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§1. Moduli of Elliptic curves

§1.1. Def. An elliptic curve over C is the quotient of a

one dimensional vector space V over C by a lattice Γ
in V .

Concretely, we can take V = C, and a lattice Γ in C
has the form

Γ = Z ω1 + Z ω2

ω1, ω2 ∈ C, linearly independent over R.

The quotient E(Γ) = C/Γ of C by a lattice Γ is a

compact one-dimensional complex manifold, and is

also an abelian group.
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§1.2. The Weistrass ℘-function

℘Γ(u) =
1
u2

+
∑

m,n∈Z
(m,n) 6=(0,0)[

1
(u−mω1 − nω2)2

− 1
(mω1 + nω2)2

]
is a meromorphic function on E(Γ).

Define complex numbers g2(Γ), g3(Γ) by Eisenstein

series

g2(Γ) = 60
∑

m,n∈Z
(m,n) 6=(0,0)

1
(mω1 + nω2)4

g3(Γ) = 140
∑

m,n∈Z
(m,n) 6=(0,0)

1
(mω1 + nω2)6
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Let xΓ = ℘Γ(u), yΓ = d
du℘Γ(u). Then the two

meromorphic functions xΓ , yΓ on E(Γ) satisfy the

polynomial equation

y2
Γ

= 4x3
Γ
− g2(Γ)xΓ − g3(Γ)

This equation tells us that the pair (xΓ , yΓ) defines a

map ı from the elliptic curve E(Γ) to algebraic curve in

P2 cut out by the cubic homogeneous equation

Y 2Z = 4X3 − g2(Γ)XZ2 − g3(Γ)Z3 ;

the map ı turns out to be an isomorphism. (The affine

equation

y2 = 4x3 − g2(Γ)x− g3(Γ)

with x = X
Z , y = Y

Z describes E(Γ) r {0}.)
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§1.3 Moduli of elliptic curves

Two elliptic curves E1, E2 attached to lattices Γ1,Γ2

in C are isomorphic iff they are homothetic, i.e.

∃λ ∈ C× s.t. λ · Γ1 = Γ2

To parametrize lattices, for Γ = Z ω1 + Z ω2, write

(ω1, ω2) = λ(τ, 1), τ ∈ C− R =: X±

The group GL2(Z) operates on the right of X± by

(τ, 1) ·

a c

b d

 = (cτ + d) · (aτ + b

cτ + d
, 1)

a, b, c, d ∈ Z, ad− bd = ±1.
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Elliptic curves corresponding to lattices Z τi + Z,

i = 1, 2 are isomorphic iff τ1 · γ = τ2 for some

γ ∈ GL2(Z).

Algebraically, one can attach to every elliptic curve E a

complex number j(E), such that E1 and E2 are

isomorphic iff j(E1) = j(E2). For an elliptic curve E

given by a Weistrass equation

y2 = 4x3 − g2 x− g3, ∆ := g3
2 − 27g2

3 6= 0,

the j-invariant is j(E) = 1728
g3
2

g3
2 − 27g2

3

For an elliptic curve defined by

y2 = x(1− x)(λ− x), λ 6= 0, 1,

the j-invariant is j(λ) = 28 (1−λ(1−λ))3

λ2 (1−λ)2
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§1.4 Hecke symmetries

(1) A Hecke correspondence on X±/ GL2(Z) is

defined by a diagram

X±/ GL2(Z) π←− X± γ−→ X±/ GL2(Z)

with γ ∈ GL2(Z).

(2) The Hecke orbit of an element π(x) of

X±/ GL2(Z) is the countable subset

π(x ·GL2(Q)) of X±/GL2(Z).

(3) Geometrically, the Hecke orbit of the modular point

[E] is the subset consisting of all [E1] such that there

exists a surjective holomorphic homomorphism from

E → E1 (called an isogeny.)
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(4) Another way to look at Hecke orbits:

Let G(n) be the set of all 2× 2 matrices in GL2(Z)
which are congruent to Id2 modulo n. We have a

projective system

X̃ :=
(
X±/G(n)

)
n∈N≥1

of modular curves, with the indexing set N≥1 ordered

by by divisibility. We have a large group GL2(Af )
operating on the tower X̃ , and X̃/ GL2(Ẑ) is

isomorphic to the j-line X/GL2(Z). (Here

Ẑ := lim←−(Z/nZ), Af = Ẑ⊗Z Q.)

The Hecke correspondences on X̃/ GL2(Ẑ) are

induced by the action of GL2(Af ) on X̃ .
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§2. Moduli of abelian varieties

§2.1. Def. A complex torus is a compact complex

group variety of the form V/Γ, where V is a finite

dimensional complex vector space and Γ is a

cocompact discrete subgroup of Γ;

rank(Γ) = 2 dimC(V ).

Def. A complex torus V/Γ is an abelian variety if it can

be holomorphically embedded in PN ; this happens iff

there exists a definite hermitian form on V whose

imaginary part induces a Z-valued symplectic form on

Γ. Such a form, called a polarization, is principal iff the

discriminant of the symplectic form is 1.
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§2.2. A lattice in Cg which admits a principal

polarization can be written as

C · (Ω · Zg + Zg)

for some C ∈ GLg(C) and some symmetric

Ω ∈ Mg(C) with definite imaginary part. The set X±
g

of all such period matrices Ω’s is called the Siegel

upper-and-lower half-space.

The group GSp2g(Q) operates on the right of X±
g by:

Ω ·

A C

B D

 = (Ω C + D)−1 (Ω A + B)

Here GSp2g denotes the group of 2g × 2g matrices

which preserve the standard symplectic pairing up to

scalars.
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§2.3. The isomorphism classes of g-dimensional

abelian principally polarized abelian varieties is

parametrized by

X±
g / GSp2g(Z)

Just as in the elliptic curve case, we have a projective

system

X̃ =
(
X±

g /G(n)
)
n∈N≥1

Here G(n) consists of elements of GSp2g(Z) which

are congruent to Id2g modulo n. Again the group

GSp2g(Af ) operates on the tower X̃ . This action

induces Hecke correspondences on X±
g / GSp2g(Z).

The Hecke orbit of a point [A] is the countable subset

consisting of all principally polarized abelian varieties

which are symplectically isogenous to A.
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§3. Modular varieties with Hecke symmetries

§3.1. Generalizing §2, consider (a special class of)

Shimura varieties
(
X̃ = (Xn)n∈N≥1

, G
)

, where

G is a connected reductive group over Q,

X̃ is a moduli space of abelian varieties with

prescribed symmetries (of a fixed type)

The group G is the symmetry group of the “prescribed

symmetries”, giving the “type” of the prescribed

symmetries.
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§3.2. Hecke symmetries on Shimura varieties

The group G(Af ) operates on the tower X̃ :

x G(Af )

X̃ = (· · · → Xn → · · ·X0 = X︸ ︷︷ ︸
G(Z/nZ)

)

On the “bottom level” X = X0, the symmetries from

G(Af ) induces Hecke correspondences; these

correspondences are parametrized by

G(Ẑ)\G(Af )/G(Ẑ).

Remark: For a fixed finite level Xn → X0, the symmetry

subgroup preserving the covering map is G(Z/nZ).
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§3.3. Modular varieties in characteristic p

Abelian varieties can be defined in purely algebraic

terms (Weil), so are the modular varieties classifying

them. In particular one can define these modular

varieties over a field k of characteristic p > 0.

In the case of elliptic curves, if p 6= 2, 3, then every

elliptic curve is defined by a Weistrass equation

y2 = 4x3 − g2 x− g3, ∆ := g3
2 − 27g2

3 6= 0,

the moduli is given by the j-invariant; the j-invariant is

j(E) = 1728
g3
2

g3
2 − 27g2

3
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The diagram for Hecke symmetries in characteristic p is

x G(A(p)
f )

X̃ = (· · · → Xn → · · ·X0 = X︸ ︷︷ ︸
G(Z/nZ)

)

The indices n are relatively prime to p, and the Hecke

correspondences come from prime-to-p isogenies

between abelian varieties.
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§4. The Hecke orbit problem

Problem Characterize the Zariski closure
of Hecke orbits in a modular variety X .

– The closed subsets for the Zariski topology of X

consists of algebraic subvarieties of X .

– Each Hecke orbit is a countable subset of X .
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§5. Solution in characteristic 0.

Prop In characteristic 0, every Hecke orbit is dense in

the modular variety X .

Proof in the Siegel case: May assume that the base

field is C.

Claim: Every Hecke orbit is dense for the finer metric

topology on X .

The Hecke symmetries come from the action of the

group GSp2g(Q) on X±
g . Conclude by

•GSp2g(Q) is dense in GSp2g(R)

•GSp2g(R) operates transitively on X±
g
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§6. Fine structures in char. p

The base field k has char. p from now on.

§6.1. Elliptic curves have Hasse invariant ; explicitly, for

E : y2 = x(1− x)(λ− x), p 6= 2

j(λ) = 28 (1− λ(1− λ))3

λ2 (1− λ)2
, then

A(λ) = (−1)r
r∑

i=0

(
r

i

)2

λi , r =
1
2
(p− 1)

gives the Hasse invariant of E.

Def. The elliptic curve E is supersingular if its Hasse

invariant vanishes, otherwise E is ordinary ; E is

ordinary iff E has p points which are killed by p.

The (finite) set of supersingular elliptic curves is stable

Hecke correspondences. So the Hecke orbit of [E] is

dense iff E is ordinary.
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§6.2 From now on X = Ag denotes the Siegel

modular variety in char. p; it classifies g-dimensional

principally polarized abelian varieties.

Source of fine structure on X (or X̃): Every family of

abelian varieties A→ S gives rise to a Barsotti-Tate

group

A[p∞]S := lim−→
n

A[pn]S ,

an inductive system of finite locally free group schemes

A[pn] := Ker([pn] : A→ A); the height of A[p∞]
is 2g = 2dim(A/S). The Frobenius

FA : A→ A(p) and Verschiebung VA : A(p) → A

pass to A[p∞].
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§6.3. The slope stratification

The slopes of a Barsotti-Tate group A[p∞] over a field

k/Fp is a sequence 2g of rational numbers

λ = (λj) , 0 ≤ λ1 ≤ · · · ≤ λ2g ≤ 1,

such that λj + λ2g+1−j = 1. The denominator of

each λj divides its multiplicity. The slopes are defined

using divisibility properties of iterations of the

Frobenius.

The slope sequence, a discrete invariant, defines a

stratification

X =
∐
λ

Xλ

The Zariski closure of each stratum Xα is equal to a

union of (smaller) strata.
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(a)A1 is the union of two strata.

(b) The open dense stratum ofAg corresponds to

ordinary abelian varieties, with slopes

(0, . . . , 0, 1, . . . , 1). The minimal stratum ofAg

corresponds to supersingular abelian varieties, with

slopes (1
2 , . . . , 1

2), and has dimension bg2/4c
(Li-Oort).

§6.4. Ekedahl–Oort stratification

The isomorphism type A[p] of the p-torsion subgroup

of a principally polarized abelian variety A, together

with the Weil pairing on it, turns out to be a discrete

invariant and gives rise to a stratification of X .
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§7. Foliation and a conjecture of Oort

§7.1 Replacing the discrete invariants (such as

slopes) of the Barsotti-Tate groups by their

isomorphism types , one gets a much finer

decomposition of the modular variety X = Ag,

introduced by Oort. One can also define the foliation

structure for more general modular varieties.

Def. The locus of X with a fixed isomorphism type of

(A[p∞] + polarization) is called a leaf.

• Each leaf is a locally closed subset of X , smooth

over Fp.

• (With a one exception) there are infinitely many

leaves on M . For instance the leaf containing a

supersingular point inAg is finite.

• The dense open slope stratum of X is a leaf. For

instance if there exists an ordinary fiber Ax, then the

ordinary locus in X is a leaf.
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§7.2. Characterize leaves by Hecke symmetries

Clearly the foliation structure of M is stable under all

prime-to-p Hecke correspondences. A recent

conjecture of Oort predicts that the leaves are

determined by the Hecke symmetries.

Conj . (HO). The foliation structure is

characterized by the prime-to-p Hecke

symmetries: For each point x ∈ X , the prim-to-p

Hecke orbit of x is dense in the leaf containing x.

Note: Each Hecke orbit is a countable subset of X .
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§8. Hecke orbits of ordinary points

The first piece of evidence supporting Conj. (HO) is the

case of the dense open leaf in X .

Thm . Conj. (HO) holds for the ordinary locus ofAg .

Every ordinary symplectic prime-to-p isogeny class is

dense inAg .

Rmk : The same holds for modular varieties of

PEL-type C (CLC). But the density of Hecke orbits on

the dense open leaf has not been established for all

PEL-type modular varieties.
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§9. Canonical coordinates for leaves.

Thm . (Serre-Tate) The formal completion of any closed

point of the ordinary locus of X has a natural structure

as a formal torus over the base field k.

This classical result generalizes to every leaf in X :

Thm . The formal completion of every leaf is the

maximal member of a finite projective system (Yα)α∈I

of smooth formal varieties, indexed by a finite partially

ordered set I . The poset I is the set of all segments of

a linearly ordered finite set S = {1, . . . , n}. Each

map

πi,j : X[a,b] → X[a+1,b] ×X[a+1,b−1]
X[a,b−1]

has a natural structure as a torsor for a p-divisible

formal group over k.
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§10. Known cases of Conj. (HO):

§10.1. Examples

(1)Ag for g = 1, 2, 3 (with Oort)

(2) The HB varieties (work in progress with C.-F. Yu).

Write F ⊗Q Qp = ⊕i Fpi ,

Ax[p∞] = ⊕Ax[p∞i ] =: Bi. Each Bi has two

slopes ri
gi

, si
gi

with multiplicity gi = [Fpi : Qp]. Then

the dimension of the leaf passing through x is∑
i |ri − si|.

(3) The Hecke orbit of a “very symmetric” ordinary point

of a modular variety of PEL-type is dense.

(4) PEL-type modular varieties attached to a quasi-split

U(n, 1).
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§10.2. Local Hecke orbits

The following result is a local version of the Hecke orbit

problem.

Thm . Let k be an algebraically field of char. p > 0. Let

X be a finite dimensional p-divisible smooth formal

group over k. Let E = End(X)⊗Zp Qp. Let G be a

connected linear algebraic group over Qp. Let

ρ : G→ E× be a homomorphism of algebraic groups

over Qp such that the trivial representation 1G is not a

subquotient of (ρ,E). Suppose that Z is a reduced

and irreducible closed formal subscheme of the

p-divisible formal group X which is closed under the

action of an open subgroup U of G(Zp). Then Z is

stable under the group law of X and hence is a

p-divisible smooth formal subgroup of X .

Rem. It is helpful to consider first the case when X is a

formal torus and G is Ĝm. We sketch a proof.
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Prop . Let X be a finite dimensional p-divisible smooth

formal group over p. Let k be an algebraically closed

field. Let R be a topologically finitely generated

complete local domain over k. In other words, R is

isomorphic to a quotient k[[x1, . . . , xn]]/P , where P

is a prime ideal of the power series ring

k[[x1, . . . , xn]]. Then there exists an injective local

homomorphism ι : R ↪→ k[[y1, . . . , yd]] of complete

local k-algebras, where d = dim(R).

Prop . Let k be a field of characteristic p > 0. Let

q = pr be a positive power of p, r ∈ N>0. Let

F (x1, . . . , xm) ∈ k[x1, . . . , xm] be a polynomial

with coefficients in k. Suppose that we are given

elements c1, . . . , cm in k and a natural number

n0 ∈ N such that F (cqn

1 , . . . , cqn

m ) = 0 in k for all

n ≥ n0, n ∈ N. Then F (cqn

1 , . . . , cqn

m ) = 0 for all

n ∈ N; in particular F (c1, . . . , cm) = 0.
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Prop . Let k be a field of characteristic p > 0. Let

f(u,v) ∈ k[[u,v]], u = (u1, . . . , ua),

v = (v1, . . . , vb), be a formal power series in the

variables u1, . . . , ua, v1, . . . , vb with coefficients in k.

Let x = (x1, . . . , xm), y = (y1, . . . , ym) be two

new sets of variables. Let

g(x) = (g1(x), . . . , ga(x)) be an a-tuple of power

series without the constant term: gi(x) ∈ (x)k[[x]]
for i = 1, . . . , a. Let h(y) = (h1(y), . . . , hb(y)),

with hj(y) ∈ (y)k[[y]] for j = 1, . . . , b. Let q = pr

be a positive power of p. Let n0 ∈ N be a natural

number, and let b′ be a natural number with

1 ≤ b′ ≤ b. Let (dn)n∈N be a sequence of natural

numbers such that limn→∞
qn

dn
= 0. Suppose we

are given power series Rj,n(v) ∈ k[[v]],
j = 1, . . . , b, n ≥ n0, such that Rj,n(v) ≡ 0
mod (v)dn for all j = 1, . . . , b and all n ≥ n0.
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For each n ≥ n0, let φj,n(v) = vqn

j + Rj,n(v) if

1 ≤ j ≤ b′, and let φj,n(v) = Rj,n(v) if

b′ + 1 ≤ j ≤ b. Let

Φn(v) = (φ1,n(v), . . . , φb,n(v)) for each n ≥ n0.

Assume that 0 = f(g(x),Φn(h(x))) =
f (g1(x), . . . , ga(x), φ1,n(h(x)), . . . , φb,n(h(x)))
in k[[x]], for all n ≥ n0. Then 0 =
f(g1(x), . . . , ga(x), h1(y), . . . , hb′(y), 0, . . . , 0)
in k[[x,y]].
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