CHARACTER SUMS, AUTOMORPHIC FORMS,
EQUIDISTRIBUTION, AND RAMANUJAN GRAPHS

PART II. EIGENVALUES OF TERRAS GRAPHS!

CHING-LI CHAI?2 AND WEN-CHING WINNIE L13

Abstract

We study two types of character sums related to Terras graphs using the method of f-adic
cohomology. These character sums also arise as traces of Frobenii of some two dimensional
linear representations of a global function field. Detailed information about these Galois repre-
sentations at ramified places are obtained from analysis of vanishing cycles. Consequently we
give a complete description of the automorphic forms of which these character sums appear as
Fourier coefficients. These character sums are shown to be equidistributed with respect to the
Sato-Tate measure.

§1. Introduction

Let F be a finite field with ¢ elements. For convenience we assume its characteristic p is odd
although similar results for p = 2 also hold. Denote by F’ a quadratic extension of F. Choosing a
nonsquare element § € F, we embed the multiplicative group of F" into G L2 (F) as the subgroup Ky

s . a
consisting of matrices ( b

bj) with a,b € F. The coset space GLy(F)/Ks may be represented by

_ y oz, X
H{(O 1>.y€F,x€]F},

which resembles the classical Poincaré upper-half plane. Let S be a Ks-double coset of GLy(IF)

the subgroup

with cardinality greater than that of K. It can be shown that S has coset representatives <g 3{),

where (x,7) runs through all F-rational points of an ellipse 22 = 6(ay + (y — 1)?) for some a € F.
Further, there are ¢ — 2 such double cosets, parametrized by the elements a in F other than 0 and
4, which we denote by Sgs.

The Terras graph X, is the Cayley graph Cay(GL2(F)/Ks, Sas/Ks). Different choices of § result
in isomorphic graphs. It is a (¢ + 1)-regular graph whose eigenvalues can be explicitly expressed in
terms of character sums of the following two types. The first type is associated to multiplicative

characters y of [F:
Aax = Z x(@),

z,yel
§(ax+(z—1)2)=y2
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while the second type is associated to regular multiplicative characters w of F’, that is, characters
which are nontrivial on the kernel of Nm:

Aaw = Z gla—2—Tr(z))w(z),

z€F’,Nm(z)=1

where Tr(z) and Nm(z) are the trace and norm of z from F’ to F, and ¢(z) is 1, 0, -1 according to
z € (F¥)%,2 =0 or z € F\ F% We remark that A\, is independent of the choice of . Using the
Riemann hypothesis for curves, one can show that the nontrivial eigenvalues have absolute value
majorized by 2,/q, hence the Terras graphs X, are Ramanujan graphs. The reader is referred to
[2], [1], and Chap 9 of [9] for more details on Terras graphs.

As in Part I, let H be the quaternion algebra over the rational function field K with the
field of constants F which is ramified only at 0 and oo, let D be the multiplicative group of H
divided by its center, and let X4 be the Ramanujan graph with vertices the double coset space
D(K)\D(Ak)/D(Kw)X for some congruence subgroup X of [], .., D(O,) and the edges inherited
from the tree structure of D(Ky)/D(OQp) at place 0. Here D(0,) is defined by a fixed maximal
order of the quaternion algebra H. The connection between Terras graphs and Ramanujan graphs
constructed by Morgenstern [11] based on D was proved in [10] as follows.

(1.1) Proposition Forb € F,b# 0,1, the Terras graph Xy4,—1ysp s a quotient of the Morgenstern
graph X, with Ky = £ [[, 24 oo D(0v), where kyp is the compact subgroup of D(Op) consisting of
all elements in D(Qyp) congruent to the identity element modulo t — b.

Therefore the eigenvalues A\y_1)/p,, and Ayp_1)/p, Of Terras graphs are among the eigenvalues
of the Hecke operator Tp at place 0 acting on automorphic forms on the double coset space Xy, .
Two questions arise naturally :

(1.2) Questions (i) Find automorphic forms on X, whose Fourier coefficients are eigenvalues of
Terras graphs.
(ii) Find the distribution of eigenvalues of Terras graphs.

(1.3) Let K be a (not necessarily rational) function field with F as its field of constants. The
purpose of this paper is to construct automorphic forms of GLy over K whose Fourier coefficients
are given by the two types of eigenvalues of Terras graphs, analogous to what we did for norm
graphs in Part I. These forms are parametrized by nonzero elements in K. We also show that the
Sato-Tate conjecture holds for these forms when the parameter is not a constant. In particular,
when K is the rational function field [F(¢), for special choices of the parameter, we compute the
associated L-functions explicitly and show that they are also L-functions attached to automorphic
forms on Xg, via Jacquet-Langlands correspondence. This answers question (i). For question (ii),
the numerical data given by Terras in [12] suggests that the normalized eigenvalues of Terras graphs
are uniformly distributed with respect to the Sato-Tate measure. We give a theoretic explanation
of this phenomenon, as a consequence of the stronger result that the relevant automorphic forms
satisfy the Sato-Tate conjecture.



Our approach is geometrical, using the theory of ¢-adic cohomology. We study character sums
of the second type in section 2 and the first type in section 3, by investigating the actions of
Gal(K®*?/K) on certain sheaves, computing vanishing cycles and local factors at bad places, and
determining the geometric monodromy group. The reformulation of the results in terms of auto-
morphic forms is given in section 4, where applications to Terras graphs are also explored.

For readers primarily interested in the aspects of automorphic forms and graph theory, §2 and
§ 3 may look overly technical. Here is an outline of how one uses informations from geometry. Once
one knows that a family of character sum comes from a rank-two smooth Qg-sheaf M of geometric
origin on an algebraic curve C' over a finite field , one deduces from Weil’s converse theorem that
the L-function attached to this family of character sum comes from an automorphic representation
m of GL(2). If the neutral component of the geometric monodromy group of M is SL(2), then
the automorphic representation 7 is cuspidal, and the eigenvalues of Hecke operators are equidis-
tributed according to the Sato-Tate law. The weight information about M gives estimates of Hecke
eigenvalues at unramified places. If one knows that there are at least two ramified places where
the local components of 7 are either special or supercuspidal, then the automorphic representation
7 can be obtain from from an automorphic representation of a quaternion division algebra over
the function field of C' via the Jacquet-Langlands correspondence. Our calculation of the vanishing
cycles in §§2—-3 provides detailed information about the local Galois representations at the ramified
places, which are local Langlands parameters of the ramified components of w. Readers who are
more geometrically inclined may regard §§2-3 as examples in the theory of ¢-adic cohomology whose
singularities are explicitly computable.

§2. A family of character sums of the second type

The goal of this section is to study the family of exponential sums of the second type, also known
as “Soto-Andrade type” in the literature,

SApew =Y e(Tr(u)+b)w(u),
ueU(F)

where b is an element of F, U(F) is the norm-one subgroup of the quadratic extension F’ of F, and
w (resp. ¢) is a character of U(F) (resp. F*).

(2.1) In this section, we follow the notations of [7] closely.

e Let IF be a finite field with ¢ elements, where ¢ is a power of an odd prime number p. Let F’ be a
quadratic extension field of F.

o Let /X = Resp/ /rGpm (resp. I = Resp /gG,) be the Weil restriction of scalars of G,, (resp. G,) for
the extension F//F. For any F-algebra R, we have F”*(R) = (I @ R)™ and F'(R) = F' @ R. Let
Nm : F"* — G,, and Tr : I’ — G, be the (F’ ®r R/R)-norm and the (F’ @ R/R)-trace respectively.

e Denote by U the kernel of Nm : F’* — G,,; it is a one-dimensional torus over F such that for every

F-algebra R, U(R) consists of all elements u € (F' ®p R)* with Nm(u) = 1. Especially U(F) is the
norm-one subgroup of F’.

e Let w: U(F) — Q; " be a character of U(F), and let € : F* — Q¢” be a character of F*.



e Let £, be the smooth rank-one Q-sheaf over U, given by the push-out of the Lang torsor Id - Fr(f1 :
U — U by w. For every closed point x of U, the geometric Frobenius Fr, acts on the geometric generic
fiber L, 5 via the scalar w(Nmg(,)/r v ()).

e Let £. be the smooth rank-one Qg-sheaf on G,,, obtained from the Lang torsor construction, using the
character € of F* = G,,(FF).

e Let £ be the composition of Nmp /p g, : F"* — F* with e : F* — @X. Let @ be the composition of
X

Nmp /5 ¢ : U(F') — U(F) with w: U(F) — Q.

e Denote by Y the scheme U XgspecF Al[ﬁ], where ¢ is the regular function on U Xgpecr A which

corresponds to the projection pry : U XgpecF Al — AL
e Denote by L, (1y 44 the pull-back of L. by Tr+t: Y — Gy,

e Denote by F = F., the smooth rank-one Q-sheaf L(1r 44) ® priLy, on Y. For every closed point
x of Y, the geometric Frobenius Fr, acts on the geometric generic fiber F|; of F. . via the scalar
& (Nmp(y) /7.6, (Tr(u) + b)) -w (Nmy(y)/r, (1)) , where (u, b) is the tautological point of Y (F(z)) given
by z, and Tr(u) € G4(F(z)) is the image of u under Tr : U — G,.

e Denote by 7 : Y — A! the composition of the inclusion ¥ < U x A! and the projection U x Al — Al

The theory of ¢-adic cohomology yields the relative cohomology sheaves with compact support
RimF on A!; the alternating sum of the trace of the action of the geometric Frobenii of a closed
point of A! on these cohomology sheaves is a character sum of Soto-Andrade type. The following
properties on sheaves are immediate from the definition.

(2.1.1) Lemma (i) The sheaf F.-1 -1 is naturally isomorphic to the dual of F.

(ii) The pull-back and the push-forward of the the sheaf F., under the involution u — u™1 of
U are both naturally isomorphic to F, 1.

In the rest of this section we will analyze the sheaves R'mF on A', and will obtain information
on the action of the decomposition group at points where the sheaf RimF on A! is ramified. These
information are sufficient to determine local factors of the L-function attached to F at the ramified
points of R'mF on Al

(2.2) Since the torus U splits over F/, it is convenient to extend the base field from F to F'.
The scheme U Xgpecr SpecF’ is isomorphic to G,, = SpecF’ [2,271]. The regular function z on
U Xspecr SpecF’ is the character of U which induces the identity when restricted to U(F) C F'™.
Moreover we have
1

~ 1
Y X SpecF SpecIF' =G X SpecF’ A [m

1
=G, % AN ———
] m 7 Speck [z2+tz+1] ’

since z is an invertible function on Y xgpecr Spec F.

We identify U Xgpecr SpecF’ with Gy, over F/ using the regular function z, and consequently
we identify @ with the character

O (F -Q, 2o o) =w@/m(x)

on (F)*, where 7 denotes the non-trivial element of Gal(F’/F).



Over Yy = SpecF'[z, 271, ¢, (2* + tz + 1)7!], the sheaf F becomes
Li(otz140)5(z) = Le(az144) @ Pr1Ls -

(2.3) Proposition Assume either that the character €2 of F* is not trivial, or that the character
w? of U(F) is not trivial.

(i) Ifi # 1, then RimF|p = 0.

(ii) The restriction le.’F]N_{Q’_Q} of R'mF to the open subscheme A — {2 -2} of Al is a
smooth Qq-sheaf of rank two over Al — {2, —2}.

(iii) The stalks of R'mF at a geometric point b = £2 of A' is a one-dimensional vector space over

Q.

(iv) Assume moreover that the character e of F* is not trivial. Then the smooth rank-two Q,-sheaf
R17r!]:|A1,{2,,2} is pure of weight one.

(v) The sheaf Rlﬂ'!fg’w|A1,{27,2} is naturally isomorphic to lefs’w_1|A1,{2’,2}.

(vi) If the character € of F*is non-trivial, then the dual of R17r!.7:5,w|A1,{27,2} is naturally isomor-
phic to R'mF -1 -1 |a1—{2,—2y(1). Ife has order two, then det (RIW!FE7W‘AI_{27_2}) = Qu(—1).

PROOF. This proposition is proved in [7, Thm. 1]. We reproduce the proof for the convenience of
the reader.

Some remark on the hypothesis is in order. The hypothesis on € and w means that the characters
€2 and @2 of ()X cannot be both trivial, or equivalently that the characters £ - @ and &- @' of
F’)* cannot both be trivial. Since the order of ¢ divides ¢ — 1, and the order of w divides ¢ + 1,

£ = @ if and only if £ = &1,

—~

We claim that the above hypothesis on the characters ¢, w implies that for any geometric point
b € Al, the sheaf F|Yj on Y; C Gy, C P! is ramified at both 0 and co. Consider first the point oo.
We have
]:‘YB = £€(1+g+é) X ﬁ(g.@)(z) .
Moreover £5(1+§+ZL2)
to the trivial character of (F')*, which is ruled out by our hypothesis. Similarly we conclude from

is unramified at oo. Hence F|y; is unramified at oo if and only if £- & is equal

Flvy = Le24p241) @ Le-1.0)(2)

that Fly; is unramified at 0 € P if and only if £ - @ is equal to the trivial character of (F')*,
which again is ruled out by our hypothesis. The claim is proved.

By the proper base change theorem, the first statement that RimF = 0 for i # 1 can be
checked fiber by fiber. Over the fiber Y; of a geometric point b € A', the sheaf F ly; can be
thought of as a sheaf on U xgpecw Spec F*P. The sheaf F ’yl; is ramified at the zero locus of Tr +b
in U Xgpecr Spec F*P if € is not trivial. This zero locus is finite of degree two over b, and is finite
étale of degree two over b if b # +2.



The cohomology group HY(Y;, F ly;) vanishes because Y7 is not complete. The cohomology group
HZ (Y5, Flyy) 2= (Fisz) gscom 3y (1)

vanishes because Fy; is ramified at both z =0 and z = oo.

The statement that the stalks of R!'mJF over the open subscheme A' — {2, -2} are two-
dimensional vector spaces over Qy is a consequence of Grothendieck’s Euler-Poincaré characteristic
formula. The point is that the sheaf £. on G, is tamely ramified at 0 and oo, and the sheaf £, on
U is also tamely ramified at the complement of U in the smooth projective completion of U. Hence
the sheaf F|y; is tamely ramified at the complement of Y; in the smooth projective completion of
Y;. Suppose that b is a geometric point of A' — {2, —2}. The sheaf Fly, being tamely ramified, we
have

XC(YE%}-|Y5) = XC(YEZ,QZ) = XC(U7 QE) —2=-2.

:fherefore dim@(H1 (Y3, Fly;)) = 2. This argument actually shows that for any geometric point
b € Al(FFsep),

—Xe (}/;_;a F|Yl_)) = —Xc (}/;_;a QZ)
is equal to the number of zeros of the polynomial Z2+bZ+1 in (F5°P)*, counted without multiplicity.
In particular if b = 42, then

—xe (Y, F) = 1 = dimg; H'(Y;, Fly,) -

We have proved statement (iii).

The smoothness of the Qg-sheaf R1mF on Y follows from [8, Cor. 2.1.2]: Tt suffices to verify the
smoothness after base change to F/. The scheme Y Xgpecr Spec F/| 41 {2,—2) 1s an open subscheme
of P! x (Al — {2, —2}), whose complement Z is finite étale over A! — {2, —2} of degree 4. Moreover
the sum of the Swan conductor at the “missing points” is constant (being zero) for every point b
in the base A! — {2, —2}. Therefore the theorem [8, Thm. 2.1.1] of Deligne applies.

In order to prove (iv), we may and do extend the base field from F to F’, and we identify
U Xgpecr Spec F' with Gy, as in 2.2. Let b be a geometric point over a closed point b of A — {2, —2}.
Let jp be the injection of G, [m}

that F|Y; is ramified at the zero locus of 2% + bz + 1 in Gy, and we have seen that F|Y; is ramified
at 0 and oco. Hence

=Y} into P'. The assumption that ¢ is non-trivial implies

IbFlyv, = JnFly, -
for any closed point b of Al — {2, —2}. The statement (iv) follows from [3, Thm. 3.2.3].

The statement (v) follows immediately from Lemma 2.1.1 (ii). By [4, dualité, Thm. 1.3, 2.1],
we have a perfect pairing

Rlﬂ'!fe,w X R17T1.7:€71’w71 — Rzm@ = @(—1)

induced by the cup product. When ¢ is the character of order two of F*, this pairing is isomorphic
to the determinant map for R'mF. . This proves (vi). N



We would like to compute the Swan conductor of the smooth Q-sheaf RlmF| Al_{2,—2) over
Al — {2 -2} at the “missing points” {2, —2,00} C PL. Our strategy is to compute the cohomology
of F using the “first projection” f:Y — U of Y C U XgpecF Al

(2.4) Lemma Let f:Y — U be the morphism given by the restriction of the projection U XgpecF
A' DY to the first factor U. Then R'fiF = (0) for all i > 0.

PROOF. For any point a € U, the fiber f~!(a) C Al is equal to SpecF(a) [t, m] Hence the

complement W of Y in U XgpecF P! is finite étale over U of degree 2. Moreover by the same
argument used in the proof of 2.3, the smooth Q, sheaf F is tamely ramified along the relative
Cartier divisor W C U XgpecF P!. The Euler-Poincaré characteristic formula gives

xe ((FH0)Flpap) = xe (/70).Q) =0

for any geometric point b of U. On the other hand, the smooth sheaf F]| @) 18 ramified at

the divisor W| 710 C P! of degree two, hence neither F| §-1(p) Dor its dual can be geometrically
constant. Therefore

Y (71 0) Flyagy) = H2 (S 0), Flyr ) = (0):
We conclude that )
L (71 0) Flyag) = (0)

as well since the Euler-Poincaré characteristic is equal to 0. N1

(2.5) Proposition The rank-two smooth Q;-sheaf R17T[|A1,{2’,2}.7: on A1 —{2, —2} is tamely ram-
ified at {2, 2,00} C P!

PROOF. Recall from 2.3 (iii) that the stalk of R'mF at 2 and —2 are both one-dimensional. From
the short exact sequence

0— (R'mMF) |a1_(2,-9) = R'mF — (R'mF) |(2,-0y = 0
we get
1 1 _ 1 1
Xe (A = {2, -2} peen, R F) = x (A/FSQP,R m]—") _9.
On the other hand, from the Leray spectral sequence we have

—Xe (A}Fsepn Rlﬂ'!f) = Xec (Y XSpecF SpeC Fsepj F)
= >2i(=1)"xc (U Xspeck Spec F*P, R fiF) =0

by Lemma 2.4. Therefore x. (Al — {2, =2} /pser, le]:\Al,{Z,z}) = -2

The Euler-Poincaré characteristic . (A! — {2, —2}/Fsep,R17Tg.7:|A1,{2,,2}) = —2 can also be
computed by Grothendieck’s formula, which gives

=2 = Xe (A = {2, =2} jpeer, R'mF| g1 (5 _9y)
= 2XC (Al - {2, —2}/]Fsep, QZ) - Zbé{?,—Q,oo} SWb (R17T!]:|A17{2’72})

Since x. (Al —{2, —2}/Specysep,@) = —1, the sum of the Swan conductor at 2, —2, 00 is equal to

zero, hence the Swan conductor at these three missing points are all equal to zero. We have proved
the tameness of R'mF[y1_o oy 1



(2.6) So far we have seen that G = G, , := Rlﬂ'!f|A1_{27_2} is a smooth rank-two Q-sheaf which
is tamely ramified at 2, —2,00. This sheaf corresponds to a linear representation p of the Galois
group Gal(F(P!)%P /F(P')) on a two dimensional vector space gnA_l over Qy, the geometric generic
fiber of G. We would like to understand the restriction of the representation p to a decomposition
group Dy, b = 2, —2, 00, using the theory of vanishing cycles.

We recall some standard notation about vanishing cycles. Let S be a smooth curve over a finite
field F, and let Y be a scheme of finite type over S. Let KC € D8(Y, Q) be a “constructible complex
of Qg-sheaves” on Y. Let s be a closed point of the base scheme S. Let S(s) be the henselization
of S at s, and let ns be the generic point of S(,). Let 75 = Spec(x(7s)*P) be the geometric point

lying over n,. Let S(,) be the spectrum of the normalization of S in (n;)>P. Let

jn—siyn—S:YXSm‘—)Y%:YXS (s)

be the natural open embedding, and let

is:Ys=Y xs5— Yo =

be the natural closed embedding. The complex of near-by cycles over s for K is defined to be the
object
RV, (K) :=i; Rjm;, K

in D%(Ys, Qy), endowed with the natural action of the decomposition group

Dy := Gal (k(15)*" /r(ns)) -

The complex of vanishing cycles R®4(K) over s for K is defined as the mapping cone of the natural
arrow ;K — R¥4(K), endowed with the natural action of Ds. The cohomology sheaves of RU(K)
and R®(K) are denoted by ¥¥(K) and ®*(K) respectively.

(2.7) Denote by U the projective completion of U, geometrically isomorphic to P!. Define Y to
be U X Spec F P!, which contains Y = U X Spec F Al as a dense open subscheme. Let j:Y — Y be
the natural open embedding.

Recall that F is the rank-one Q/-sheaf Lotetty ® Ly on Y. Let 7 Y=U XSpecF P! — P! be
the natural projection.

Let F be the sheaf ji.F, the sheaf F on Y extended by 0 to Y. We would like to compute the
vanishing cycle complex R®,F of F for 7, where b € {2, —2, 00} is one of the “bad points” of the
base scheme P!,

(2.8) Theorem Assume that ¢ is non-trivial, and that the order of w is not equal to two if € has
order two. Let b be either 2 or —2.

(i) The vanishing cycle complex R®y(F) is concentrated at one geometric point zo of Yy, where
zo=—14fb=2, and zo =1 if b= —2.

(ii) The i-th cohomology sheaf ®;(F), of the stalk at zo of R®y(F) is zero if i # 1, and ®}(F)s,
s one-dimensional.



(iii) Suppose that € is non-trivial and has order two, and w is not the non-trivial character of U(F)
of order two. Then the inertia group I, operates trivially on ®}(F)s,, and ®}(F)., is pure of
weight two as a module of the decomposition group Dy.

(iv) Suppose that €2 is non-trivial. Then ®}(F),, is pure of weight one as a module of the decom-
position group Dy.

PRrROOF OF (i) and (ii). The statement (i) follows from [8, Cor. 2.1.2]. It is easy to see that
&, 1(F),, = 0 and that ®)(F),, = 0. The long exact sequence

= W (Y3, 55 F) — Ho (Vg g F) — O(F)zg = B (Y5, 5F) — -
gives @ (F), = 0 for all > 2, and it reduces to the following short exact sequence
0 — H'(Y3, 5 F) — HL (Yo, juF) — ®3(F)z — 0.

By the same argument as in the proof of Proposition 2.3, essentially a Euler characteristic calcu-
lation, we see that H! (Y7, irF) = H. (Y}, F|Y;) is one dimensional. This proves the statement (ii).
Also notice that the inertia group I, operates trivially on the one-dimensional subspace H! (Y7, i%‘]_:)

PROOF OF (iv). From the proof of (i), (ii) above, we see that H.(Y3;, F|Y;) is a one-dimensional
Dy-submodule of Gj. Let j, : Y, — Y, be the canonical inclusion. Extending the base to F’, the
map j, becomes the inclusion of G, — {2z} in P!, where 2z, = 1 (resp. 2z, = —1) if b = —2 (resp.
b = 2); the sheaf F;, becomes the sheaf Lz, .y ® Ls1.5 on Gy — {2}

The assumption that €2 is nontrivial implies that & # @*!. Therefore F, is ramified at the
points 2z, 0 and oo of P'. Hence (jp)1F, = (jp)s«Fp. By Theorem 3.2.3 in [3], the action of Fr,
on H!(Y;, F;) is pure of weight one. By Deligne’s theorem on the monodromy weight filtration,
Theorem 1.8.4 of [3], we conclude that the Dy-module Gy is pure of weight one. &

To prove (iii), it suffices to show that the Dj-module H!(Y;, F|Y;) is unramified and pure of
weight zero, by Deligne’s theorem on the monodromy weight filtration [3, 1.8.4]. That the inertia
group I, operates trivially on H.(Y;, F|Y;) is obvious. As before we extend the base field to F'.
Since £? is trivial, the sheaf F|Y; on Gy, — {25} becomes the restriction to Gy, — {2} of the smooth
rank-one sheaf Lz on Gy,.

We have Hé(Gm/F/sep,Eg.a,) = (0) for i = 0,2 since Lz is ramified at 0 and co. Furthermore
Xe(Gm jprser, L2.5) = 0 by Grothendieck’s Euler-Poincaré characteristic formula. This implies that
He (G jprser, L2o) = (0) for all 4.

From the short exact sequence
0 — Leolgn—{z) — Leo — Lzolp — 0
we see that Hl(Y;, Lz0) & Lz]; as Dy-modules. This finishes the proof of Theorem 2.8. R
(2.8.1) Remark In the case (iv) of Theorem 2.8, the inertia group I, acts via a non-trivial finite
cyclic quotient fi, on ®}(F),, with (m,p) = 1. The order, m, of this cyclic group depends only

on the order of the character ¢ and is given as follows. Let n be the order of €2; write n = 2%n;,
a>0,and (2,n1) =1. Thenm=2nifa=0,m=n; =5 ifa=1and m =nif a > 2.



(2.9) Theorem Assume that p is an odd prime number. Suppose that  is the non-trivial character
of F* of order two, and w is not the non-trivial character of U(F) of order two.

(i) Suppose that b = —2. Then the decomposition group Dy operates via the unramified character
of order two Ay : Dy — g of Dy on the one-dimensional Qg-space (g|ﬁ)]b consisting of
all inertia invariants in the geometric generic fiber of G. In other words every geometric
Frobenius element Fr, operates as —1.

(ii) Suppose that b = 2. Then the one-dimensional Dy-module (Glg)™ is unramified, on which
every geometric Frobenius element Fr, € Dy, operates as —e(—1)w(—1).

(iii) The geometric monodromy group for G is equal to SL(2).

PROOF OF (i). Suppose that b = —2, and denote by z; a geometric point lying above (1,—2) €
U x AY(F) = U(F) x F This is the only point in the fiber Y; where the sheaf F is ramified. Denote
by b a geometric point lying above b.

In the proof of Theorem 2.8 (iii) we saw that there is a short exact sequence
0 — H'(Y5, Fly,) — Gls — ®4(F)z — 0.

The one-dimensional Q, space Hl(?b,?\yb) is equal to (G|y)™, the inertia invariants in the two-
dimensional Dy-module G|,. The sheaf F |7b on Y, = U is canonically isomorphic to the extension
by zero to U of the sheaf L (1 _9) ® L, on U —{1}. Let jy_g1y : U~ {1} — U and jy : U < U be
the natural inclusions. Over ', U XgpecF Spec F’ is isomorphic to Gy, and the sheaf Le(mr—2)@Lyis
isomorphic to
Lo,y @ L1y = Lerglu—q1y,

since ¢ has order two. Clearly (U—{1} — U),Lz1.5 is equal to the smooth rank-one Qs-sheaf L: 1.5
on U, which is tamely ramified at 0 and oco. By Grothendieck’s Euler-Poincaré characteristic
formula, x¢(U Xgpecr Spec F5P, Lz-1 ;) = 0, hence H.(U Xgpecr Spec F*P, L1 ;) = (0) for all 1.

From the above we know that (U — {1} — U).L (1 —2) ® Ly, is a smooth rank-one sheaf on U,
and we have a short exact sequence

0— (U—A{1} = Up(Lepre—2) ® Lo) = (U = {1} = U)u(Le(rr—2) ® L)
= (U {1} = U)«(Lomyr—2) ® Lo)u=1 — 0.

From the associated long exact sequence of cohomologies we get an isomorphism
H' (Y, Fly,) = (U = {1} = U)s(Leopmr —2) ® Lo)lu=1

of Dy-modules.

To finish (i) we have to compute the action of Dy on (U — {1} — U)«(Lo(mr—2) @ Lu)|u=1-
By definition, the geometric Frobenius element Fry as w(1) = 1 on the restriction of the smooth
rank-one sheaf £, to the point 1 € U(F), so we only need to compute the Galois action on the
restriction of (U — {1} < U)«L.(my—2) to 1 € U(F). Since ¢ is the non-trivial character of Gy, (IF)
of order two, the sheaf L. on Gy, is the push-forward of the short exact sequence

1—>u2—>Gmﬂ>Gm—>1
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by the non-trivial character of ps. Hence the action of Dy/I}, = Fqu on the one-dimensional Q-
vector space (U — {1} = U).L.(1y—2)lu=1 can be computed as follows. Pick a generator 7 of the
maximal ideal of the local ring Oy and consider the leading term a,, - 7" in expansion of the
element Tr —2 € Op,; as a power series in m; with coefficients in F. Then every Frobenius element
Fr, operates as e(ay,) - (—1)™ on the one-dimensional space above.

We still need to perform the power series expansion of Tr —2 € Oy ;. Pick an element a € F/,
a ¢ F. Let z be the standard coordinate function of Gy, = U Xgpecr SpecF'. Then the function
m=az+a’z'—a—a? € '(Oy) @ F = (G /p, OGm/F/) is a regular function on U and gives a
uniformizing element of Oy ;. Expanded as a series in the monomials of (2 — 1), the leading term
ofaz+a?z"t —a—a?is (a —a?) (z — 1). On the other hand, the leading term of the expansion
of Tr —2 in powers of (z — 1) is (z — 1)?. Hence the leading term of the expansion of Tr —2 in the

powers of 7 is (a — a9) "2 72, Since £((a — a?)?) = —1, we have proved the assertion in (i). B

PROOF OF (ii). The case b = 2 is similar to the case b = —2 before. The only difference is the power
series expansion of Tr +2. Pick an element a € F', a ¢ T as before. Then 7_; = a 2+a? 2z~ ' +a+a?is
a uniformizing element for Oy _1, and the leading term of the expansion of Tr 4-2 in the monomials
of m_1is —(a—a?)?72,. 1

PROOF OF (iii). The geometric monodromy group is contained in SL(2) by Prop. 2.3 (vi). On the
other hand, we know by [3, Cor. 1.3.9] that the neutral component of the geometric monodromy
group is semisimple, hence it is either trivial or is equal to SL(2) in the present case. According
to the theory of monodromy weight filtration in [3, §1.8], the geometric monodromy group contain
the exponential of the logarithm of N of the inertia action at b = 2 and b = —2. By (i) and (ii),
the monodromy weight filtration is non-trivial both for b = 2 and b = —2, hence the logarithm N
of the inertia action is nontrivial at b = +2 according to Deligne’s theory in [3, §1.8]. In particular
the geometric monodromy group cannot be finite. This finishes the proof of Theorem 2.9. 1

(2.9.1) Remarks (1) Suppose that ¢ has order two. From (i) and (ii) one sees that det(G) is
unramified at £2. We already know that it is tamely ramified at oo, therefore det(G) is unramified
since the tame fundamental group of Al is trivial. This means that det(G) is the pull-back from
SpecF. Then we can determine det(G) from its stalk at 2 or —2 using (i), (ii); or one use the fact
that the characteristic polynomials of Frobenii for G are real to deduce that det(G) = Q(—1). This
gives an alternative proof of the fact that det(G) is Qu(—1).

(2) If €2 is not trivial, then det(G) is ramified, hence is not equal to Qy(—1).

(2.10) Theorem Assume that € is not the trivial character of F*, that w is not the trivial
character of U(F), and that €2 and w? are not both trivial. Consider the geometric fiber Gly of
G = R17T1.7:|A1_{27_2} as a module of the decomposition group Do, at co. Then the wild inertia
group Ps acts trivially, and I operates via a finite quotient with no non-zero fized element in Glg.
As a Dog-module, G|y is a direct sum of two one-dimensional Do -submodules corresponding to two
characters of Doo; each character is ramified (tamely) and pure of weight one.

(2.11) Over I, the complement of Y Xgpecr SpecF’ in
? XSpecF Spec F/ = U XSpecF ]P’l XSpecF Spec F/

is the union of four divisors:
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e So={0} x P,

e Sy = {oo} x P!,

eV, =U x {c0},

e Dy, the Zariski closure in Y of the zero locus of Tr 4t in Y.

The Frobenius element Fr, interchanges Sy and S,. The divisors Y, and Dy, are defined over
F. The three divisors S, Dy, Y, intersect at the point yo = (0,00); the three divisors Ss, Dy, Yy
intersect at the point y, = (00, 00).

Let X — Y be the blowing-up of Y at the two points {90, %0 }. The inverse image in Z of the
union of the four divisors in Y above is the union of the following six divisors in Z.

e Fj, the exceptional divisor above g,

o F, the exceptional divisor above Yy,

]50, the strict transform of Sy,
° ]N)oo, the strict transform of So,
° ﬁh, the strict transform of .Sy,
e Z,, the strict transform of Y.

Let Z be the union of six divisors above; it is a reduced divisor with normal crossings. This
divisor has six singularities:

e 10, the intersection of f)o and Ey,

e 1, the intersection of f)h and Ej,

® 10, the intersection of Z, and Ej,

® T oo, the intersection of ]500 and F,
® T p, the intersection of f)h and F,
® T, the intersection of Z, and E

Denote by j = jyx .Y < X the open immersion of Y in X, and let F := j;F. Let 7 : X — P!
be the projection from X to the base scheme P!, and let X, be the divisor Fq U Z, U E, t}~1e

inverse image of co under 7. We would like to understand the vanishing cycle complex R®,(F)
with respect to 7.

(2.12) Theorem Assume as in the statement of 2.10 that € is not the trivial character of F*, that
w is not the trivial character of U(F), and that €2 and w? are not both trivial.

(i) The i-th cohomology sheaf ®_(F) of R®uo(F) is equal to zero for all i > 1.
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(ii) The stalk of @go(ﬁ)x is equal to zero if x € {00, 20,hs 0,0, Too,00, Loo,hs Loow ) -

iii) The sheaf P%(F)lz,{zo .0 is smooth of rank one, tamely ramified at the two points
oo v {0,1}7 oo,'u}
{20,vs Toow} with respect to Zy, — {0y, Toow} — Zy. Moreover

(Zv - {x(),va :L'oo,v} — Zv)! <¢g0<f)|zv*{l‘0’v,xoo,v}>
= (ZU - {xO,U; xoo,fu} — ZU)* (q)go(ﬁﬂzuf{xo,v,xoo,v})

The inertia group I acts on this sheaf via a one-dimensional tame character whose order is
equal to the order of €.

(iv) The sheaf @20(55)]]30_{%%1,0 nizoo} 18 smooth of rank one, tamely ramified at the three point
{Z0w, Ton, o0} with respect to Ey — {04, Ton, Too}. Moreover

(Eo — {z0,u, To,hs To,0 1)1 (‘I)go(}:)’EO—{xo,v,xo,h,a:o,o}>
= (Eo — {20, %0,n, T0,0})+ (@80(7:)’Eo—{xo,v,xo,h,zo,o}>

The inertia group I~ acts on this sheaf via a tame character whose order is equal to the order
~_1 ~
of €% - .

(v) The sheaf @go(fﬂ];m,{%w’%o hiZso.ce} 18 Smooth of rank one, tamely ramified at the three
POINES {T o015 Too by Too,co} With respect t0 Eog — {Zoo v, Too by Too,c t- Moreover
(Boe — {05 T Toc00 )t (P () e (e}
= (EOO - {xOO,U7xOO7h’ mO0,00})* ((I)(C))O(ﬁ)|Eoo—{37oc,vvxoo,h7xoo,oo}>

The inertia group I~ acts on this sheaf via a tame character whose order is equal to the order
of € w.

DEDUCTION OF THEOREM 2.10 FROM THEOREM 2.12. Since the restriction of F to X is zero,
G; is isomorphic to H(Xs5, R®w(F)) as representations of the decomposition group Do, where
X5 is the geometric fiber of X over the geometric point 30 above co € P'. From the statements
(i), (ii) of Theorem 2.12, we see that H!(Xs5, R®oo(F)) is isomorphic to the direct sum of

H!(Z, x Spec F*P — {x4, Toow }, P (F)),
H!(Eo x SpecF*® — {20, 201, 200}, ®%(F)), and
H(lj(Eoo X Spec [F5P — {xm,va Too,hs fL'oo,oo}, (I)go(ﬁ.))

From the Euler-Poincaré characteristic formula we see that first of the three cohomology groups
is zero according to 2.10 (iii). Again by the Euler-Poincaré formula, the latter two cohomology
groups are both one dimensional, and are pure of weight one as representations of the inertia group
Dy by [3,3.2.3]. 1

13



(2.13) Lemma Let j : Gy XgpecF Gm — Al X SpecF Al be the natural open immersion. Let
X1 Xo : Gu(F) — Q" be characters of Gy (F) = F*. We assume that x1 is non-trivial. Let (z,y)
be the standard coordinates on A' x A' and on Gy, x Gy,. Denote by £X1 (2)x, (y) the smooth rank-one
Qg-sheaf prily, @ pryLy, on Gm Xspeck Gm. Let R® (jlﬁxl(x)xz (y)> be the complex of vanishing
cycle for j (,CXI (@)X, (y)) over At x {0} with respect to the second projection pry : Al x Al — Al

Then the stalk R® (jlﬁxl(w)xg (y)>(0 ) of the complex of vanishing cycles at (0,0) is acyclic.

PROOF. According to the definition of vanishing cycles we have a natural isomorphism

R (j!ﬁxl(x)x2 (y)) = (Ly,l7) ® RO (j!ﬁxl(w)) ;

where Ly, |7 is the stalk of the sheaf Ly, over a geometric generic point 7 of Gy, regarded as a
representation of the decomposition group Dy over the point 0 of the base A'. Therefore we may
and do assume that x, is trivial.

Let k : Gy XgpecF Al — Al X Spec F A be the standard natural inclusion. Denote by pr’{ﬁxl the
smooth rank-one Qg-sheaf on G, X SpecF A' obtained by pulling back the sheaf £X1 on G /r via
the first projection. We have a short exact sequence

0— 4 (pr*{ﬁxl) — k (pr*{EXl) — k (pr*{EXl) latx{oy — 0.
By SGA 7 11, exposé XIII, Lemma 2.1.11,
R® (ki (prily,)) =0.

It follows that

R® (JiLy, @, ) =k (11Lx,) l00)[=1] = 0.

(0,0)

(2.14) Proposition Let j : Gy XgpecF Gm — A%F be the natural inclusion. Let f : A? =
SpecF[z,y] — A' = SpecF[t] be the morphism over F given by the F-algebra homomorphism
which sends t to xy. Let
X
X1 Xz - Gm(F) =F* — Qe

be two ch@cters of F*, x1 # x,- Let Exl(x)~x2 (y) = Prily, @ pryLly, , where Ly is the smooth
rank-one Qq-sheaf on Gy, given by pushing out the Lang torsor by x,, @ = 1,2. Then the stalk
RO(1Ly (2)x,w)©0,0) at (0,0) of the complex R (5L of vanishing cycles with respect to
f is an acyclic complez.

X1 (@)% )

PRrROOF. After tensoring with f*EX_l, we may and do assume that yx, is trivial, therefore x, is
2

non-trivial.
We partially compactify the morphism f involved as follows. Let U = Gy, XspecF Gm, contained
in P! X SpecF A'. Let (z,s) be the standard coordinate functions for Gy, x Gy, and let y = >,

Let X be the blowing-up of P! X SpecF Al at (0,0). Let f: X — A! be the composition of the
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blowing-up morphism X — P! x A! and the second projection P' x Al — Al. This is compatible
with the geometric set-up in the statement of Theorem 2.14, since X contains SpecF|z,y] as an
open subscheme. The fiber T_I(O) is the union of the strict transform D of P* x {0} C P! x Al
and the exceptional divisor E of f. Let &g be the intersection of D with E. Let Too € D be the
intersection of D with the strict transform of {oo} x Al. Let 2., € E be the point on E which lies
outside the affine open subscheme Spec F[z,y] of X. Let k : Gy, X Gy, <— X be the inclusion map.
Over Gy, x Gy, = Spec [z, 27, 5,571 = Spec [z, 271, y,y~!] we have the smooth rank-one Q, sheaf
Ly (x)- Let G = kL, (z). Let D' = D —{Z0,20}, and let E' = E — {Zo, 2. }. We compute the
restriction to D’ U E’ of the complex of vanishing cycles for G.

The open subscheme Gy, x Al of P! x A! contains D’. Over this open subscheme the sheaf
ﬁxl () On Spec Flz,z~1,y,y~!] extends to a smooth rank-one smooth sheaf, the pull-back of the
sheaf 'Cxl on Gy, to Gy, x Al via the second projection G, x A’ — G,,. From this we deduce that
the restriction of R®(G) to D' = Spec[z, 27| = Gy, is isomorphic to Ly [1], with trivial action by
the decomposition group.

On the other hand, E’ is contained in the open subscheme Spec F[s, y, y~1]. Over the open sub-

scheme SpecF|[s,s~!,y,y~!] C SpecF[s,y,y '], we have L) = EX ( From the definition
1

s)xy ()
of vanishing cycles we get

R(I)(g)‘E’:SpecF[y,yfl] = (£x1 )ﬁ @ Exfl(y)[l] y

where the second factor Exfl is the smooth rank-one Q-sheaf on E' = SpecF[y,y~!] = Gy,
attached to the character Xl_l, while the first factor (£X1)ﬁ is the geometric generic fiber of the

smooth rank-one Qg-sheaf Ly, regarded as a linear representation of the decomposition group Dy
at 0.

From Grothendieck’s Euler-Poincaré characteristic formula and the computation above, we
deduce that '
H.(D',R®(G)|p) =0 VieZ

and ‘
HZ(E/,R(I)(QHE/) =0 VieZ.

Similarly from the Euler-Poincaré formula we have
H.(Gm, Ly,) =0 Vi€Z.
We have a short exact sequence

0— (D' UE" < DUE) (R®(G)|prup) — R(G)
— R®(G)[z) ® R®(G)]so, ® RR(G)|sr, — 0

Let 77 be a geometric generic fiber of the base scheme A'. The theory of vanishing cycles gives
0 = H.(Gmg, Ly,) = H' (P}, Gy) = H.(D U E,R®(G)) Vi.

From the long exact sequence we deduce that the stalk at g R®(G)|z, of the complex of van-
ishing cycles R®(G) is acyclic. This proves Proposition 2.14 since R®(G)|z, is isomorphic to

RO(ILy, (2)|(0,0)-
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ProoOF oF THEOREM 2.12. The proof is a little tedious, consisting of computation of the restriction

of the complex of vanishing cycles R®, (F) to the disjoint open subsets E{, := Ey — {zgo, Z0,hy T0w }
Z, = Zy — {00, Toow}s Eiog = By — {Zo0,005 Too,hs Toow} Of Xoo, and the stalks of the complex of
vanishing cycles at the six points oo, Zo s 0,0 Too,00, Loo,hs Loo,v-

Notice that the automorphism (u,t) — (u~',t) of U x G, sends Le(Tr+4) @ Loty 10 Lo(Tr44) @
L,-1(), and interchanges yo and yoo. Therefore it suffices to do the calculation for E{, Z,, and
00, £0,hs LTO,v-

(a)

RcDoo(‘F)‘Eé
Let s = %, a coordinate for P! at co € P'. Let u = =. The affine open subscheme
Spec F'[u, u™ 1, m,s] C X contains Ej. On SpecF'[u,u™1, m, s] C X, the sheaf

F is equal to
Les2uz4140) @ Lpe1)w) ® Lge1)(s) -

Since Ls(s202114u) @ L(g.e-1)(w) is smooth on SpecF'[u, s], we get

1
s2ul+1+u’
R(I)OO(F”E{) = Le14u) ® Lga1)(w) @ R<I>t:oo(3!p1"§£(@~é—1)(s))|E{) :

By the definition of the vanishing cycles,
R®— oo (71015 L (5.2-1)(s)) | ) = R imoe (D13 L 5.2 1)()) 2

is equal t0 pr{R¥i—oo (G = P)1(L(g-12)1))) | ;- By definition, R@t:oo(jyﬁ(aflg)(t)) is rep-
resented by the Doc-module L£(g-1z )7z, “concentrated at degree zero”. In other words,
RCDOO(]}NE{) “is” the smooth sheaf Lz(144) ® L(g.2-1)(u), With Do action via the character for
the Doo-module L£g-14 ) |7

R®oo(F)| 7.

Near Z,, we have coordinates z, s, with s = %: Z! C SpecF'[z,271,s] € X. Over this open
subscheme SpecF'[z, 271, 5,571, (522 + s + 2) 1], F is equal to

ﬁé(sz2+s+z) & E(&)-éfl)(z) X ngl(z) .

Hence B .
RPoo(F)| 21, = La(z) @ R®oo(JiprsLe—1(5)) |21 -

In other words, R®o (F)| 71, “is” equal to the smooth sheaf L,y on Z;, with the decomposi-
tion group Dy operating via the character for the Doo-module L )l -

RPoo(F)g, -
For v = £, the affine scheme Vo = SpecF'[u, s
Let Up,o = SpecF'[u, s,

Vo,0 we have

1 . .
,m] is an open neighborhood of zg .

m}, and let joo : Up,o — Vo0 be the natural inclusion. Over

F = joo, (Latszuzr14uw) ® Lze-1)(5) ® Lioa)-1(w)) -
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Hence

RPoc (F)ay o = Lo(iulu=o @ Lig1.2)0) i © RPoo (Jo,0,/(Lize 1))

Zo,0

1

which is acyclic by Lemma. 2.13, since @ - €~ is non-trivial.

(d) R(I)OO(F)Q,M.

Let Vo, = SpecF'[u, s, %], an affine open subscheme which contains zgj, and let Uy =
Spec F'[u, s, m] Let jon : Upn — Vo, be the open immersion. The elements
(s,5%u? + 1 + u) form a regular system of parameters at zg . Over Vo,n we have

F = jo}h!(c(@,g—l)(u) ® E5(52u2+1+u) ® E(@.g—l)(s)) .
So

R®oo(F)a,, = Lge1)(w)lu=—1® Lg=1.8)(t) I7s ® RPoo (jo,h;(ﬁg(s2u2+1+u)))x ;

0,h

1

which is acyclic by Lemma 2.13, since w™" - £ is non-trivial.

(¢) ROuo(F)

Let v = 2. The scheme Spec'[s, v, (220 +v + 1)71] is an open neighborhood of the point
To.p, given by s = v = 0. Over SpecF'[s, v, (2%v + v + 1)7!] we have

IO,U :

Leora14s-1) ® Loz) = Le(z204011) @ Lz-1.0)(2) @ Le-1(v)

By Prop. 2.14 we conclude that R®(F )z, , 18 acyclic, because @ is non-trivial.

§3. A family of character sums of the first type

In this section we study the family of character sums denoted by A, , in §1.

(3.1) The geometric set-up

Let F be a finite field with ¢ elements, where ¢ is a power of an odd prime number p. Let B
be the base curve P! with rational function field F(¢). Let X be the surface contained in B x P?
defined by the equation

SY?=8(X —Z)2+4TX Z .

Here S, T are the homogeneous coordinates of B, while X,Y, Z are the homogeneous coordinates
of P?; let t,x,y denote the rational functions %, %, % respectively. Let f : X — B be the natural
projection. Let 1 be the generic point of B.
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It is easy to see that X is a proper smooth surface over F. Moreover, f : X — B is smooth
over V.= B — {by, b1,bs}, where by, b1, b are the points of B where the value of ¢ is equal to
0,1, 00 respectively. The three degenerate fibers will be denoted by Xy, X1 and X, respectively;
one checks easily that they are all reduced with normal crossings. Moreover, each of the three
singular fibers is a union of two copies of P! intersecting transversally at exactly one F-rational
point. The singular point sy (resp. s, resp. Soo) of f is given by equations t = 0,z = 1,y = 0 (resp.
t=1,2=—1,y =0, resp. %zO,%z%:O).

Let Dy (resp. Do) be the divisor of X given by X = 0 (resp. Z = 0). Let U be the complement
in X of the union of Dy and Ds,. One checks that Dg is the union of a divisor D(})l finite étale over
B with degree two and the component Ex g of X where X vanishes. Similarly D, is the union of
a divisor Dgo finite étale over B with degree two and the component Ez g of X, where Z vanishes.
Below we give an explicit description of the divisors involved.

. DS is defined by the equations {X = 0,Y? — Z2? = 0}. It is the disjoint union of two divisors
D{‘, 1 Z.X and D{}_ Z.X> where the subscripts are the defining equations for the two divisors,
each isomorphic to the base curve B under f.

e Ex g is defined by the equations {X = 0,5 = 0}.

e D! is defined by the equations {Z = 0,Y? — X2 = 0}. It is the disjoint union of two divisors
DE(_K , and Dg} +y.z» indexed by their defining equations, and each is isomorphic to B.

e Ly g is defined by the equations {Z = 0,5 = 0}.

e X is defined by the equations {T' = 0,Y? — (X — Z)? = 0}. It is the union of two divisors
DY _xizrand Dy x_ 7, indexed by their defining equations.

e X is defined by the equations {S—T = 0,Y2 — (X + Z)? = 0}. It is the union of two divisors
DY xizg-rand Dy_x_5 g p, indexed by their defining equations.

e X is defined by the equations {S = 0, XZ = 0}; it is the union of Ex ¢ and Ey g.

The union of the horizontal divisors meet each of the three singular fibers X, X1, Xoo transversally
at four F-rational points. For instance the horizontal divisor D})‘o meets Fz g transversally at two
POINtS Too,005 Tho o0, With projective coordinates ([X : Y : Z:] =[1:1:0],[S:T] =[0:1]) and
(X:Y:Z:]=[1:-1:0],[S:T]=][0:1]) respectively; the horizontal divisor D} meets Ex s
transversally at two points 9,0, 77 g, with projective coordinates ([X : Y : Z] =[0:1:1],[S: T] =
0:1])and ([X :Y : Z] =[0:1:—1],[S : T] = [0 : 1]) respectively. Denote these four points on
Xoo bY 8004, © = 1,2,3,4. Similarly we denote by sg;, @ = 1,...,4 (resp. s14, @ = 1,2,3,4) the
four intersection points of X (resp. X() with the horizontal divisors; the actual numbering will be
unimportant for us.

The rational function z = % on X defines a morphism from U to G,,; denote by F(x) the

pull-back z*L, of the rank-one smooth sheaf £, on G,, defined by the character x of F*. So F(x)
is a smooth rank-one Q-sheaf on U. We assume that y is non-trivial. Let j : U — X be the
inclusion map. Let F(x) = 51F(x). The complement of U in X can be regarded as the ramification

divisor of the Qg-sheaf F(); it is the union of the horizontal divisors and Xn..
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(3.2) Proposition Assume that x is a non-trivial character of F*. Then

RY(flon FOo) =0  ifi#1.

The Qq-sheaf G(x) := RN (flu)h F(x) on B — {bg,b1,bss} is smooth of rank two on V = B —
{bo,b1,bs0}, and is pure of weight one.

PROOF. For every geometric point b € V', the restriction of the sheaf m to the geometric fiber X
is smooth outside the four intersection points with the horizontal divisors, and is tamely ramified at
these four intersection points since x is not trivial. This implies the vanishing statement, and the
statement about the rank follows from the Euler-Poincaré characteristic formula. The purity of the
sheaf G(x) := RY(f|v)1 F(x) follows from [3, Thm. 3.2.3]. The smoothness of G(x) := R*(f|v)1 F(x)
follows from Lemma 2.13; it is also a consequence of the local acyclicity of the vanishing cycle

complex for smooth morphisms, since F(x) is tamely ramified along the horizontal divisors, which
are smooth over B. 1

(3.3) Lemma The sheaf G(x) := R (f|u)1 F(x) is canonically isomorphic to G(x~ '), and the co-
efficients of the characteristic polynomial of the Frobenii on G(x) are totally real algebraic numbers.
If x is not trivial, then det(G(x)) is equal to Qu(—1).

PROOF. We have a B-involution ¢ of X, which interchanges the projective coordinates X, Z and
leaves Y, S, T fixed. Moreover tx(F(x)) = F(x~'). When x is non-trivial, the cup product gives a
perfect pairing

RY(flo)r FOO) x RN (flo) FOD) — R (flo)r Qe = Qu(~1)
by [4, dualité, Thm. 1.3, 2.1], and this pairing factors through det(G). =

(3.4) Proposition Assume that x is a non-trivial character of F*. Denote by R®y, (F F(x)) (resp.
R®,, (F(x)) the complex of vanishing cycles for the sheaf F(x) with respect to the map f: X — B
over the point by € B (resp. by € B.)

(i) The stalks of the vanishing cycle complex at the intersection points with the horizontal divisors
are acyclic: '
@éo(}"(x))s()’i =0 Vy;>0,:=1,23,4,

<I>{)1 (F(X))s1, =0 Vj >0, i=1,2,3,4.

(ii) At the singular points so, s1 of Xo, X1, we have for i = 0,1

Py p— 0 if j#£1

dim(@}, Fk) ={ | i 17
(ili) The action of the decomposition group Dy, on the one-dimensional space ®; (F(x))s,; is un-
ramified. The geometric Frobenius Fry, operates as q on CIJI%O (F(x))sy, while the geometric

Frobenius Fry, operates as x(—1)q on @, (F(X))s, -

PRrROOF. The statement (i) follows from Lemma 2.13. The statements (ii) and (iii) are consequences
of [3], (3.1.3) case (a), since the restriction of F(x) to the F-rational point by (resp. b1) is a rank-one
Qg-sheaf over SpecF on which Fr, operates as x(1) =1 (resp. x(—1).) 1
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(3.5) Corollary Assume that x is non-trivial. Then the representation of the decomposition group
Dy on the geometric generic fiber Gy of G is tamely ramified for b = by and b = by. Moreover

(1) At b, the local Galois representation corresponds to the representation sp(2) ® Qu(—1) of the
Deligne-Weil group; i.e. it corresponds to the special representation o(|| - |1, 1) of GL(2)
under the local Langlands correspondence. The local Artin conductor is equal to 1, and the
local L-factor is (1 — q¢~*)~L.

(2) At by, the local Galois representation corresponds to the representation sp(2)®@x—1(—1), where
X—1(—1) denotes the unramified character whose value at the geometric Frobenius is equal to
x(—1)q. Its local L-factor is equal to (1 — x(—1)g=%)~!.

(3.6) Theorem Assume that x is not the trivial character of F*. Let Ly ) (resp. Ly-1(4)) be the
rank-one smooth sheaf on SpecF[t,t71] = B — {by,boo} attached to x (resp. x '), where t is the
rational function % on B. Let 5501, 500,2 be the two intersection points of Ez g with the horizontal
divisors, and let E'Z’S =FEz5— {S00s 800,15 Sco,2}- Similarly let Soo 3, S04 be the two intersection
points of Ex g with the horizontal divisors, and let E/Z,X =Ezx — {Sc0, 500,3, Sco 4 }-

Y

(i) Write EY, ¢ = SpecF|u, u2—171], where u is the restriction to EY ¢ of the rational function 5 on

X. The restriction of the vanishing cycle complex R®y (F(x)) to EY g is represented by the

smooth rank-one Qg-sheaf Ly -14-1(u2—1)) in degree zero, and the decomposition group Dy,

acts on this rank-one sheaf via its natural action on ('Cx(t))ﬁ'

(il) Write ESC,S = SpecF[y, y2—1—1]’ where u is the restriction to ES(,S of the rational function %

on X. The restriction of the vanishing cycle complex R®y_ (F(x)) to E g is represented by

the smooth rank-one Qq-sheaf Ly (a-1(y2—1)) in degree zero, and the decomposition group Dy,

acts on this rank-one sheaf via its natural action on ('CX_l(t))ﬁ'

(iii) The stalk of the vanishing cycle complex R®y_ (F(x)) at Soc;i is acyclic fori=1,2,3,4.
(iv) If x? is non trivial, then the stalk of the vanishing cycle compler R®y__ (F(x)) at soo is acyclic.
(v) If x? is trivial, then

Py pp— 0 if j#0,1
J _ )

The decomposition group D,_ operates on the one-dimensional Qg-vector space
) (FO))swe  (resp. @y (F(X))sa0 )
via its natural action on (Ex(t)(—l))77 (resp. (LX(t))ﬁ .)

PROOF. Since the proof of (i) and (ii) are essentially the same, we only give the proof of (i). Let

U = %, v = % and s = % Then near E’Z g the surface X is defined by the equation

s(u?—(1—-v)%) =4v.
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We have
£><(ﬂc) = ﬁx(v”) = ﬁx(S*l) ® £X_1(u2f(ifv)2) )

and the sheaf EX* (uz_(l_v)z) is smooth at points of E’, 4. This proves (i).
4 . b}

1

~IN
VA
I
Sl

The statement (iii) follows from Lemma 2.13. For (iv) and (v), let u; = %, v =
u1,v1 is a regular system of parameters for Ox .. The equation for X near s, is

s(1— (up —v1)?) = duyv; .

We have

Ly =1L

x(@) = Extwn o) = Exte) @ b)) O £ 1oty -
4

and £ (1_@1_”1)2) is smooth at so. The statement (v) follows directly from the above by the
X\ —1

definition of vanishing cycles, while we deduce (iv) from Proposition 2.14. &

(3.6.1) Remarks It may be instructive to explain the calculation of vanishing cycles at s, in an
analogous complex analytic situation.

(1) When the bad point ¢ is the double point s, the variety of vanishing cycles W is
W = {(r,u,v) € H x A* x A*|exp(2mv/—17) = wv},

where H is the upper half-plane and A* is the punctured unit disk. We have a map f: W —
A* which sends (7,u,v) to %. Let L be a non-trivial rank-one local system on A*. Then
all cohomologies H!(W, f*IL) vanish, for all i > 0 if L®? is non-trivial. When L®?2 is trivial,
both HY(W, f*L) and H'(W, f*IL) are one-dimensional; all other cohomologies vanish. By
homotopy invariance, the above statements quickly reduce to the fact that all cohomologies
of a non-trivial rank-one local system on A* vanish, while the zeroth and the first cohomology

of the trivial rank-one local system on A* are one-dimensional.

(2) When the bad point ¢ is one of the four intersection points of the horizontal ramification
divisors with X, the situation is even easier. The variety of vanishing cycles is W = H x
A, where A is the unit disk. We have a map g : H x A* — A*  which sends (7,u) to
exp(2my/—17)u. Let L again be a non-trivial rank-one local system on A*. Let j : HxA* — W
be the inclusion. Then H!(W, jig*IL) = 0 for all i > 0. Homotopy invariance quickly reduces
this to the fact that all cohomologies H'(A, (A* < A),LL) vanish.

(3.7) Proposition Let x be a nontrivial character of F*.

(1) The smooth rank-two sheaf G = R f.F(x) over V is tamely ramified at b, with local conductor
equal to 2, and the local L-factor is trivial.

(2) The geometric monodromy group for G is equal to SL(2).
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(3) When x2 # 1, the local Galois representation at by is a direct sum of two one-dimensional
characters \1, Ay of weight one, and My = ||-||~t. Both A1 and Ay are tamely ramified, and
the restriction of each \; to the tame ramification group is equal to x*' if we identify F* as
the canonical quotient of the tame ramification group of Gy, at 0 or co via the Lang torsor.

(4) When x? = 1, the local Galois representation at by, corresponds to the special representation
a(M|-]|7Y A) of GL(2) under the local Langlands correspondence, where X is a tamely ramified
character with \> = 1 whose restriction to the tame ramification group is the unique character
of order two.

PROOF. One deduces statements (1), (3), (4) from Theorem 3.6, using the natural isomorphism
Gy = H' (Xoo Xspecr SpecF, Ry, (F(X)))

of Dy_-modules. For instance if x? is not trivial, then R®;__ (F(x) is represented by the smooth
rank-one sheaf on E7 g LI E'y ¢ described in (i), (ii) of Theorem 3.6, extended by zero to X.

According to Thm. 3.6 (i), the restriction of R®,(F(x) to EY g is isomorphic to £

ALY
which is ramified at u = 1, —1, co; similarly for the restriction to E;QS. Thus both Hé (E/Z,S XS:)ecF
SpecF,R®;, _(F(x))) and H! (ES( s XspeckSpec F, R®,__(F(x))) are one-dimensional, pure of weight
one, with tame action by the decomposition group Do, as described in (i), (ii) of Thm. 3.6. This
proves (3) and the statement (1) when 2 is not trivial; the proof of (4) and the rest of (1) is
similar.

Since the determinant of G comes from the sheaf Qy(—1) on SpecTF, its geometric monodromy
group is contained in SL(2). On the other hand we see from Prop. 3.4 that the geometric monodromy
group of G is not finite, so this semisimple group must be equal to SL(2). This proves (2). R

54. Automorphic forms and applications to Terras graphs

We shall first reformulate the results in the previous two sections in terms of automorphic forms
for GL(2), and then show their connections to automorphic forms on quaternion group D and
eigenvalues of Terras graphs. Let K be a function field with the field of constants IF. For convenience,
the residue field of K at a place v will be denoted F,, which has cardinality Nwv.

(4.1) Let C be the underlying curve of K. Given a rational function a in K, it defines a morphism
from C to P'. Denote by X, the pull-back surface in C' x P? of the surface ¥ in §3 via a and by
Fa(x) the pullback sheaf on X, of the sheaf F(x) on X. The sheaf R!(pry),Fa(x) is smooth of rank
two when restricted to a sufficiently small open subscheme U, , C C} it coincides with the pull-back
by the morphism U, , — C 2 P! of the sheaf G(x) in the notation of Lemma 3.3. Let Pa,x be
the degree two representation of Gal(K*?/K) attached to R!(pr;),Fa(x)|v, .. By the results of
Grothendieck, Deligne, and the converse theorem of GL(2), we know that the L-function attached
to pa,y is an automorphic L-function for GL(2) over K. We examine its local factors.

Let g(z) = (z — 1)? + 4az. Denote by g, () the polynomial g(z) (mod v). Our computation in
the previous section shows that at a place v which is not a pole of a and where a # 0,1 (mod v),
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the local factor of L(s, ps) at v is a polynomial of degree 2 in Nv™*, with the coeflicient of Nv™*
being
~M(Foia) = ) xoNmg, (@),

z,y€fy
y2=gy (x)

and the coefficient of Nv=2* being Nv by Lemma 3.3. Hence the local factor at v is
1 — A\ (Fyp;a)Nv™* + No' =2,
We have shown

(4.2) Theorem Let K be a function field with the field of constants F. Given a nonzero element
a in K and a nontrivial character x of F*, there is an automorphic form f, of GLy over K which
1s an eigenfunction of the Hecke operator T, at all places v of K, which is not a pole of a and where
a#0,1 (mod v), with eigenvalue A\, (Fy;a) as defined above. In other words,

1
L ~ | | .
(Svfa,x) 1— )\X(FU;G)NU_S + Noyl—2s
v good

Here and later we use L1 ~ Lo to mean that two Euler products L and Lo agree at all but
finitely many factors.

At each place v choose a nonsquare ¢ in F,. Observe (cf. [5]) that

M (Fpia)=— Y xoNmg jp(z)
z,yEFy
y2=8gy (x)

since

Z x o Nmg, /r(z) + Z X o Nmg, p(z) = 2 Z x o Nmg, /r(z) = 0.

z,yEFy z,yEFy z€lF,
y2=gv (x) y2=dgy(x)

Note that the character sum is independent of the choice of 0. Therefore A (F,;a) is nothing but
the eigenvalue )\4,17onva /F of a Terras graph with base field F,,. This theorem shows that the
eigenvalues of f,, with respect to the Hecke operators are eigenvalues of Terras graphs of first

type, parallel to Theorem 3.6.1 in Part I. Its existence for the case K = F(t) was conjectured in
[10].

(4.2.1) As a consequence of Proposition 3.7 (2), the geometric monodromy group of the ¢-adic
representation p,, is SL(2) provided that a is not a constant. In other words, the Sato-Tate
conjecture holds for fq, .

(4.2.2) Corollary With the same notation as in Theorem 4.2, suppose that a is not a constant.
Then the normalized eigenvalues Ay (Fy; a)//|Fy| are uniformly distributed with respect to the Sato-

Tate measure
1 2
= —1/1—-—d
psr() —\ 4
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(4.3) Let D be the algebraic group over K attached to the multiplicative group of the quaternion
algebra H over K ramified exactly at 0 and oo as in §1. Given an element b € F not equal to 0 or
1, we specialize Theorem 4.2 to the case K = F(¢) and a = (t — 1)/(t — b). The bad places for the
automorphic form f, , are 1, b and oo, and the local components of the corresponding representation
of GL(2) over K are special representations at the places 1 and oo with nontrivial local L-factors
as shown in Corollary 3.5, and is either a principal series or a special representation at the place
b with trivial local L-factor as shown in Proposition 3.7. Moreover, the local component of f,, at
the place b is a new vector for the congruence subgroup I'g((t — b)?) with central character || - ||~*.
t E b (1)> yields another automorphic form which has the same properties
as fq at all places except b, and at b it is invariant by the principal congruence subgroup I'(t —b).

Conjugation of f, , by <

By the global correspondence between automorphic representations of the quaternion group D over
K and those of GL(2) over K proved in [6], there is an automorphic form f,, on D(Afg) right
invariant by X, (as defined in Introduction) which has the same L-function as f, . In particular,
fox is an eigenfunction of the Hecke operator Ty at the place 0 with eigenvalue A, (F;1/b). We
compare the eigenvalue Ay (F;1/b) with Ayp_1)/p.-

Let z = —z and note that
Sz — 1) +45(b— Da/b=6(z+1)? —46x/b = 5(z — 1)* + 462 /b,
so we have

M(F51/b) = x (=) Aap-1) /b, -

Thus if x is an even character, then fp, is an eigenfunction of Tp with eigenvalue Ay;—1)p,y, While
if x is an odd character, then the eigenvalue of T} is opposite to what we are looking for. Therefore,
the unramified twist gy, , of f;, defined by

(@) = x(~1)0ENma @ £y ()

for x € D(Ak) has eigenvalue A1) /b,x at place 0 in both cases. This proves

(4.4) Theorem Let K be the rational function field F(t). Given a nonzero element b € F not
equal to 1 and a nontrivial character x of F*, there is an automorphic form gy, on D(Ak), right
invariant by Xy as in Introduction, which is an eigenfunction of Hecke operators T, for all places
v other than 1,b,00, and whose associated L-function is

1 1 1
L(s, = . .
(s, 9b,x) 1—x(=1)g* 1—gq* U;ﬁl;l!oo 1— x(—1)degv ) (F,; i:},)NU*s + Noyl-2s

In particular, gy is an eigenfunction of To with eigenvalue Ayp_1)/p,y-

In the above expression of L-function, the first factor is at place 1, and the second is at place
oo, by Corollary 3.5.
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(4.5) Next we reformulate the results from section 2. Recall that F has cardinality ¢. As in
the beginning of this section, a rational function a in K defines a morphism from the curve C' to
the projective line P!, which in turn yields a map from U XspecF C 10 U XgpecF P!. This allows
us to pull back the open subset Y of U Xgpeck A to an open subset Y, of U XspecF C. Given a
nontrivial character € of F* and a regular character w of the quadratic extension F’ (which induces
a nontrivial character of U(F)), denote by F,.. the sheaf on Y, which is the pull-back of the
sheaf ., on Y. The restriction of the sheaf Rl(pry)1F, . to a sufficiently small open subset
Usew C P! is smooth of rank two; it is equal to the pull-back of the sheaf Gew in 2.6 by the
composition U, ¢, — C L Pl Let Pacw be the representation of Gal(K*%/K) associated to the
smooth rank-two sheaf R!(pr; ) a,6.0|Uac ON Ugcw, and write 14, for the determinant of pgc ..
As before, the global L-function attached to the representation p, ., is an automorphic L-function
for GL(2) over K with central character 7q .. We examine the local factors of the L-function.

At each place v away from the poles of a and where a Z £2 (mod v) , let

—Aew(Fyia) = Z e o Nmg /p(Trp /p, (1) + ay)w o Nmpr /e (u),
UEU(]F’U)

where a, denotes a (mod v) and F, = F, ®p F'. When degv is odd, F/, is a quadratic extension of
F, and

—)\57‘&, (FU, CL) = Z (Sl Nva/lF(Tr]F{,/FU (’U) + av)w o Nm]}r{}/ﬂr/ (U)

u€eF,, Nm]% /Fo (u)=1

When deg v is even, F, contains F’ so that F/, = F, xF,, and elements in U(F,) are the pairs (z,1/x)
as x runs through all nonzero elements in F,. In this case

“Aew(Fyia) = ZueFi €o Nva/F(u + % + ay)w o Nva/F/(%)
= Y uer, € Nmp, /p((u— 1)2 + (a, +2)u)(e o Nmg, /p - w90 Nmg, /pr)(u).

It follows from the computations in §2 that the L-factor at v is
1= Aw(Fy;a)Nv° + nayaw(wv)Nv_Qs.

Here 7, is a uniformizer at the place v. We summarize the above discussion in

(4.6) Theorem Let K be a function field with the field of constants F. Let a be a nonzero element
in K, € be a nontrivial character of F*, and w be a reqular character of F'™, such that either €2 is a
nontrivial character of F*, or w? is a reqular character of F'. Then there is an automorphic form
faew of GLo over K, with central character g, which is an eigenfunction of the Hecke operator
T, at all places v of K, which is not a pole of a and where a Z £2 (mod v), with eigenvalue
Aew(Fy;a) as defined above. In other words,

1
L ~ '
(s, faew) i lgod 1= Aew(Fos a) Nv™s + 1,60 () Nv ™25

Moreover, if € has order two, then 4. is the unramified idele class character || - || 71.
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The last statement follows from Proposition 2.3, (vi). For the remainder of this section, assume
¢ has order two. We remark that, up to sign, the eigenvalue A, (Fy;a) of fo-. at a good place
v is an eigenvalue of a Terras graph with base field F,. Specifically, the computation above shows
that if the degree of v is odd, then it is equal to _8(_1))‘2—%7“1\7“1%/[?/; while if the degree of v is

even, it is equal to Aq,+2, With the character x of F being € o Nmg, /r w90 Nmg, pr. Let gaew
be the twist of f, . by the unramified character —e(—1), that is,

Jaew(@) = (—e(=1)) 1) f o (2)

for all z € GL2(Ak). Then the eigenvalues of g, .., at places of odd degree are eigenvalues of Terras
graphs of the second type, while those at places of even degree are eigenvalues of Terras graphs of
the first type.

(4.7) When ¢ has order two and a is not a constant, we know from Theorem 2.9 that the geometric
monodromy of the representation p,c . is SL(2). Therefore, the Sato-Tate conjecture holds for

fa,e,w-

(4.7.1) Theorem With the same notation as in Theorem 4.6, assume further that € is a character
of order two and that a is not a constant. Then the normalized Fourier coefficients Az o, (Fy; a)/+/|Fo|
of faew are uniformly distributed with respect to the Sato-Tate measure pust as Nv tends to infinity.

(4.8) We specify Theorem 4.6 to the case K = F(¢) and a = % for an element b € F
and b # 0,1. Assume that £ has order two and w has order greater than two. The bad places
for the automorphic form g, are at 1,00 and b. The local components of the corresponding
representation of GL(2) over K are special representations at 1 and oo with nontrivial local L-
factors by Theorem 2.9, and it is a principal series at place b with trivial local L-factor by Theorem
2.12. Moreover, the local component of g, .. at the place b is a new vector for the congruence
subgroup T'o((t — b)?) with central character ||-||~!. By the same argument as in the previous case,
we obtain an automorphic form g ., of D(Ak) right invariant by K (as defined in Introduction)
which has the same L-function as gq ¢ . In particular, as remarked right after Theorem 4.6, gj . .,
is an eigenfunction of the Hecke operator Tp at place 0 with eigenvalue —e(—1)A. o (F; =2+ 4/b),
which is equal to the eigenvalue Ay;—1) /s, of the Terras graph Xy;—1)/ as defined in Introduction.

Combining the above discussion with Theorems 2.9 and 2.12, we obtain

(4.8.1) Theorem Let K be the rational function field F(t). Given a nonzero element b € F not
equal to 1, a character € of F* of order two, and a regular character w of ¥ of order greater than
two, there is an automorphic form gy, on D(Ak), right invariant by Xy, as in Introduction, which
1s an etgenfunction of the Hecke operators T, for all places v outside 1,b,00, and whose associated
L-function is

L5, gne) = 1 1 1 1
1bew) = 77 w(=1)g=s 1—¢e(—=1)g~* it I (—e(—1))desv ), (F,; 22E20) Ny—s 4 Noyl-2s

In particular, gpe o is an eigenfunction of To with eigenvalue Ayp_1)/p,u-
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(4.8.2) Remarks (1) The eigenvalues of g .., are eigenvalues of Terras graphs, as discussed in
detail after Theorem 4.6.

(2) In writing L(s, gy ) as an Euler product above, the first factor is the local factor at the
place oo and the second factor is at the place 1.

(4.9) Recall from Proposition 1.1 that the Terras graph Xy;_1)s is a quotient graph of the
Morgenstern graph Xg,. For each nontrivial character x of F*, we have found an automorphic
form gp, on Xy, which realizes the eigenvalue Ay4_1)/p, of the Terras graph Xy;_1)/, and for
each regular character w of F’ of degree greater than two, we have found an automorphic form
gbew 0N Xgc, which realizes the eigenvalue A\y_1)/, of the Terras graph Xy;_1)/,. This answers
question (i) in Introduction. As for question (ii), we conclude from Theorems 4.2.2 and 4.7.1 that
eigenvalues of type A, (resp. of type A\, ) are uniformly distributed with respect to the Sato-Tate
measure, as the cardinality of the underlying finite field of Terras graph tends to infinity.
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