global rigidity problem

Local rigidit

Known results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Parameters for F_c , continued

Remark. The above recursive formula for the parameters $u_n(c; \underline{w})$ can be turned into an explicit "path sum" formula for $u_n(c, \underline{w})$, with terms indexed by "paths".

Step 3

Find/compute the uniquely determined element

$$\tau_n \in \mathfrak{m}_R$$
, $n \in \mathbb{N}_{\geq 1}$

and

$$\hat{u}_1 \in \mathfrak{m}_R, \dots, \hat{u}_{h-1} \in \mathfrak{m}_R, \hat{u}_h \in 1 + \mathfrak{m}_R$$

such that

$$\overline{v}_n(\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h, 0, 0, \dots; \underline{\tau}) = u_n \quad \forall n \ge 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

local Hecke

The global rigidity problem

Local rigidit

Known results, obstacles and hope

glympse of a net

The Lubin-Tate

Universal isomorphism p-typical forma group laws

Sketch of the steps

The first tes

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

lecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a net upproach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

(2) This step is a substitute for the operation taking the quotient of the group "changes of coordinates" in a space of formal group laws.

(3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

A congruence formula for \overline{v}_n

The follow formula helps to explain the last remark.

$$\begin{split} \overline{v}_n &\equiv v_n - \sum_{j=1}^n t_j \cdot v_{n-j}^{p^j} \\ &+ \sum_{\substack{i,j,s_1, s_2, \dots, s_i \geq 1\\s_1+\dots+s_i+i+j=n}} (-1)^{t-1} t_i \cdot v_{n-s_1}^{p^j} \cdot v_1^{(p^{s_1}+p^{s_2}+\dots+p^{s_i}-t)/(p-1)} \\ &\cdot v_{n-s_1}^{p^{s_1}-1} \cdot v_{n-s_1-s_2}^{p^{s_2}-1} \cdots v_{n-s_1-\dots-s_i}^{p^{s_i}-1} \\ &\mod (pt_a, t_a, t_b)_{a,b} \cdot \mathbb{Z}[\underline{v}, \underline{t}] \end{split}$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidity

Known results, obstacles and hope

A glympse of a nev

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

EL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a nev

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Step 4

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows: $\exists ! \tau_0 \in \mathfrak{m}_R$ such that

$$(1 + \tau_0)^{p^h - 1} \cdot \hat{u}_h = 1$$

Let

 $\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i$ for $i = 1, \dots, h - 1$.

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \ge 1.$$

Let $\rho: R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v}_i \quad \forall i \ge 1$$

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{\underline{v},\underline{t}}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\underline{\hat{u}},\underline{\tau}} : F \rightarrow \omega_* G_{\underline{v}}$$

with $\alpha|_{G_0} = \mathrm{Id}_{G_0}$.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta : \omega_* G_{\underline{v}} \rightarrow \rho_* G_R$$

with $\beta|_{G_0} = \mathrm{Id}_{G_0}$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit problems

> Known results, obstacles and hope

A glympse of a ne

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

lecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Conclusion

Combined with $\overline{\psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_* G_{\overline{R}} \to G_{\overline{R}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in \operatorname{Aut}(G_0)$. (Here $\overline{\alpha} = \alpha \otimes_R \overline{R}$ and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in \operatorname{Aut}(G_0)$ operates on the equi-characteristic deformation space $\operatorname{Spf}(\overline{R})$ of G_0 via the ring automorphism ρ .

(Notice that $\overline{\psi}$, α and β all depend on γ .)

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathscr{M}_{3\overline{\mathbb{F}}_p} = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]])$ be an irreducible closed formal subscheme of \mathscr{M}_3 over $\overline{\mathbb{F}}_p$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}}_p[[w_1, w_2]]$. If Z is stable under the action of an open subgroup of $W(\mathbb{F}_{p^3})^{\times}$, then $Z = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]]/(w_1))$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidit

Known results, obstacles and hope

A glympse of a ne

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

PEL moduli varietie

ocal Hecke

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a nev approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps