p-adic Modular Forms and Arithmetic A conference in honor of *Haruzo Hida*on his 60th birthday

六十而耳順

(I knew the truth in all I heard when I turned sixty. Confucious)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Heck symmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

glympse of a new pproach

The Lubin-Tate action

Universal isomorphism p-typical for

Sketch of the steps

e first test

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Department of Mathematics University of Pennsylvania and Institute of Mathematics Academia Sinica

UCLA, June 22, 2012

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new

he Lubin-Tate

Universal isomorphism *p*-typical form

Sketch of the steps

Outline

- Hecke symmetry on PEL moduli varieties
- 2 Local Hecke symmetry
- The global rigidity problem
- 4 Local rigidity problems
- 5 Known results, obstacles and hope
- 6 A glympse of a new approach
- The Lubin-Tate action
- 8 Universal isomorphism *p*-typical formal group laws
- Sketch of the steps
- The first test

HECKE SYMMETRY. RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

I. An overview

A PEL type modular variety \mathcal{M} is the moduli space attached to a PEL input datum $\mathcal{D} = (D, *, \mathcal{O}_D, H, \langle \cdot, \cdot \rangle, h)$, whose points corresponds to abelian varieties with imposed symmetry $(A, \rho : A \to A^t, \iota : \mathcal{O}_D \to \operatorname{End}(A)$, level structure) whose H_1 are modeled on the linear algebra structure \mathcal{D} .

Fix a prime number p, unramified for the PEL datum \mathcal{D} . We will focus on the equal characteristic p situation unless otherwise specified: \mathcal{M} is a moduli space over $\overline{\mathbb{F}}_p$.

Let $B = \operatorname{End}_D(H)$, with involution $*_B$ induced by *. Let $G = \operatorname{SU}(B, *_B)$ (or $\operatorname{GU}(B, *_B)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

problems

Known results, obstacles and hope

The Lubin-Tate

The Lubin-Tate action

Iniversal somorphism -typical formal roup laws

Sketch of the steps

I. An overview

A PEL type modular variety \mathcal{M} is the moduli space attached to a PEL input datum $\mathcal{D} = (D, *, \mathcal{O}_D, H, \langle \cdot, \cdot \rangle, h)$, whose points corresponds to abelian varieties with imposed symmetry $(A, \rho : A \to A^t, \iota : \mathcal{O}_D \to \operatorname{End}(A)$, level structure) whose H_1 are modeled on the linear algebra structure \mathcal{D} .

Fix a prime number p, unramified for the PEL datum \mathcal{D} . We will focus on the equal characteristic p situation unless otherwise specified: \mathcal{M} is a moduli space over $\overline{\mathbb{F}}_p$.

Let $B = \operatorname{End}_D(H)$, with involution $*_B$ induced by *. Let $G = \operatorname{SU}(B, *_B)$ (or $\operatorname{GU}(B, *_B)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

roblems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism *p*-typical form

Sketch of the steps

ha first tost

I. An overview

A PEL type modular variety \mathcal{M} is the moduli space attached to a PEL input datum $\mathcal{D} = (D, *, \mathcal{O}_D, H, \langle \cdot, \cdot \rangle, h)$, whose points corresponds to abelian varieties with imposed symmetry $(A, \rho : A \to A^t, \iota : \mathcal{O}_D \to \operatorname{End}(A)$, level structure) whose H_1 are modeled on the linear algebra structure \mathcal{D} .

Fix a prime number p, unramified for the PEL datum \mathscr{D} . We will focus on the equal characteristic p situation unless otherwise specified: \mathscr{M} is a moduli space over $\overline{\mathbb{F}}_p$.

Let $B = \operatorname{End}_D(H)$, with involution $*_B$ induced by *. Let $G = \operatorname{SU}(B, *_B)$ (or $\operatorname{GU}(B, *_B)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

problems

A glympse of a new

approach

The Lubin-Tate action

Universal isomorphism p-typical forma

Sketch of the steps

I. An overview

A PEL type modular variety \mathcal{M} is the moduli space attached to a PEL input datum $\mathcal{D} = (D, *, \mathcal{O}_D, H, \langle \cdot, \cdot \rangle, h)$, whose points corresponds to abelian varieties with imposed symmetry $(A, \rho : A \to A^t, \iota : \mathcal{O}_D \to \operatorname{End}(A)$, level structure) whose H_1 are modeled on the linear algebra structure \mathcal{D} .

Fix a prime number p, unramified for the PEL datum \mathscr{D} . We will focus on the equal characteristic p situation unless otherwise specified: \mathscr{M} is a moduli space over $\overline{\mathbb{F}}_p$.

Let $B = \operatorname{End}_D(H)$, with involution $*_B$ induced by *. Let $G = \operatorname{SU}(B, *_B)$ (or $\operatorname{GU}(B, *_B)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

problems

A glympse of a new

approach

The Lubin-Tate action

Universal isomorphism p-typical forma

ketch of the steps

Hecke symmetry

Let $\widetilde{\mathscr{M}}$ be the prime-to-p tower for \mathscr{M} ; it is a profinite etale Galois cover of \mathscr{M} with group $G(\widehat{\mathbb{Z}}^{(p)})$. The group $G(\mathbb{A}_f^{(p)})$ operates on $\widetilde{\mathscr{M}}$, inducing Hecke correspondences on \mathscr{M} .

Example: $\mathcal{M} = \mathcal{A}_g$ = the moduli space classifying g-dimensional principally polarized abelian varieties, $G = \operatorname{Sp}_{2g}$ (or GSp_{2g})).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

pproach

The Lubin-Tate

Universal somorphism p-typical forma

Sketch of the steps

Hecke symmetry

Let $\widetilde{\mathcal{M}}$ be the prime-to-p tower for \mathscr{M} ; it is a profinite etale Galois cover of \mathscr{M} with group $G(\hat{\mathbb{Z}}^{(p)})$. The group $G(\mathbb{A}_f^{(p)})$ operates on $\widetilde{\mathcal{M}}$, inducing Hecke correspondences on \mathscr{M} .

Example: $\mathcal{M} = \mathcal{A}_g$ = the moduli space classifying g-dimensional principally polarized abelian varieties, $G = \operatorname{Sp}_{2g}$ (or GSp_{2g})).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidit problems

Known results, obstacles and hope

A glympse of a new

he Lubin-Tate

Universal isomorphism

Sketch of the steps

he first test

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathcal{O}_D \to \operatorname{End}(A_x)$, level structure).

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

The Serre-Tate deformation theorem implies that there is a natural action of the compact p-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

This action can be regarded as a *local version* of the global Hecke symmetries.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

proach

he Lubin-Tate

Universal somorphism p-typical formal

Sketch of the steps

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathcal{O}_D \to \operatorname{End}(A_x)$, level structure).

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

The Serre-Tate deformation theorem implies that there is a natural action of the compact p-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

This action can be regarded as a *local version* of the global Hecke symmetries.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

proach

he Lubin-Tate ction

Universal isomorphism *p*-typical form

Sketch of the steps

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathcal{O}_D \to \operatorname{End}(A_x)$, level structure).

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

The Serre-Tate deformation theorem implies that there is a natural action of the compact p-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

This action can be regarded as a *local version* of the global Hecke symmetries.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

pproach

The Lubin-Tate ction

Universal

roup laws

n

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathcal{O}_D \to \operatorname{End}(A_x), \text{level structure}).$

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

HECKE SYMMETRY. RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Local Hecke symmetry

4 D > 4 P > 4 E > 4 E > 9 Q P

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathcal{O}_D \to \operatorname{End}(A_x), \text{level structure}).$

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

The Serre-Tate deformation theorem implies that there is a natural action of the compact p-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

HECKE SYMMETRY. RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Local Hecke symmetry

Given a point $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$, corresponding to a quadruple $(A_x, \rho_x : A_x \to A_x^t, \iota_x : \mathfrak{O}_D \to \operatorname{End}(A_x)$, level structure).

Let $\mathcal{M}^{/x}$ be the formal completion of \mathcal{M} at x.

Let
$$H_x := \mathrm{U}(\mathrm{End}_D^0(A_x), *_{\mathrm{Ros}})(\mathbb{Z}_{(p)})$$
, and let $G_x := \mathrm{U}(\mathrm{End}_D^0(A_x[p^\infty]), *_{\mathrm{Ros}})(\mathbb{Z}_p)$.

The Serre-Tate deformation theorem implies that there is a natural action of the compact p-adic group G_x on $\mathcal{M}^{/x}$, by "changing the marking".

This action can be regarded as a *local version* of the global Hecke symmetries.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity

bstacles and hope

A glympse of a new approach

ne Lubin-Tate

Jniversal somorphis

roup laws

ketch of the ste

We call G_x the *local stabilizer subgroup* at x. The group H_x can be thought of as the "intersection" of G_x with the global Hecke symmetries on \mathcal{M} .

Lemma. If a closed subvariety $Z \subset \mathcal{M}$ is stable under all Hecke symmetries, then $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the *p*-adic closure of H_x in G_x .

Examples. For a "general" $x \in \mathcal{A}_g(\overline{\mathbb{F}_p})$ " (in particular x is ordinary), the Zariski closure of H_x is a g-dimensional torus, while the Zariski closure of G_x is GL_g .

For a supersingular point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$, H_x is p-adically dense in G_x , and the Zariski closure of G_x is a twist of Sp_{2g} .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

cocal rigidity roblems

Known results, obstacles and hope

pproach

he Lubin-Tate ction

Universal isomorphism p-typical formal

Sketch of the steps

We call G_x the *local stabilizer subgroup* at x. The group H_x can be thought of as the "intersection" of G_x with the global Hecke symmetries on \mathcal{M} .

Lemma. If a closed subvariety $Z \subset \mathcal{M}$ is stable under all Hecke symmetries, then $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the *p*-adic closure of H_x in G_x .

Examples. For a "general" $x \in \mathscr{A}_g(\overline{\mathbb{F}_p})$ " (in particular x is ordinary), the Zariski closure of H_x is a g-dimensional torus, while the Zariski closure of G_x is GL_g .

For a supersingular point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$, H_x is p-adically dense in G_x , and the Zariski closure of G_x is a twist of Sp_{2g} .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

obstacles and hope

pproach

he Lubin-Tate

Universal isomorphism p-typical form

Sketch of the steps

ha first tast

We call G_x the *local stabilizer subgroup* at x. The group H_x can be thought of as the "intersection" of G_x with the global Hecke symmetries on \mathcal{M} .

Lemma. If a closed subvariety $Z \subset \mathcal{M}$ is stable under all Hecke symmetries, then $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the *p*-adic closure of H_x in G_x .

Examples. For a "general" $x \in \mathscr{A}_g(\overline{\mathbb{F}_p})$ " (in particular x is ordinary), the Zariski closure of H_x is a g-dimensional torus, while the Zariski closure of G_x is GL_g .

For a supersingular point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$, H_x is p-adically dense in G_x , and the Zariski closure of G_x is a twist of Sp_{2g} .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

roblems

bstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism p-typical for

ketch of the stens

We call G_x the *local stabilizer subgroup* at x. The group H_x can be thought of as the "intersection" of G_x with the global Hecke symmetries on \mathcal{M} .

Lemma. If a closed subvariety $Z \subset \mathcal{M}$ is stable under all Hecke symmetries, then $Z^{/x} \subset \mathcal{M}^{/x}$ is stable under the action of the *p*-adic closure of H_x in G_x .

Examples. For a "general" $x \in \mathscr{A}_g(\overline{\mathbb{F}_p})$ " (in particular x is ordinary), the Zariski closure of H_x is a g-dimensional torus, while the Zariski closure of G_x is GL_g .

For a supersingular point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$, H_x is p-adically dense in G_x , and the Zariski closure of G_x is a twist of Sp_{2g} .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

roblems

ostacles and hope

A glympse of a new approach

The Lubin-Tate ction

Universal somorphism p-typical for

Sketch of the steps

The global rigidity problem

Ch

(Oort's Hecke orbit conjecture)

Prediction. Let $Z \subset \mathcal{M}_{/\overline{\mathbb{F}}_p}$ be a reduced closed subset of \mathcal{M} stable under all prime-to-p Hecke correspondences. Then Z contains the leaf C(x) passing through x for every poin $x \in Z(\overline{\mathbb{F}}_p)$.

(Every Hecke-invariant closed subset of $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is a union of leaves; the latter can be regarded as "generalized Shimura subvarieties in char, p".)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity

Known results, obstacles and hope

approach

The Lubin-Tate

Iniversal somorphism -typical formal

Sketch of the steps

The global rigidity problem

(Oort's Hecke orbit conjecture)

Prediction. Let $Z \subset \mathcal{M}_{/\overline{\mathbb{F}}_p}$ be a reduced closed subset of \mathcal{M} stable under all prime-to-p Hecke correspondences. Then Z contains the leaf C(x) passing through x for every point $x \in Z(\overline{\mathbb{F}}_p)$.

(Every Hecke-invariant closed subset of $\mathcal{M}_{/\mathbb{F}_p}$ is a union of leaves; the latter can be regarded as "generalized Shimura subvarieties in char. p".)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

Local rigidity problems

obstacles and hope

approach

The Lubin-Tate

Universal isomorphism *p*-typical for

Sketch of the steps

The global rigidity problem

(Oort's Hecke orbit conjecture)

Prediction. Let $Z \subset \mathcal{M}_{/\overline{\mathbb{F}}_p}$ be a reduced closed subset of \mathcal{M} stable under all prime-to-p Hecke correspondences. Then Z contains the leaf C(x) passing through x for every point $x \in Z(\overline{\mathbb{F}}_p)$.

(Every Hecke-invariant closed subset of $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is a union of leaves; the latter can be regarded as "generalized Shimura subvarieties in char. p".)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism

Sketch of the steps

- A *leaf* C(x) in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is the locus in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ where *all* p-adic invariants have the same "value" as those of x.
- The *ordinary* locus $\mathscr{A}_g^{\operatorname{ord}} \subset \mathscr{A}_{g/\overline{\mathbb{F}}_p}$ is a leaf in $\mathscr{A}_{g\overline{\mathbb{F}}_p}$.
- The leaf passing through a *supersingular* point in \mathcal{A}_g is finite.
- The leaf passing through a point in \mathcal{A}_3 corresponding to a 3-dimensional abelian variety with slopes $\{1/3,2/3\}$ is two-dimensional. Such leaves form a one-dimensional family in the slopes $\{1/3,2/3\}$ locus of \mathcal{A}_3 .

(The latter locus has dimension three.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

pproach

The Lubin-Tate action

Universal isomorphism p-typical formal

Sketch of the steps

- A *leaf* C(x) in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is the locus in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ where *all* p-adic invariants have the same "value" as those of x.
- The *ordinary* locus $\mathscr{A}_g^{\text{ord}} \subset \mathscr{A}_{g/\overline{\mathbb{F}}_p}$ is a leaf in $\mathscr{A}_{g\overline{\mathbb{F}}_p}$.
- The leaf passing through a point in \mathcal{A}_3 corresponding to a

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

The global rigidity problem

- A *leaf* C(x) in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is the locus in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ where *all* p-adic invariants have the same "value" as those of x.
- The *ordinary* locus $\mathscr{A}_g^{\text{ord}} \subset \mathscr{A}_{g/\overline{\mathbb{F}}_p}$ is a leaf in $\mathscr{A}_{g\overline{\mathbb{F}}_p}$.
- The leaf passing through a *supersingular* point in \mathcal{A}_g is finite.
- The leaf passing through a point in \mathcal{A}_3 corresponding to a

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

The global rigidity problem

- A *leaf* C(x) in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ is the locus in $\mathcal{M}_{/\overline{\mathbb{F}}_p}$ where *all* p-adic invariants have the same "value" as those of x.
- The *ordinary* locus $\mathscr{A}_g^{\text{ord}} \subset \mathscr{A}_{g/\overline{\mathbb{F}}_p}$ is a leaf in $\mathscr{A}_{g\overline{\mathbb{F}}_p}$.
- The leaf passing through a *supersingular* point in \mathcal{A}_{g} is
- The leaf passing through a point in \mathcal{A}_3 corresponding to a 3-dimensional abelian variety with slopes $\{1/3,2/3\}$ is two-dimensional. Such leaves form a one-dimensional family in the slopes $\{1/3, 2/3\}$ locus of \mathcal{A}_3 .

(The latter locus has dimension three.)

HECKE SYMMETRY, LUBIN-TATE ACTION

Ching-Li Chai

The global rigidity problem

Strong forms of global rigidity problem

Remark. In application(s) to Iwasawa theory pioneered by Hida, certain strong versions of the global rigidity problem appear naturally:

- The assumption on Z is weakened to: Z is stable under the action of a "not-to-small" subset of Hecke correspondences.
- The desired conclusion is that *Z* is a union of leaves in the reduction of certain Shimura subvarieties

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

pproach

The Lubin-Tate

Jniversal somorphism e-typical form

Sketch of the steps

Strong forms of global rigidity problem

Remark. In application(s) to Iwasawa theory pioneered by Hida, certain strong versions of the global rigidity problem appear naturally:

- The assumption on *Z* is weakened to: *Z* is stable under the action of a "not-to-small" subset of Hecke correspondences.
- The desired conclusion is that *Z* is a union of leaves in the reduction of certain Shimura subvarieties

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

Local rigidity broblems

Known results, obstacles and hope

A glympse of a new approach

he Lubin-Tate

Universal

isomorphism
p-typical forma
group laws

Sketch of the steps

Strong forms of global rigidity problem

Remark. In application(s) to Iwasawa theory pioneered by Hida, certain strong versions of the global rigidity problem appear naturally:

- The assumption on Z is weakened to: Z is stable under the action of a "not-to-small" subset of Hecke correspondences.
- The desired conclusion is that Z is a union of leaves in the reduction of certain Shimura subvarieties.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

The global rigidity

problem

Local rigidity problems

obstacles and hope

A glympse of a new approach

he Lubin-Tate

Universal somorphis

group laws

Local rigidity problems

Set-up. $Z \subset \mathcal{M}^{/x}$ is a reduced closed formal subscheme of $\mathcal{M}^{/x}$, stable under the action of a "not-too-small" subgroup of G_x .

Restricted local rigidity problem (to make it easier): Assume in addition that $Z \subset C(x)^{/x}$.

Desired conclusion. *Z* has a (very) special form (e.g. defined by a finite collection of Tate cycles.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

pproach

he Lubin-Tate

Universal

Sketch of the steps

Local rigidity problems

Set-up. $Z \subset \mathcal{M}^{/x}$ is a reduced closed formal subscheme of $\mathcal{M}^{/x}$, stable under the action of a "not-too-small" subgroup of G_x .

Restricted local rigidity problem (to make it easier): Assume in addition that $Z \subset C(x)^{/x}$.

Desired conclusion. *Z* has a (very) special form (e.g. defined by a finite collection of Tate cycles.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new

he Lubin-Tate

action

Universal somorphism p-typical formal group laws

Sketch of the steps

Local rigidity problems

Set-up. $Z \subset \mathcal{M}^{/x}$ is a reduced closed formal subscheme of $\mathcal{M}^{/x}$, stable under the action of a "not-too-small" subgroup of G_x .

Restricted local rigidity problem (to make it easier): Assume in addition that $Z \subset C(x)^{/x}$.

Desired conclusion. *Z* has a (very) special form (e.g. defined by a finite collection of Tate cycles.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new

he Lubin-Tate

action

Universal isomorphism p-typical forma

Sketch of the steps

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

problems

Known results, obstacles and hope

approach

he Lubin-Tate

Jniversal somorphism e-typical formal

Sketch of the steps

The first test

II. Known results, obstacles and hope

Propostion. Restricted local rigidity holds for \mathcal{A}_g , in the case when A_x has only two slopes.

- $C(x)^{/x}$ has a natural structure as a torsor for an isoclinic p-divisible formal group X_x .
- If $Z \subset C(x)^{/x}$ is stable under a not-too-small subgroup of G_x , then Z_x is a torsor for a p-divisible subgroup of X_x .

II. Known results, obstacles and hope

Propostion. Restricted local rigidity holds for \mathcal{A}_g , in the case when A_x has only two slopes.

- $C(x)^{/x}$ has a natural structure as a torsor for an isoclinic p-divisible formal group X_x .
- If $Z \subset C(x)^{/x}$ is stable under a not-too-small subgroup of G_r , then Z_r is a torsor for a p-divisible subgroup of X_r .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

problems

Known results, obstacles and hope

A glympse of a new approach

ne Lubin-Tate

Universal isomorphism p-typical formal

Sketch of the steps

II. Known results, obstacles and hope

Propostion. Restricted local rigidity holds for \mathcal{A}_g , in the case when A_x has only two slopes.

- $C(x)^{/x}$ has a natural structure as a torsor for an isoclinic p-divisible formal group X_x .
- If $Z \subset C(x)^{/x}$ is stable under a not-too-small subgroup of G_x , then Z_x is a torsor for a p-divisible subgroup of X_x .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

roblems

Known results, obstacles and hope

A glympse of a new

e Lubin-Tate

Universal isomorphism

Sketch of the steps

II. Known results, obstacles and hope

Propostion. Restricted local rigidity holds for \mathcal{A}_{g} , in the case when A_r has only two slopes.

- $C(x)^{/x}$ has a natural structure as a torsor for an isoclinic *p*-divisible formal group X_x .
- If $Z \subset C(x)^{/x}$ is stable under a not-too-small subgroup of G_x , then Z_x is a torsor for a p-divisible subgroup of X_x .

HECKE SYMMETRY, LUBIN-TATE ACTION

Ching-Li Chai

Known results.

obstacles and hope

Restricted local rigidity: an example and consequences

An example. Let Z be an irreducible forma subscheme of a formal torus $\hat{\mathbb{G}}_m^r$ over $\overline{\mathbb{F}}_p$. Suppose that Z is closed under the action of $[1+p^m]$ for some $m \geq 2$. Then Z is a formal subtorus of $\hat{\mathbb{G}}_m^r$ (exercise)

Consequence of restricted local rigidity: linearization of the global rigidity problem, helped by considerations of local and global *p*-adic monodromy

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

problem

ocal rigidity

Known results, obstacles and hope

pproach

The Lubin-Tate

Universal isomorphism *p*-typical for

Sketch of the steps

Restricted local rigidity: an example and consequences

An example. Let Z be an irreducible forma subscheme of a formal torus $\hat{\mathbb{G}}_m^r$ over $\overline{\mathbb{F}}_p$. Suppose that Z is closed under the action of $[1+p^m]$ for some $m \geq 2$. Then Z is a formal subtorus of $\hat{\mathbb{G}}_m^r$ (exercise)

Consequence of restricted local rigidity: linearization of the global rigidity problem, helped by considerations of local and global *p*-adic monodromy.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

ocal rigidity

Known results.

obstacles and hope
A glympse of a new

approach

The Lubin-Tate action

Universal isomorphism *p*-typical form

Sketch of the steps

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

problem

ocal rigidity oblems

Known results, obstacles and hope

The Lubin-Tate

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The first test

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\mathbb{F}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_g .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties associated to semisimple groups of Q-rank one).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

problem

ocal rigidity roblems

Known results, obstacles and hope

pproach

The Lubin-Tate action

Universal isomorphism p-typical formal

Sketch of the step:

The first test

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_p .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties assciated to semisimple groups of Q-rank one).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism

Sketch of the steps

he firet teet

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_p .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties assciated to semisimple groups of Q-rank one).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry
The global rigidity

problem

problems

Known results.

obstacles and hope

approach

he Lubin-Tate

Universal somorphism -typical forma

Sketch of the sten

he first test

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_g .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties associated to semisimple groups of Q-rank one).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity

problem

Local rigidity

Known results, obstacles and hope

A glympse of a new

The Lubin-Tate

ne Lubin-Tate ction

Iniversal comorphism -typical forma

ketch of the step

he first test

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_g .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties associated to semisimple groups of Q-rank one).

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity

Local rigidity

Known results, obstacles and hope

A glympse of a new

The Lubin-Tate

ection

Universal somorphism -typical forma

ketch of the s

e first test

Theorem. Global rigidity holds for \mathcal{A}_g .

Remarks. (1) Besides the restricted local rigidity and monodromy arguments, the proof uses a trick:

Every point $x \in \mathscr{A}_g(\overline{\mathbb{F}}_p)$ is contained in a Hilbert modular subvariety of \mathscr{A}_g .

- (2) This "Hilbert trick" fails for PEL modular varieties of type A or D.
- (3) A strong global rigidity statement holds for Hilbert modular varieties (and many othother modular varieties associated to semisimple groups of \mathbb{Q} -rank one).

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of p in denominators.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

problems

Known results, obstacles and hope

pproach

e Lubin-Tate

Universal isomorphism p-typical formal

Sketch of the steps

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of *p* in denominators.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

pproach

e Lubin-Tate

Universal isomorphism p-typical for

Sketch of the stens

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of p in denominators.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

ne Lubin-Tate

Universal isomorphism p-typical for

Sketch of the steps

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of p in denominators.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

oblems

Known results, obstacles and hope

A glympse of a new approach

ne Lubin-Tate

Universal somorphism o-typical for

Sketch of the steps

The **holy grail** for the rigidity problems (don't have better leads):

To pry actionable intelligence out of the action of the local stabilizing subgroup.

Main obstacle: Our poor understanding of this action (so cannot deploy enhanced interrogation techniques).

- Don't have helpful (exact or approximate) formulas (have tried Norman's algorithm).
- Linearization via crystalline techniques leads to formulas with high powers of p in denominators.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

Known results.

obstacles and hope

A glympse of a new approach

e Lubin-Tate

Jniversal somorphism -typical fori

Sketch of the steps

A glympse of a new approach

We will explain a method to obtain an approximate (or even asymptotic) formula for the action of the local stabilizer subgroup, in the first non-trivial case,

where $\mathcal{M}^{/x} = \text{Def}(G_0)$ is the Lubin-Tate moduli deformation space for a one-dimensional formal group G_0 of finite height h over $\overline{\mathbb{F}}_p$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity

Known results, obstacles and hope

A glympse of a new approach

he Lubin-Tate

Universal

Sketch of the steps

A glympse of a new approach

We will explain a method to obtain an approximate (or even asymptotic) formula for the action of the local stabilizer subgroup, in the first non-trivial case,

where $\mathcal{M}^{/x} = \text{Def}(G_0)$ is the Lubin-Tate moduli deformation space for a one-dimensional formal group G_0 of finite height h over $\overline{\mathbb{F}}_p$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal

Universal isomorphism p-typical forma

Sketch of the steps

Let *h* be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{n^h})$.

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h.

It is well-known that $\operatorname{End}(G_0)$ is the maximal order of $\operatorname{End}^0(G_0) = \operatorname{a}$ central division algebra over \mathbb{Q}_p of dimension h^2 .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

problem

Local rigidity problems

Known results, obstacles and hope

The Lubin-Tate

The Lubin-Tate action

Universal
isomorphism
p-typical formal

Sketch of the steps

Let h be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$.)

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h.

It is well-known that $\operatorname{End}(G_0)$ is the maximal order of $\operatorname{End}^0(G_0) = \operatorname{a}$ central division algebra over \mathbb{Q}_p of dimension h^2 .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

roblem

problems

Known results.

A glympse of a new

The Lubin-Tate

action

Universal
isomorphism
p-typical formal
group laws

Sketch of the steps

Let h be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$.)

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h.

It is well-known that $\operatorname{End}(G_0)$ is the maximal order of $\operatorname{End}^0(G_0)=a$ central division algebra over \mathbb{Q}_p of dimension h^2

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke ymmetry

The global rigidity problem

problems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism *p*-typical forma

Sketch of the steps

Let *h* be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$.)

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h.

It is well-known that $\operatorname{End}(G_0)$ is the maximal order of $\operatorname{End}^0(G_0) = \operatorname{a}$ central division algebra over \mathbb{Q}_p of dimension h^2 .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

problems

A glympse of a new

A glympse of a new approach

The Lubin-Tate action

Universal somorphism o-typical formal

Sketch of the steps

Let h be a positive integer.

Let G_1 be the one-dimensional formal group over $\mathbb{Z}_{(p)}$ with logarithm

$$\sum_{j \in \mathbb{N}} p^{-j} x^{p^{jh}} = x + \frac{x^{p^h}}{p} + \frac{x^{p^{2h}}}{p^2} + \cdots$$

(so it is a Lubin-Tate formal group for $W(\mathbb{F}_{p^h})$.)

Let G_0 be the base extension to $\overline{\mathbb{F}}_p$ of the closed fiber of G_1 ; it is a one-dimensional formal group over \mathbb{F}_p of height h.

It is well-known that $\operatorname{End}(G_0)$ is the maximal order of $\operatorname{End}^0(G_0) = \operatorname{a}$ central division algebra over \mathbb{Q}_p of dimension h^2 .

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

problem

problems

A glympse of a new

A glympse of a new approach

The Lubin-Tate action

Universal somorphism o-typical formal

Sketch of the steps

The Lubin-Tate action

Let $\mathcal{M}_h := \text{Def}(G_0)$; it is a smooth formal scheme over $W(\overline{\mathbb{F}}_p)$ of relative dimension h-1.

Let $G_{\text{univ}} \to \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact p-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by functoriality, as follows.

 $\forall \gamma \in \text{Aut}(G_0), \exists !$ formal scheme automorphism $\rho(\gamma)$ of \mathcal{M}_h and a formal group isomorphism

$$ilde{
ho}(\gamma):G_{
m univ}
ightarrow
ho(\gamma)^*G_{
m univ}$$

such that $\tilde{\rho}(\gamma)|_{G_0} = \gamma$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathcal{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

The Lubin-Tate

action

Universal
isomorphism
p-typical formal
group laws

Sketch of the steps

The Lubin-Tate action

Let $\mathcal{M}_h := \mathrm{Def}(G_0)$; it is a smooth formal scheme over $W(\overline{\mathbb{F}}_p)$ of relative dimension h-1.

Let $G_{\text{univ}} \to \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact *p*-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by functoriality, as follows.

 $\forall \gamma \in \text{Aut}(G_0), \exists !$ formal scheme automorphism $\rho(\gamma)$ of \mathcal{M}_h and a formal group isomorphism

$$\tilde{
ho}(\gamma):G_{\mathrm{univ}}
ightarrow
ho(\gamma)^*G_{\mathrm{univ}}$$

such that $\tilde{\rho}(\gamma)|_{G_0} = \gamma$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

ocal rigidity roblems

nown results, ostacles and hope

glympse of a new proach

The Lubin-Tate action

Universal somorphism p-typical formal group laws

Sketch of the steps

The Lubin-Tate action

Let $\mathcal{M}_h := \mathrm{Def}(G_0)$; it is a smooth formal scheme over $W(\overline{\mathbb{F}}_p)$ of relative dimension h-1.

Let $G_{\text{univ}} \to \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact p-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathscr{M}_h by functoriality, as follows.

 $\forall \gamma \in \text{Aut}(G_0), \exists ! \text{ formal scheme automorphism } \rho(\gamma) \text{ of } \mathcal{M}_h$ and a formal group isomorphism

$$\tilde{
ho}(\gamma):G_{\mathrm{univ}}
ightarrow
ho(\gamma)^*G_{\mathrm{univ}}$$

such that $\tilde{\rho}(\gamma)|_{G_0} = \gamma$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

oblems

bstacles and hope
A glympse of a new

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical forma

Sketch of the steps

Let $G_{\text{univ}} \to \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact p-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathscr{M}_h by functoriality, as follows.

 $\forall \gamma \in \text{Aut}(G_0), \exists ! \text{ formal scheme automorphism } \rho(\gamma) \text{ of } \mathcal{M}_h$ and a formal group isomorphism

$$\tilde{
ho}(\gamma):G_{\mathrm{univ}}
ightarrow
ho(\gamma)^*G_{\mathrm{univ}}$$

such that
$$\tilde{\rho}(\gamma)|_{G_0} = \gamma$$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

roblems

A glympse of a new

A glympse of a new approach

The Lubin-Tate action

Universal somorphism o-typical formal group laws

ketch of the step

Let $G_{\text{univ}} \to \mathcal{M}_h$ be the universal formal group over \mathcal{M}_h .

The compact *p*-adic group $\operatorname{Aut}(G_0) = \operatorname{End}(G_0)^{\times}$ operates on \mathcal{M}_h by functoriality, as follows.

 $\forall \gamma \in \text{Aut}(G_0), \exists ! \text{ formal scheme automorphism } \rho(\gamma) \text{ of } \mathcal{M}_h$ and a formal group isomorphism

$$\tilde{\rho}(\gamma): G_{\mathrm{univ}} \to \rho(\gamma)^* G_{\mathrm{univ}}$$

such that $\tilde{\rho}(\gamma)|_{G_0} = \gamma$

Remark. This action $\gamma \mapsto \rho(\gamma)$ of $\operatorname{Aut}(G_0)$ on the Lubin-Tate moduli space \mathscr{M}_h was first studied by Lubin and Tate in 1966. It is also known as (the essential part of) the *Morava stabilizer subgroup* action in chromatic homotopy theory.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

ocal rigidity roblems

bstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal somorphism p-typical formal group laws

ketch of the step

The universal p-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \tilde{R}[[x,y]]$ be the one-dimensional p-typical formal group law over \tilde{R} whose logarithm

$$g_{\underline{v}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{v}) \cdot x^{p^n}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{v_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

problems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal somorphism p-typical form

Sketch of the steps

The universal p-typical formal group law

Let $\tilde{R} = \mathbb{Z}_{(p)}[\underline{v}] = \mathbb{Z}_{(p)}[v_1, v_2, v_3, \ldots]$, and let $\sigma : \tilde{R} \to \tilde{R}$ be the ring homomorphism such that $\sigma(v_j) = v_j^p$ for all $j \ge 1$

Let $G_{\underline{v}}(x) \in \tilde{R}[[x,y]]$ be the one-dimensional p-typical formal group law over \tilde{R} whose logarithm

$$g_{\underline{v}}(x) \in \tilde{R}[1/p][[x]] = \sum_{n \ge 1} a_n(\underline{v}) \cdot x^{p^n}$$

satisfies

$$g_{\underline{\nu}}(x) = x + \sum_{i=1}^{\infty} \frac{\nu_i}{p} \cdot g_{\underline{\nu}}^{(\sigma^i)}(x^{p^i})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

roblems

A glympse of a new

A glympse of a new approach

The Lubin-Tate action

Universal somorphism p-typical formal

Sketch of the steps

Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_v(x)$.

(2) Explicitly

$$a_n(\underline{v}) = \sum_{\substack{i_1, i_2, \dots, i_r \ge 1\\i_1 + \dots + i_r = n}} p^{-r} \cdot \prod_{s=1}^r v_{i_s}^{p^{i_1 + i_2 + \dots + i_{s-1}}}$$

$$= \sum_{\substack{i_1, i_2, \dots, i_r \ge 1\\i_1 + \dots + i_r = n}} p^{-r} \cdot v_{i_1} \cdot v_{i_2}^{p^{i_1}} \cdot v_{i_3}^{p^{i_1 + i_2}} \cdots v_{i_r}^{p^{i_1 + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \dots, v_n of weight $p^n - 1$ when v_i is given the weight $p^j - 1$ $\forall j \geq 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional p-typical formal group law.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

cal Hecke mmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism *p*-typical formal group laws

Sketch of the steps

Remarks on the formal group law G_v

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_v(x)$.

(2) Explicitly:

$$a_n(\underline{v}) = \sum_{\substack{i_1, i_2, \dots, i_r \ge 1\\i_1 + \dots + i_r = n}} p^{-r} \cdot \prod_{s=1}^r v_{i_s}^{p^{i_1 + i_2 + \dots + i_{s-1}}}$$

$$= \sum_{\substack{i_1, i_2, \dots, i_r \ge 1\\i_1 + \dots + i_r = n}} p^{-r} \cdot v_{i_1} \cdot v_{i_2}^{p^{i_1}} \cdot v_{i_3}^{p^{i_1 + i_2}} \cdots v_{i_r}^{p^{i_1 + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \dots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \ \forall j \ge 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional p-typical formal group law.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism *p*-typical formal group laws

Sketch of the ster

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_{\underline{v}}(x)$.

(2) Explicitly:

$$a_{n}(\underline{v}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_{s}}^{p^{i_{1} + i_{2} + \dots + i_{s-1}}}$$

$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot v_{i_{1}} \cdot v_{i_{2}}^{p^{i_{1}}} \cdot v_{i_{3}}^{p^{i_{1} + i_{2}}} \cdots v_{i_{r}}^{p^{i_{1} + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \dots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1$ $\forall j \geq 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional p-typical formal group law.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

ocal rigidity roblems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

Remarks. (1) The above "functional equation" is a recursive formula for the coefficients $a_n(\underline{v}) \in p^{-n} \cdot \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n]$ of $g_v(x)$.

(2) Explicitly:

$$a_{n}(\underline{v}) = \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot \prod_{s=1}^{r} v_{i_{s}}^{p^{i_{1} + i_{2} + \dots + i_{s-1}}}$$

$$= \sum_{\substack{i_{1}, i_{2}, \dots, i_{r} \geq 1 \\ i_{1} + \dots + i_{r} = n}} p^{-r} \cdot v_{i_{1}} \cdot v_{i_{2}}^{p^{i_{1}}} \cdot v_{i_{3}}^{p^{i_{1} + i_{2}}} \cdots v_{i_{r}}^{p^{i_{1} + \dots + i_{r-1}}}$$

Note that $a_n(\underline{v})$ is a homogeneous polynomial in v_1, \dots, v_n of weight $p^n - 1$ when v_j is given the weight $p^j - 1 \ \forall j \ge 1$.

(3) The formal group law $G_{\underline{\nu}}$ over \tilde{R} is "the" universal one-dimensional p-typical formal group law.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

roblems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the step

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, ..., w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if} \quad 1 \le i \le h-1\\ 1 & \text{if} \quad i = h\\ 0 & \text{if} \quad i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\nu}$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal
isomorphism
p-typical formal

Sketch of the steps

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, ..., w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if} \quad 1 \le i \le h-1\\ 1 & \text{if} \quad i = h\\ 0 & \text{if} \quad i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_v$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism *p*-typical formal

Sketch of the steps

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, ..., w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if} \quad 1 \le i \le h-1\\ 1 & \text{if} \quad i = h\\ 0 & \text{if} \quad i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation $\pi_* G_{\underline{\nu}}$ of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_v$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

problem

Local rigidity problems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal somorphism p-typical forma

ketch of the steps

Let
$$R = R_h = W(\overline{\mathbb{F}}_p)[[w_1, w_2, ..., w_{h-1}]].$$

Let $\pi = \pi_h : \tilde{R} \to R$ be the ring homomorphism such that

$$\pi(v_i) = \begin{cases} w_i & \text{if} \quad 1 \le i \le h-1\\ 1 & \text{if} \quad i = h\\ 0 & \text{if} \quad i \ge h+1 \end{cases}$$

The classifying morphism $\operatorname{Spf}(R) \to \mathcal{M}_h$ for the deformation π_*G_v of G_0 is an isomorphism.

We will identify \mathcal{M}_h with $\operatorname{Spf}(R)$ and the universal deformation G_{univ} of G_0 with the formal group underlying the formal group law $G_R := \pi_* G_{\nu}$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

Local rigidity oroblems

obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Iniversal comorphism -typical forma

ketch of the ster

The universal strict isomorphism

Let $\mathbb{Z}_{(p)}[\underline{v},\underline{t}] = \mathbb{Z}_{(p)}[v_1,v_2,v_3,\ldots;t_1,t_2,t_3,\ldots]$, and let $\sigma: \mathbb{Z}_{(p)}[\underline{v},\underline{t}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(v_i) = v_i^p$ and $\sigma(t_i) = t_i^p \ \forall i \geq 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\nu,t}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{v_j}{p} \cdot g_{\nu,t}^{(\sigma^j)}(x^{p^j})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

problems

Known results, bstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism

Let $\mathbb{Z}_{(p)}[\underline{v},\underline{t}] = \mathbb{Z}_{(p)}[v_1,v_2,v_3,\ldots;t_1,t_2,t_3,\ldots]$, and let $\sigma: \mathbb{Z}_{(p)}[\underline{v},\underline{t}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ be the obvious Frobenius lifting as before, with $\sigma(v_i) = v_i^p$ and $\sigma(t_i) = t_i^p \ \forall i \geq 1$.

Let $G_{\underline{v},\underline{t}}(x,y)$ be the one-dimensional formal group law over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$ whose logarithm $g_{\underline{v},\underline{t}}(x)$ satisfies

$$g_{\underline{\nu},\underline{t}}(x) = x + \sum_{i=1}^{\infty} t_i \cdot x^{p^i} + \sum_{j=1}^{\infty} \frac{\nu_j}{p} \cdot g_{\underline{\nu},\underline{t}}^{(\sigma^j)}(x^{p^j})$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

roblems

bstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}} := g_{\underline{v},\underline{t}}^{-1} \circ g_{\underline{v}} \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a *strict isomorphism*

$$lpha_{\underline{
u},\underline{t}}:G_{\underline{
u}} o G_{\underline{
u},\underline{t}}$$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in x.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

problem

problems

Known results, obstacles and hope

glympse of a new oproach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{v},\underline{t}} := g_{\underline{v},\underline{t}}^{-1} \circ g_{\underline{v}} \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}][[x]]$, and defines a *strict isomorphism*

$$lpha_{\underline{
u},\underline{t}}:G_{\underline{
u}} o G_{\underline{
u},\underline{t}}$$

between p-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in x.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

problems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

The universal strict isomorphism, continued

It is known that $\alpha_{\underline{\nu},\underline{t}} := g_{\underline{\nu},\underline{t}}^{-1} \circ g_{\underline{\nu}} \in \mathbb{Z}_{(p)}[\underline{\nu},\underline{t}][[x]]$, and defines a *strict isomorphism*

$$lpha_{\underline{
u},\underline{t}}:G_{\underline{
u}} o G_{\underline{
u},\underline{t}}$$

between *p*-typical formal group laws over $\mathbb{Z}_{(p)}[\underline{v},\underline{t}]$.

(A *strict* isomorphism is an isomorphism between formal group laws which is $\equiv x$ modulo higher degree terms in x.)

Moreover $\alpha_{\underline{v},\underline{t}}$ is "the" universal strict isomorphism between one-dimensional *p*-typical formal group laws.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

problems

obstacles and hope

approach

he Lubin-Tate ction

Universal isomorphism *p*-typical formal group laws

Sketch of the steps

Parameters of $G_{\underline{v},\underline{t}}$

By the universality $G_{\underline{\nu}}$ for p-typical formal group laws, there exists a unique ring homomorphism

$$\eta: \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

$$\eta_* G_{\underline{v}} = G_{\underline{v},\underline{t}}.$$

The elements

$$\overline{v}_n = \overline{v}_n(\underline{v},\underline{t}) \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}], \quad n \in \mathbb{N}_{\geq 1}$$

are the parameters of the p-typical formal group law $G_{\underline{v},t}$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

ocal rigidity oblems

nown results, estacles and hope

glympse of a new

ne Lubin-Tate

Universal isomorphism p-typical formal group laws

Sketch of the steps

Parameters of $G_{\underline{v},\underline{t}}$

By the universality $G_{\underline{\nu}}$ for *p*-typical formal group laws, there exists a unique ring homomorphism

$$\eta: \mathbb{Z}_{(p)}[\underline{v}] \to \mathbb{Z}_{(p)}[\underline{v},\underline{t}]$$

such that

$$\eta_* G_{\underline{v}} = G_{\underline{v},\underline{t}}.$$

The elements

$$\overline{v}_n = \overline{v}_n(\underline{v},\underline{t}) \in \mathbb{Z}_{(p)}[\underline{v},\underline{t}], \quad n \in \mathbb{N}_{\geq 1}$$

are the *parameters* of the *p*-typical formal group law $G_{\underline{v},\underline{t}}$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

oblems

ostacies and nope

pproach

he Lubin-Tate tion

Universal isomorphism *p*-typical formal group laws

Sketch of the steps

A known recursive formula for the parameters of $G_{v,t}$

$$\overline{v}_n = v_n + p t_n + \sum_{\substack{i+j=n\\i,j\geq 1}} \left(v_j t_i^{p^j} - t_i \overline{v}_j^{p^i} \right) \\
+ \sum_{j=1}^{n-1} a_{n-j}(\underline{v}) \cdot \left(v_j^{p^{n-j}} - \overline{v}_j^{p^{n-j}} \right) \\
+ \sum_{k=2}^{n-1} a_{n-k}(\underline{v}) \cdot \sum_{\substack{i+j=k\\i \neq j}} \left(v_j^{p^{n-k}} t_i^{p^{n-i}} - t_i^{p^{n-k}} \overline{v}_j^{p^{n-j}} \right)$$

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

A known recursive formula for the parameters of $G_{v,t}$

$$\overline{v}_n = v_n + p t_n + \sum_{\substack{i+j=n\\i,j\geq 1}} (v_j t_i^{p^j} - t_i \overline{v}_j^{p^i})
+ \sum_{j=1}^{n-1} a_{n-j}(\underline{v}) \cdot \left(v_j^{p^{n-j}} - \overline{v}_j^{p^{n-j}} \right)
+ \sum_{k=2}^{n-1} a_{n-k}(\underline{v}) \cdot \sum_{\substack{i+j=k\\i+j=k}} \left(v_j^{p^{n-k}} t_i^{p^{n-i}} - t_i^{p^{n-k}} \overline{v}_j^{p^{n-j}} \right)$$

(This formula contains high power of p in the denominators. Consequently it is not very useful for our purpose.)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical formal group laws

Sketch of the steps

An *integral* recursion formula for $\bar{v}_n(\underline{v},\underline{t})$

(useful for computing the Lubin-Tate action)

$$\begin{split} \bar{v}_n &= v_n + p \, t_n - \sum_{j=1}^{n-1} t_j \cdot \bar{v}_{n-j}^{p^j} + \\ &+ \sum_{l=1}^{n-1} v_l \sum_{k=1}^{n-l-1} \frac{1}{p} \cdot a_{n-k-l}(\underline{v})^{(p^l)} \cdot \left\{ (\bar{v}_k^{(p^l)})^{p^{n-l-k}} - (\bar{v}_k^{p^l})^{p^{n-l-k}} \right. \\ &+ \sum_{\substack{i+j=k \\ i,j \geq 1}} t_j^{p^{n-k}} \left[(\bar{v}_i^{(p^l)})^{p^{n-l-i}} - (\bar{v}_i^{p^l})^{p^{n-l-i}} \right] \right\} \\ &+ \sum_{l=1}^{n-1} v_l \cdot \left\{ \frac{1}{p} (\bar{v}_{n-l}^{(p^l)} - \bar{v}_{n-l}^{p^l}) + \sum_{\substack{i+j=n-l \\ i,j \geq 1}} t_j^{p^l} \cdot \frac{1}{p} \cdot \left[(\bar{v}_i^{(p^l)})^{p^j} - (\bar{v}_i^{p^l})^{p^j} \right] \right\} \end{split}$$

for every $n \ge 1$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

roblems

A glympse of a new

The Lubin-Tate

Universal isomorphism *p*-typical formal group laws

Sketch of the steps

Given an element $\gamma \in Aut(G_0)$, construct

- a *p*-typical one-dimensional formal group $law F = F_{\gamma}$ over R whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma.$$

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}$$
, $G_{\overline{R}} = G_R \otimes_R \overline{R}$.

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

Local rigidity oroblems

Known results, obstacles and hope

proach

he Lubin-Tate ction

Universal isomorphism p-typical formal

Sketch of the steps

Given an element $\gamma \in Aut(G_0)$, construct

- a *p*-typical one-dimensional formal group $law F = F_{\gamma}$ over R whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma.$$

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}$$
, $G_{\overline{R}} = G_R \otimes_R \overline{R}$.

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

ocal rigidity roblems

obstacles and hope

A glympse of a new approach

he Lubin-Tate ction

Universal isomorphis

Sketch of the steps

Given an element $\gamma \in Aut(G_0)$, construct

- **a** p-typical one-dimensional formal group $law F = F_{\gamma}$ over R whose closed fiber is equal to G_0 , and
- an isomorphism

$$\overline{\psi} = \overline{\psi}_{\gamma} : F_{\overline{R}} \to G_{\overline{R}}$$

over $\overline{R} := R/pR = \overline{\mathbb{F}}_p[[w_1, \dots, w_{h-1}]]$ whose restriction to the closed fibers is

$$(\psi|_{G_0}:G_0\to G_0)=\gamma.$$

Here
$$F_{\overline{R}} = F \otimes_R \overline{R}$$
, $G_{\overline{R}} = G_R \otimes_R \overline{R}$.

Note that both the formal group law F over R and the isomorphism ψ over \overline{R} depends on the given element $\gamma \in \operatorname{Aut}(G_0)$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

ne Lubin-Tate tion

Universal isomorphi:

roup laws

Sketch of the steps

The formal group law F_c , $c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

 $(w_h=1 \text{ by convention}).$

Lei

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over $\overline{R}!$) with $\psi_c|_{G_0} = [c]$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

oblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate ction

Universal somorphism o-typical formal

Sketch of the steps

The formal group law F_c , $c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

 $(w_h=1 \text{ by convention}).$

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over $\overline{R}!$) with $\psi_c|_{G_0} = [c]$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

oblems

Enown results, bstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal somorphism p-typical formal

Sketch of the steps

The formal group law F_c , $c \in W(\mathbb{F}_{p^h})^{\times}$

For $\gamma = [c] \in W(\mathbb{F}_{p^h})^{\times} = \operatorname{Aut}(G_1)$, we can take F_c to be the formal group over R whose logarithm $g_c(x)$ satisfies

$$f_c(x) = x + \sum_{i=1}^h \frac{c^{-1+\sigma^i} \cdot w_i}{p} \cdot f_c^{(\sigma^i)}(x^{p^i})$$

 $(w_h=1 \text{ by convention}).$

Let

$$\psi_c(x) = \log_{G_R}^{-1} \circ (c \cdot f_c)$$

We have $\psi_c(x) \in R[[x]]$ and ψ_c defines an isomorphism from F_c to G_R over R (not just over $\overline{R}!$) with $\psi_c|_{G_0} = [c]$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

mmetry

The global rigidity problem

roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate ction

Jniversal somorphism -typical forma

Sketch of the steps

Step 2

Compute the parameters

$$(u_i = u_i(w_1, \ldots, w_{h-1}))_{i \in \mathbb{N}_{\geq 1}}$$

for the *p*-typical group law $F = F_{\gamma}$ over R.

The above condition means that

$$\xi_* G_{\tilde{v}} = F,$$

where

$$\xi = \xi_{\gamma} : \tilde{R} \to R$$

is the ring homomorphism such that

$$\xi(v_i) = u_i \quad \forall i \ge 1$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke ymmetry

The global rigidity problem

oblems

Enown results, bstacles and hope

proach

he Lubin-Tate ction

Iniversal somorphism -typical forma

Sketch of the steps

Step 2

Compute the parameters

$$(u_i = u_i(w_1, \ldots, w_{h-1}))_{i \in \mathbb{N}_{\geq 1}}$$

for the *p*-typical group law $F = F_{\gamma}$ over R.

The above condition means that

$$\xi_*G_{\tilde{v}}=F,$$

where

$$\xi = \xi_{\gamma} : \tilde{R} \to R$$

is the ring homomorphism such that

$$\xi(v_i) = u_i \quad \forall i \geq 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new

The Lubin-Tate

Universal isomorphis

p-typical form: group laws

Sketch of the steps

Parameters for F_c , $c \in W(\mathbb{F}_{p^h})^{\times}$

In the case when $\gamma \in \operatorname{Aut}(G_0)$ lifts to an element [c] with $c \in W(\mathbb{F}_{p^h})^{\times} \simeq \operatorname{Aut}(G_1)$, we have the following integral recursive formula for the parameters $u_n = u_n(c; \underline{w})$.

$$\begin{split} u_n(c;\underline{w}) &= c^{-1+\sigma^n} w_n \\ &+ \sum_{j=1}^{n-1} c^{-1+\sigma^j} \cdot \frac{1}{p} \left[u_{n-j}(c;\underline{w})^{(p^j)} - u_{n-j}(c;\underline{w})^{p^j} \right] \cdot w_j \\ &+ \sum_{j=1}^{n-1} \sum_{i=1}^{n-j-1} \frac{1}{p} a_{n-i-j}(\underline{w})^{(p^j)} \cdot c^{-1+\sigma^{n-i}} \cdot \\ & \left[(u_i(c;\underline{w})^{(p^j)})^{p^{n-i-j}} - (u_i(c;\underline{w})^{p^j})^{p^n-i-j} \right] \cdot w_j \end{split}$$

where $w_h = 1$, $w_m = 0 \ \forall m \ge h+1$ by convention.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Heck symmetry

The global rigidity problem

ocal rigidity oblems

obstacles and hope

A glympse of a new

A glympse of a new approach

The Lubin-Tate ction

Universal isomorphi p-typical f

Sketch of the steps

Parameters for F_c , continued

Remark. The above recursive formula for the parameters $u_n(c;\underline{w})$ can be turned into an explicit "path sum" formula for $u_n(c,\underline{w})$, with terms indexed by "paths".

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

Local rigidity

nown results, ostacles and hope

A glympse of a new

he Lubin-Tate

Universal isomorphisi

group laws

Sketch of the steps

Step 3

Find/compute the uniquely determined element

$$\tau_n \in \mathfrak{m}_R$$
, $n \in \mathbb{N}_{>1}$

and

$$\hat{u}_1 \in \mathfrak{m}_R, \dots, \hat{u}_{h-1} \in \mathfrak{m}_R, \hat{u}_h \in 1 + \mathfrak{m}_R$$

such that

$$\overline{v}_n(\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h, 0, 0, \dots; \underline{\tau}) = u_n \quad \forall n \ge 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

The global rigidity problem

ocal rigidity oblems

obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal

oniversal isomorphism p-typical forma group laws

Sketch of the steps

Remark. (1) The existence and uniqueness statement above is an application the implicit function theorem for an infinite dimensional space over \tilde{R} , applied to the "vector-valued" function with components \bar{v}_n in the integral recursion formula discussed before.

- (2) This step is a substitute for the operation taking the quotient of the group "changes of coordinates" in a space of formal group laws.
- (3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

bo Lubin Tota

The Lubin-Tate action

Universal isomorphism *p*-typical forma

Sketch of the steps

- (2) This step is a substitute for the operation *taking the quotient of the group "changes of coordinates"* in a space of formal group laws.
- (3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke ymmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal

p-typical formal group laws

Sketch of the steps

- (2) This step is a substitute for the operation *taking the quotient of the group "changes of coordinates"* in a space of formal group laws.
- (3) The approximate solution coming from the linear term in the τ_i variables is often good enough for our application.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate

Universal

isomorphism

p-typical formal

group laws

Sketch of the steps

A congruence formula for \overline{v}_n

The follow formula helps to explain the last remark.

$$\begin{split} \overline{v}_n &\equiv v_n - \sum_{j=1}^n t_j \cdot v_{n-j}^{p^j} \\ &+ \sum_{\substack{i,j,t,s_1,s_2,\dots,s_t \geq 1\\s_1+\dots+s_t+i+j=n}} (-1)^{t-1} t_i \cdot v_j^{p^i} \cdot v_1^{(p^{s_1}+p^{s_2}+\dots+p^{s_t}-t)/(p-1)} \\ &\cdot v_{n-s_1}^{p^{s_1}-1} \cdot v_{n-s_1-s_2}^{p^{s_2}-1} \cdots v_{n-s_1-\dots-s_t}^{p^{s_t}-1} \\ &\quad \mod (pt_a,t_a\cdot t_b)_{a,b\geq 1} \mathbb{Z}[\underline{v},\underline{t}] \end{split}$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphis *p*-typical for

Sketch of the steps

$$(1+\tau_0)^{p^n-1}\cdot\hat{u}_h=1.$$

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

$$\omega(v_i) = \hat{u}_i \quad \forall i \geq 1.$$

$$\rho(w_i) = \hat{v_i} \quad \forall i \ge 1.$$

HECKE SYMMETRY. RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Sketch of the steps

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows:

 $\exists ! \ \tau_0 \in \mathfrak{m}_R \text{ such that }$

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Lei

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \ge 1.$$

Let $\rho: R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v_i} \quad \forall i \ge 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

The Lubin-Tate

action

Universal isomorphism p-typical formal group laws

Sketch of the steps

 $\exists ! \ \tau_0 \in \mathfrak{m}_R \text{ such that }$

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \ge 1.$$

Let $\rho: R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v_i} \quad \forall i \ge 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke ymmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

The Lubin-Tate

action

Universal isomorphism p-typical formal group laws

Sketch of the steps

Step 4

Rescale $\hat{u}_1, \hat{u}_2, \dots, \hat{u}_h$ as follows:

 $\exists ! \ \tau_0 \in \mathfrak{m}_R \text{ such that }$

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \geq 1.$$

Let $\rho: R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v_i} \quad \forall i \ge 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke symmetry

The global rigidity problem

ocal rigidity roblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical for

Sketch of the steps

 $\exists ! \ \tau_0 \in \mathfrak{m}_R \text{ such that }$

$$(1+\tau_0)^{p^h-1}\cdot\hat{u}_h=1.$$

Let

$$\hat{v}_i := (1 + \tau_0)^{p^i - 1} \cdot \hat{u}_i \text{ for } i = 1, \dots, h - 1.$$

Let $\omega : \tilde{R} \to R$ be the ring homomorphism such that

$$\omega(v_i) = \hat{u}_i \quad \forall i \geq 1.$$

Let $\rho : R \to R$ be the $W(\overline{\mathbb{F}}_p)$ -linear ring homomorphism such that

$$\rho(w_i) = \hat{v_i} \quad \forall i \geq 1.$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Hecke ymmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Universal isomorphism p-typical for

Sketch of the steps

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{\underline{\nu},\underline{t}}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\hat{u},\tau} : F \to \omega_* G_v$$

with
$$\alpha|_{G_0} = \mathrm{Id}_{G_0}$$
.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta:\omega_*G_{\underline{\nu}}\to\rho_*G_R$$

with
$$\beta|_{G_0} = \mathrm{Id}_{G_0}$$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ymmetry

problem

Local rigidity problems

Known results, obstacles and hope

pproacn

he Lubin-Tate ction

Universal isomorphism p-typical formal

Sketch of the steps

The meaning of Steps 3 and 4

The universal strict isomorphism $\alpha_{\underline{\nu},\underline{t}}$ specializes to a strict isomorphism

$$\alpha = \alpha_{\hat{u},\underline{\tau}} : F \to \omega_* G_{\underline{v}}$$

with
$$\alpha|_{G_0} = \mathrm{Id}_{G_0}$$
.

The rescaling in step 4 gives an isomorphism (not necessarily a strict isomorphism)

$$\beta:\omega_*G_{\underline{\nu}}\to\rho_*G_R$$

with
$$\beta|_{G_0} = \mathrm{Id}_{G_0}$$
.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ncal Hecke mmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

ne Lubin-Tate tion

Universal isomorphism

roup laws

Sketch of the steps

Conclusion

Combined with $\overline{\Psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_* G_{\overline{R}} \to G_{\overline{R}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in Aut(G_0)$.

(Here
$$\overline{\alpha} = \alpha \otimes_R \overline{R}$$
 and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in \operatorname{Aut}(G_0)$ operates on the equi-characteristic deformation space $\operatorname{Spf}(\overline{R})$ of G_0 via the ring automorphism ρ .

(Notice that $\overline{\psi}$, α and β all depend on γ .)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ncal Hecke mmetry

The global rigidity problem

ocal rigidity

Known results,

A glympse of a new approach

The Lubin-Tate

Universal isomorphism p-typical forma

Sketch of the steps

Conclusion

Combined with $\overline{\Psi}$, we obtain an isomorphism

$$\overline{\psi} \circ \overline{\alpha}^{-1} \circ \overline{\beta}^{-1} : \overline{\rho}_* G_{\overline{R}} \to G_{\overline{R}}$$

whose restriction to the closed fiber G_0 is equal to the given element $\gamma \in Aut(G_0)$.

(Here
$$\overline{\alpha} = \alpha \otimes_R \overline{R}$$
 and $\overline{\beta} = \beta \otimes_R \overline{R}$.)

Conclusion. The given element $\gamma \in \operatorname{Aut}(G_0)$ operates on the equi-characteristic deformation space $\operatorname{Spf}(\overline{R})$ of G_0 via the ring automorphism ρ .

(Notice that $\overline{\psi}$, α and β all depend on γ .)

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

ocal Hecke mmetry

The global rigidity problem

ocal rigidity oblems

Known results, obstacles and hope

A glympse of a new approach

The Lubin-Tate action

Jniversal somorphism -typical form

Sketch of the steps

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathcal{M}_{3\overline{\mathbb{F}}_p} = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]])$ be an irreducible closed formal subscheme of \mathcal{M}_3 over $\overline{\mathbb{F}}_p$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}}_p[[w_1, w_2]]$. If Z is stable under the action of an open subgroup of $W(\mathbb{F}_{p^3})^{\times}$, then $Z = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]]/(w_1))$

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

symmetry

The global rigidity problem

Local rigidity problems

Known results, obstacles and hope

A glympse of a new approach

he Lubin-Tate

Iniversal

Universal somorphism p-typical form

Sketch of the steps

Local rigidity for the Lubin-Tate moduli space: the first non-trivial case

Proposition. Let $Z \subset \mathcal{M}_{3\overline{\mathbb{F}}_p} = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]])$ be an irreducible closed formal subscheme of \mathcal{M}_3 over $\overline{\mathbb{F}}_p$ corresponding to a hight one prime ideal of $\overline{\mathbb{F}}_p[[w_1, w_2]]$. If Z is stable under the action of an open subgroup of $W(\mathbb{F}_{p^3})^{\times}$, then $Z = \operatorname{Spf}(\overline{\mathbb{F}}_p[[w_1, w_2]]/(w_1))$.

HECKE SYMMETRY, RIGIDITY AND THE LUBIN-TATE ACTION

Ching-Li Chai

Hecke symmetry on PEL moduli varieties

Local Heck symmetry

The global rigidity problem

ocal rigidity

Known results,

A glympse of a new approach

he Lubin-Tate

action

Universal isomorphism n-typical for

Sketch of the steps