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Abstract

We study two types of character sums related to Terras graphs using the method of `-adic
cohomology. These character sums also arise as traces of Frobenii of some two dimensional
linear representations of a global function field. Detailed information about these Galois repre-
sentations at ramified places are obtained from analysis of vanishing cycles. Consequently we
give a complete description of the automorphic forms of which these character sums appear as
Fourier coefficients. These character sums are shown to be equidistributed with respect to the
Sato-Tate measure.

§1. Introduction

Let F be a finite field with q elements. For convenience we assume its characteristic p is odd
although similar results for p = 2 also hold. Denote by F′ a quadratic extension of F. Choosing a
nonsquare element δ ∈ F, we embed the multiplicative group of F′ into GL2(F) as the subgroup Kδ

consisting of matrices
(
a bδ

b a

)
with a, b ∈ F. The coset space GL2(F)/Kδ may be represented by

the subgroup

H =
{(

y x

0 1

)
: y ∈ F×, x ∈ F

}
,

which resembles the classical Poincaré upper-half plane. Let S be a Kδ-double coset of GL2(F)

with cardinality greater than that of Kδ. It can be shown that S has coset representatives
(
y x

0 1

)
,

where (x, y) runs through all F-rational points of an ellipse x2 = δ(ay + (y − 1)2) for some a ∈ F.
Further, there are q − 2 such double cosets, parametrized by the elements a in F other than 0 and
4, which we denote by Saδ.

The Terras graph Xa is the Cayley graph Cay(GL2(F)/Kδ, Saδ/Kδ). Different choices of δ result
in isomorphic graphs. It is a (q+ 1)-regular graph whose eigenvalues can be explicitly expressed in
terms of character sums of the following two types. The first type is associated to multiplicative
characters χ of F:

λa,χ =
∑
x,y∈F

δ(ax+(x−1)2)=y2

χ(x),
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while the second type is associated to regular multiplicative characters ω of F′, that is, characters
which are nontrivial on the kernel of Nm:

λa,ω =
∑

z∈F′,Nm(z)=1

ε(a− 2− Tr(z))ω(z),

where Tr(z) and Nm(z) are the trace and norm of z from F
′ to F, and ε(x) is 1, 0, -1 according to

x ∈ (F×)2, x = 0 or x ∈ F r F2. We remark that λa,χ is independent of the choice of δ. Using the
Riemann hypothesis for curves, one can show that the nontrivial eigenvalues have absolute value
majorized by 2

√
q, hence the Terras graphs Xa are Ramanujan graphs. The reader is referred to

[2], [1], and Chap 9 of [9] for more details on Terras graphs.

As in Part I, let H be the quaternion algebra over the rational function field K with the
field of constants F which is ramified only at 0 and ∞, let D be the multiplicative group of H
divided by its center, and let XK be the Ramanujan graph with vertices the double coset space
D(K)\D(AK)/D(K∞)K for some congruence subgroup K of

∏
v 6=∞D(Ov) and the edges inherited

from the tree structure of D(K0)/D(O0) at place 0. Here D(Ov) is defined by a fixed maximal
order of the quaternion algebra H. The connection between Terras graphs and Ramanujan graphs
constructed by Morgenstern [11] based on D was proved in [10] as follows.

(1.1) Proposition For b ∈ F, b 6= 0, 1, the Terras graph X4(b−1)/b is a quotient of the Morgenstern
graph XKb

with Kb = κb
∏
v 6=b,∞D(Ov), where κb is the compact subgroup of D(Ob) consisting of

all elements in D(Ob) congruent to the identity element modulo t− b.

Therefore the eigenvalues λ4(b−1)/b,χ and λ4(b−1)/b,ω of Terras graphs are among the eigenvalues
of the Hecke operator T0 at place 0 acting on automorphic forms on the double coset space XKb

.
Two questions arise naturally :

(1.2) Questions (i) Find automorphic forms on XKb
whose Fourier coefficients are eigenvalues of

Terras graphs.
(ii) Find the distribution of eigenvalues of Terras graphs.

(1.3) Let K be a (not necessarily rational) function field with F as its field of constants. The
purpose of this paper is to construct automorphic forms of GL2 over K whose Fourier coefficients
are given by the two types of eigenvalues of Terras graphs, analogous to what we did for norm
graphs in Part I. These forms are parametrized by nonzero elements in K. We also show that the
Sato-Tate conjecture holds for these forms when the parameter is not a constant. In particular,
when K is the rational function field F(t), for special choices of the parameter, we compute the
associated L-functions explicitly and show that they are also L-functions attached to automorphic
forms on XKb

via Jacquet-Langlands correspondence. This answers question (i). For question (ii),
the numerical data given by Terras in [12] suggests that the normalized eigenvalues of Terras graphs
are uniformly distributed with respect to the Sato-Tate measure. We give a theoretic explanation
of this phenomenon, as a consequence of the stronger result that the relevant automorphic forms
satisfy the Sato-Tate conjecture.
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Our approach is geometrical, using the theory of `-adic cohomology. We study character sums
of the second type in section 2 and the first type in section 3, by investigating the actions of
Gal(Ksep/K) on certain sheaves, computing vanishing cycles and local factors at bad places, and
determining the geometric monodromy group. The reformulation of the results in terms of auto-
morphic forms is given in section 4, where applications to Terras graphs are also explored.

For readers primarily interested in the aspects of automorphic forms and graph theory, § 2 and
§ 3 may look overly technical. Here is an outline of how one uses informations from geometry. Once
one knows that a family of character sum comes from a rank-two smooth Q`-sheaf M of geometric
origin on an algebraic curve C over a finite field , one deduces from Weil’s converse theorem that
the L-function attached to this family of character sum comes from an automorphic representation
π of GL(2). If the neutral component of the geometric monodromy group of M is SL(2), then
the automorphic representation π is cuspidal, and the eigenvalues of Hecke operators are equidis-
tributed according to the Sato-Tate law. The weight information about M gives estimates of Hecke
eigenvalues at unramified places. If one knows that there are at least two ramified places where
the local components of π are either special or supercuspidal, then the automorphic representation
π can be obtain from from an automorphic representation of a quaternion division algebra over
the function field of C via the Jacquet-Langlands correspondence. Our calculation of the vanishing
cycles in §§2–3 provides detailed information about the local Galois representations at the ramified
places, which are local Langlands parameters of the ramified components of π. Readers who are
more geometrically inclined may regard §§2–3 as examples in the theory of `-adic cohomology whose
singularities are explicitly computable.

§2. A family of character sums of the second type

The goal of this section is to study the family of exponential sums of the second type, also known
as “Soto-Andrade type” in the literature,

SAb,ε,ω :=
∑

u∈U(F)

ε(Tr(u) + b)ω(u) ,

where b is an element of F, U(F) is the norm-one subgroup of the quadratic extension F′ of F, and
ω (resp. ε) is a character of U(F) (resp. F×).

(2.1) In this section, we follow the notations of [7] closely.

• Let F be a finite field with q elements, where q is a power of an odd prime number p. Let F′ be a
quadratic extension field of F.

• Let F′× = ResF′/FGm (resp. F′ = ResF′/FGa) be the Weil restriction of scalars of Gm (resp. Ga) for
the extension F′/F. For any F-algebra R, we have F′×(R) = (F′ ⊗F R)× and F

′(R) = F
′ ⊗F R . Let

Nm : F′× → Gm and Tr : F′ → Ga be the (F′ ⊗F R/R)-norm and the (F′ ⊗F R/R)-trace respectively.

• Denote by U the kernel of Nm : F′× → Gm; it is a one-dimensional torus over F such that for every
F-algebra R, U(R) consists of all elements u ∈ (F′ ⊗F R)× with Nm(u) = 1. Especially U(F) is the
norm-one subgroup of F′.

• Let ω : U(F)→ Q`
×

be a character of U(F), and let ε : F× → Q`
×

be a character of F×.
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• Let Lω be the smooth rank-one Q`-sheaf over U , given by the push-out of the Lang torsor Id ·Frq−1 :
U → U by ω. For every closed point x of U , the geometric Frobenius Frx acts on the geometric generic
fiber Lω,η̄ via the scalar ω(NmF(x)/F,U (x)).

• Let Lε be the smooth rank-one Q`-sheaf on Gm obtained from the Lang torsor construction, using the
character ε of F× = Gm(F).

• Let ε̃ be the composition of NmF′/F,Gm : F′× → F
× with ε : F× → Q`

×
. Let ω̃ be the composition of

NmF′/F,U : U(F′)→ U(F) with ω : U(F)→ Q`
×

.

• Denote by Y the scheme U ×Spec F A
1[ 1

Tr +t ], where t is the regular function on U ×Spec F A
1 which

corresponds to the projection pr2 : U ×Spec F A
1 → A

1.

• Denote by Lε(Tr +t) the pull-back of Lε by Tr +t : Y → Gm.

• Denote by F = Fε,ω the smooth rank-one Q`-sheaf Lε(Tr +t) ⊗ pr∗1Lω on Y . For every closed point
x of Y , the geometric Frobenius Frx acts on the geometric generic fiber F|η̄ of Fε,ω via the scalar
ε
(
NmF(x)/F,Gm(Tr(u) + b)

)
·ω
(
NmF(x)/F,U (u)

)
, where (u, b) is the tautological point of Y (F(x)) given

by x, and Tr(u) ∈ Ga(F(x)) is the image of u under Tr : U → Ga.

• Denote by π : Y → A
1 the composition of the inclusion Y ↪→ U ×A1 and the projection U ×A1 → A

1.

The theory of `-adic cohomology yields the relative cohomology sheaves with compact support
Riπ!F on A1; the alternating sum of the trace of the action of the geometric Frobenii of a closed
point of A1 on these cohomology sheaves is a character sum of Soto-Andrade type. The following
properties on sheaves are immediate from the definition.

(2.1.1) Lemma (i) The sheaf Fε−1,ω−1 is naturally isomorphic to the dual of Fε,ω.

(ii) The pull-back and the push-forward of the the sheaf Fε,ω under the involution u 7→ u−1 of
U are both naturally isomorphic to Fε,ω−1.

In the rest of this section we will analyze the sheaves Riπ!F on A1, and will obtain information
on the action of the decomposition group at points where the sheaf Riπ!F on A1 is ramified. These
information are sufficient to determine local factors of the L-function attached to F at the ramified
points of Riπ!F on A1.

(2.2) Since the torus U splits over F′, it is convenient to extend the base field from F to F′.
The scheme U ×SpecF SpecF′ is isomorphic to Gm = SpecF′[z, z−1]. The regular function z on
U ×SpecF SpecF′ is the character of U which induces the identity when restricted to U(F) ⊂ F′×.
Moreover we have

Y ×SpecF SpecF′ ∼= Gm ×SpecF′ A
1

[
1

z + z−1 + t

]
= Gm ×SpecF′ A

1

[
1

z2 + tz + 1

]
,

since z is an invertible function on Y ×SpecF SpecF′.

We identify U ×SpecF SpecF′ with Gm over F′ using the regular function z, and consequently
we identify ω̃ with the character

ω̃ : (F′)× → Q`
×
, x 7→ ω̃(x) = ω(x/τ(x))

on (F′)×, where τ denotes the non-trivial element of Gal(F′/F).
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Over Y/F′ = SpecF′[z, z−1, t, (z2 + tz + 1)−1], the sheaf F becomes

Lε̃(z+z−1+t) ω̃(z) = Lε̃(z+z−1+t) ⊗ pr∗1Lω̃ .

(2.3) Proposition Assume either that the character ε2 of F× is not trivial, or that the character
ω2 of U(F) is not trivial.

(i) If i 6= 1, then Riπ!F|A1 = 0.

(ii) The restriction R1π!F|A1−{2,−2} of R1π!F to the open subscheme A1 − {2,−2} of A1 is a
smooth Q`-sheaf of rank two over A1 − {2,−2}.

(iii) The stalks of R1π!F at a geometric point b̄ = ±2 of A1 is a one-dimensional vector space over
Q`.

(iv) Assume moreover that the character ε of F× is not trivial. Then the smooth rank-two Q`-sheaf
R1π!F|A1−{2,−2} is pure of weight one.

(v) The sheaf R1π!Fε,ω|A1−{2,−2} is naturally isomorphic to R1π!Fε,ω−1 |A1−{2,−2}.

(vi) If the character ε of F×is non-trivial, then the dual of R1π!Fε,ω|A1−{2,−2} is naturally isomor-
phic to R1π!Fε−1,ω−1 |A1−{2,−2}(1). If ε has order two, then det

(
R1π!Fε,ω|A1−{2,−2}

)
= Q`(−1).

Proof. This proposition is proved in [7, Thm. 1]. We reproduce the proof for the convenience of
the reader.

Some remark on the hypothesis is in order. The hypothesis on ε and ω means that the characters
ε̃2 and ω̃2 of (F′)× cannot be both trivial, or equivalently that the characters ε̃ · ω̃ and ε̃ · ω̃−1 of
(F′)× cannot both be trivial. Since the order of ε divides q − 1, and the order of ω divides q + 1,
ε̃ = ω̃ if and only if ε̃ = ω̃−1.

We claim that the above hypothesis on the characters ε, ω implies that for any geometric point
b̄ ∈ A1, the sheaf F|Yb̄ on Yb̄ ⊂ Gm ⊂ P1 is ramified at both 0 and ∞. Consider first the point ∞.
We have

F|Yb̄ = L
ε̃(1+ b̄

z
+ 1
z2

)
⊗ L(ε̃·ω̃)(z) .

Moreover L
ε̃(1+ b̄

z
+ 1
z2

)
is unramified at∞. Hence F|Yb̄ is unramified at∞ if and only if ε̃ · ω̃ is equal

to the trivial character of (F′)×, which is ruled out by our hypothesis. Similarly we conclude from

F|Yb̄ = Lε̃(z2+b̄z+1) ⊗ L(ε̃−1·ω̃)(z)

that F|Yb̄ is unramified at 0 ∈ P1 if and only if ε̃−1 · ω̃ is equal to the trivial character of (F′)×,
which again is ruled out by our hypothesis. The claim is proved.

By the proper base change theorem, the first statement that Riπ!F = 0 for i 6= 1 can be
checked fiber by fiber. Over the fiber Yb̄ of a geometric point b̄ ∈ A1, the sheaf F|Yb̄ can be
thought of as a sheaf on U ×SpecF SpecFsep. The sheaf F|Yb̄ is ramified at the zero locus of Tr +b̄
in U ×SpecF SpecFsep, if ε is not trivial. This zero locus is finite of degree two over b̄, and is finite
étale of degree two over b̄ if b̄ 6= ±2.
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The cohomology group H0
c(Yb̄,F|Yb̄) vanishes because Yb̄ is not complete. The cohomology group

H2
c(Yb̄,F|Yb̄) ∼=

(
FηYb̄

)
πgeom

1 (Yb̄)
(−1)

vanishes because FYb̄ is ramified at both z = 0 and z =∞.

The statement that the stalks of R1π!F over the open subscheme A1 − {2,−2} are two-
dimensional vector spaces over Q` is a consequence of Grothendieck’s Euler-Poincaré characteristic
formula. The point is that the sheaf Lε on Gm is tamely ramified at 0 and ∞, and the sheaf Lω on
U is also tamely ramified at the complement of U in the smooth projective completion of U . Hence
the sheaf F|Yb̄ is tamely ramified at the complement of Yb̄ in the smooth projective completion of
Yb̄. Suppose that b̄ is a geometric point of A1 − {2,−2}. The sheaf F|Yb̄ being tamely ramified, we
have

χc(Yb̄,F|Yb̄) = χc(Yb̄,Q`) = χc(U,Q`)− 2 = −2 .

Therefore dim
Q`

(H1(Yb̄,F|Yb̄)) = 2. This argument actually shows that for any geometric point
b̄ ∈ A1(Fsep),

−χc (Yb̄,F|Yb̄) = −χc
(
Yb̄,Q`

)
is equal to the number of zeros of the polynomial Z2+b̄Z+1 in (Fsep)×, counted without multiplicity.
In particular if b̄ = ±2, then

−χc (Yb̄,F) = 1 = dim
Q`

H1(Yb̄,F|Yb̄) .

We have proved statement (iii).

The smoothness of the Q`-sheaf R1π!F on Y follows from [8, Cor. 2.1.2]: It suffices to verify the
smoothness after base change to F′. The scheme Y ×SpecF SpecF′|

A1−{2,−2} is an open subscheme
of P1× (A1−{2,−2}), whose complement Z is finite étale over A1−{2,−2} of degree 4. Moreover
the sum of the Swan conductor at the “missing points” is constant (being zero) for every point b
in the base A1 − {2,−2}. Therefore the theorem [8, Thm. 2.1.1] of Deligne applies.

In order to prove (iv), we may and do extend the base field from F to F′, and we identify
U×SpecFSpecF′ with Gm as in 2.2. Let b̄ be a geometric point over a closed point b of A1−{2,−2}.
Let jb be the injection of Gm

[
1

z2+bz+1

]
= Yb into P1. The assumption that ε is non-trivial implies

that F|Yb̄ is ramified at the zero locus of z2 + b̄z+ 1 in Gm, and we have seen that F|Yb̄ is ramified
at 0 and ∞. Hence

jb∗F|Yb = jb!F|Yb .

for any closed point b of A1 − {2,−2}. The statement (iv) follows from [3, Thm. 3.2.3].

The statement (v) follows immediately from Lemma 2.1.1 (ii). By [4, dualité, Thm. 1.3, 2.1],
we have a perfect pairing

R1π!Fε,ω × R1π!Fε−1,ω−1 → R2π!Q`
∼−→ Q`(−1)

induced by the cup product. When ε is the character of order two of F×, this pairing is isomorphic
to the determinant map for R1π!Fε,ω. This proves (vi).
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We would like to compute the Swan conductor of the smooth Q`-sheaf R1π!F|A1−{2,−2} over
A

1−{2,−2} at the “missing points” {2,−2,∞} ⊂ P1. Our strategy is to compute the cohomology
of F using the “first projection” f : Y → U of Y ⊂ U ×SpecF A

1.

(2.4) Lemma Let f : Y → U be the morphism given by the restriction of the projection U ×SpecF

A
1 ⊃ Y to the first factor U . Then Rif!F = (0) for all i ≥ 0.

Proof. For any point a ∈ U , the fiber f−1(a) ⊂ A1 is equal to SpecF(a)
[
t, 1

Tr(a)+t

]
. Hence the

complement W of Y in U ×SpecF P
1 is finite étale over U of degree 2. Moreover by the same

argument used in the proof of 2.3, the smooth Q` sheaf F is tamely ramified along the relative
Cartier divisor W ⊂ U ×SpecF P

1. The Euler-Poincaré characteristic formula gives

χc

(
(f−1(b̄),F|f−1(b̄)

)
= χc

(
f−1(b̄),Q`

)
= 0

for any geometric point b of U . On the other hand, the smooth sheaf F|f−1(b̄) is ramified at
the divisor W |f−1(b̄) ⊂ P1 of degree two, hence neither F|f−1(b̄) nor its dual can be geometrically
constant. Therefore

H0
c

(
(f−1(b̄),F|f−1(b̄)

)
= H2

c

(
(f−1(b̄),F|f−1(b̄)

)
= (0) .

We conclude that
H1
c

(
(f−1(b̄),F|f−1(b̄)

)
= (0)

as well since the Euler-Poincaré characteristic is equal to 0.

(2.5) Proposition The rank-two smooth Q`-sheaf R1π!|A1−{2,−2}F on A1−{2,−2} is tamely ram-
ified at {2,−2,∞} ⊂ P1.

Proof. Recall from 2.3 (iii) that the stalk of R1π!F at 2 and −2 are both one-dimensional. From
the short exact sequence

0→
(
R1π!F

)
|
A1−{2,−2} → R1π!F →

(
R1π!F

)
|{2,−2} → 0

we get
χc
(
A

1 − {2,−2}/Fsep ,R1π!F
)

= χc

(
A

1
/Fsep ,R1π!F

)
− 2 .

On the other hand, from the Leray spectral sequence we have

−χc
(
A

1
/Fsep ,R1π!F

)
= χc (Y ×SpecF SpecFsep,F)

=
∑

i(−1)i χc
(
U ×SpecF SpecFsep,Rif!F

)
= 0

by Lemma 2.4. Therefore χc
(
A

1 − {2,−2}/Fsep ,R1π!F|A1−{2,−2}
)

= −2.
The Euler-Poincaré characteristic χc

(
A

1 − {2,−2}/Fsep ,R1π!F|A1−{2,−2}
)

= −2 can also be
computed by Grothendieck’s formula, which gives

−2 = χc
(
A

1 − {2,−2}/Fsep ,R1π!F|A1−{2,−2}
)

= 2χc
(
A

1 − {2,−2}/Fsep ,Q`
)
−
∑

b∈{2,−2,∞} Swb

(
R1π!F|A1−{2,−2}

)
Since χc

(
A

1 − {2,−2}/SpecFsep ,Q`
)

= −1, the sum of the Swan conductor at 2,−2,∞ is equal to
zero, hence the Swan conductor at these three missing points are all equal to zero. We have proved
the tameness of R1π!F|A1−{2,−2}.

7



(2.6) So far we have seen that G = Gε,ω := R1π!F|A1−{2,−2} is a smooth rank-two Q`-sheaf which
is tamely ramified at 2,−2,∞. This sheaf corresponds to a linear representation ρ of the Galois
group Gal(F(P1)sep/F(P1)) on a two dimensional vector space Gη

A1
over Q`, the geometric generic

fiber of G. We would like to understand the restriction of the representation ρ to a decomposition
group Db, b = 2,−2,∞, using the theory of vanishing cycles.

We recall some standard notation about vanishing cycles. Let S be a smooth curve over a finite
field F, and let Y be a scheme of finite type over S. Let K ∈ Db

c(Y,Q`) be a “constructible complex
of Q`-sheaves” on Y . Let s be a closed point of the base scheme S. Let S(s) be the henselization
of S at s, and let ηs be the generic point of S(s). Let ηs = Spec(κ(ηs)sep) be the geometric point
lying over ηs. Let S(s) be the spectrum of the normalization of S in κ(ηs)sep. Let

jηs : Yηs = Y ×S ηs ↪→ YS(s)
= Y ×S S(s)

be the natural open embedding, and let

is̄ : Ys̄ = Y ×S s̄ ↪→ YS(s)
= Y ×S S(s)

be the natural closed embedding. The complex of near-by cycles over s for K is defined to be the
object

RΨs(K) := i∗s̄ Rjηs∗K

in Db
c(Ys̄,Q`), endowed with the natural action of the decomposition group

Ds := Gal (κ(ηs)sep/κ(ηs)) .

The complex of vanishing cycles RΦs(K) over s for K is defined as the mapping cone of the natural
arrow i∗s̄K → RΨs(K), endowed with the natural action of Ds. The cohomology sheaves of RΨ(K)
and RΦ(K) are denoted by Ψi(K) and Φi(K) respectively.

(2.7) Denote by U the projective completion of U , geometrically isomorphic to P1. Define Y to
be U ×SpecF P

1, which contains Y = U ×SpecF A
1 as a dense open subscheme. Let j : Y ↪→ Y be

the natural open embedding.

Recall that F is the rank-one Q`-sheaf Lε(Tr +t) ⊗ Lω on Y . Let π : Y = U ×SpecF P
1 → P

1 be
the natural projection.

Let F be the sheaf j!F , the sheaf F on Y extended by 0 to Y . We would like to compute the
vanishing cycle complex RΦbF of F for π, where b ∈ {2,−2,∞} is one of the “bad points” of the
base scheme P1.

(2.8) Theorem Assume that ε is non-trivial, and that the order of ω is not equal to two if ε has
order two. Let b be either 2 or −2.

(i) The vanishing cycle complex RΦb(F) is concentrated at one geometric point z0 of Yb, where
z0 = −1 if b = 2, and z0 = 1 if b = −2.

(ii) The i-th cohomology sheaf Φi
b(F)z0 of the stalk at z0 of RΦb(F) is zero if i 6= 1, and Φ1

b(F)z0
is one-dimensional.
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(iii) Suppose that ε is non-trivial and has order two, and ω is not the non-trivial character of U(F)
of order two. Then the inertia group Ib operates trivially on Φ1

b(F)z0, and Φ1
b(F)z0 is pure of

weight two as a module of the decomposition group Db.

(iv) Suppose that ε2 is non-trivial. Then Φ1
b(F)z0 is pure of weight one as a module of the decom-

position group Db.

Proof of (i) and (ii). The statement (i) follows from [8, Cor. 2.1.2]. It is easy to see that
Φ−1
b (F)z0 = 0 and that Φ0

b(F)z0 = 0. The long exact sequence

· · · → Hi(Y b̄, i
∗
b̄F)→ Hi

c(Yηb , j
∗
ηb
F)→ Φi

b(F)z0 → Hi+1(Y b̄, i
∗
b̄F)→ · · ·

gives Φi
b(F)z0 = 0 for all i ≥ 2, and it reduces to the following short exact sequence

0→ H1(Y b̄, i
∗
b̄F)→ H1

c(Yηb , j
∗
ηb
F)→ Φ1

b(F)z0 → 0 .

By the same argument as in the proof of Proposition 2.3, essentially a Euler characteristic calcu-
lation, we see that H1(Y b̄, i

∗
b̄
F) = H1

c(Yb̄,F|Yb̄) is one dimensional. This proves the statement (ii).
Also notice that the inertia group Ib operates trivially on the one-dimensional subspace H1(Y b̄, i

∗
b̄
F)

of Gη̄.

Proof of (iv). From the proof of (i), (ii) above, we see that H1
c(Yb̄,F|Yb̄) is a one-dimensional

Db-submodule of Gη̄. Let jb : Yb ↪→ Y b be the canonical inclusion. Extending the base to F′, the
map jb becomes the inclusion of Gm − {zb} in P1, where zb = 1 (resp. zb = −1) if b = −2 (resp.
b = 2); the sheaf Fb becomes the sheaf Lε̃2(z−zb) ⊗ Lε̃−1·ω̃ on Gm − {zb}.

The assumption that ε2 is nontrivial implies that ε̃ 6= ω̃±1. Therefore Fb is ramified at the
points zb, 0 and ∞ of P1. Hence (jb)!Fb = (jb)∗Fb. By Theorem 3.2.3 in [3], the action of Frb
on H1

c(Yb̄,Fb̄) is pure of weight one. By Deligne’s theorem on the monodromy weight filtration,
Theorem 1.8.4 of [3], we conclude that the Db-module Gη̄ is pure of weight one.

To prove (iii), it suffices to show that the Db-module H1
c(Yb̄,F|Yb̄) is unramified and pure of

weight zero, by Deligne’s theorem on the monodromy weight filtration [3, 1.8.4]. That the inertia
group Ib operates trivially on H1

c(Yb̄,F|Yb̄) is obvious. As before we extend the base field to F′.
Since ε2 is trivial, the sheaf F|Yb̄ on Gm−{zb} becomes the restriction to Gm−{zb} of the smooth
rank-one sheaf Lε̃·ω̃ on Gm.

We have Hi
c(Gm/F′sep ,Lε̃·ω̃) = (0) for i = 0, 2 since Lε̃·ω̃ is ramified at 0 and ∞. Furthermore

χc(Gm/F′sep ,Lε̃·ω̃) = 0 by Grothendieck’s Euler-Poincaré characteristic formula. This implies that
Hi
c(Gm/F′sep ,Lε̃·ω̃) = (0) for all i.

From the short exact sequence

0→ Lε̃·ω̃|Gm−{zb} → Lε̃·ω̃ → Lε̃·ω̃|b → 0

we see that H1
c(Yb̄,Lε̃·ω̃) ∼= Lε̃·ω̃|b̄ as Db-modules. This finishes the proof of Theorem 2.8.

(2.8.1) Remark In the case (iv) of Theorem 2.8, the inertia group Ib acts via a non-trivial finite
cyclic quotient µm on Φ1

b(F)z0 with (m, p) = 1. The order, m, of this cyclic group depends only
on the order of the character ε and is given as follows. Let n be the order of ε2; write n = 2an1,
a ≥ 0, and (2, n1) = 1. Then m = 2n if a = 0, m = n1 = n

2 if a = 1, and m = n if a ≥ 2.

9



(2.9) Theorem Assume that p is an odd prime number. Suppose that ε is the non-trivial character
of F× of order two, and ω is not the non-trivial character of U(F) of order two.

(i) Suppose that b = −2. Then the decomposition group Db operates via the unramified character
of order two λ2 : Db � µ2 of Db on the one-dimensional Q`-space (G|η)Ib consisting of
all inertia invariants in the geometric generic fiber of G. In other words every geometric
Frobenius element Frq operates as −1.

(ii) Suppose that b = 2. Then the one-dimensional Db-module (G|η)Ib is unramified, on which
every geometric Frobenius element Frq ∈ Db operates as −ε(−1)ω(−1).

(iii) The geometric monodromy group for G is equal to SL(2).

Proof of (i). Suppose that b = −2, and denote by z1 a geometric point lying above (1,−2) ∈
U ×A1(F) = U(F)× F This is the only point in the fiber Yb where the sheaf F is ramified. Denote
by b̄ a geometric point lying above b.

In the proof of Theorem 2.8 (iii) we saw that there is a short exact sequence

0→ H1(Y b̄,F|Y b̄)→ G|b̄ → Φ1
b(F)z1 → 0 .

The one-dimensional Q` space H1(Y b,F|Y b) is equal to (G|b)Ib , the inertia invariants in the two-
dimensional Db-module G|b. The sheaf F|Y b on Y b

∼= U is canonically isomorphic to the extension
by zero to U of the sheaf Lε(Tr−2)⊗Lω on U −{1}. Let jU−{1} : U −{1} ↪→ U and jU : U ↪→ U be
the natural inclusions. Over F′, U×SpecFSpecF′ is isomorphic to Gm, and the sheaf Lε(Tr−2)⊗Lωis
isomorphic to

Lε̃2(z−1) ⊗ Lε̃−1·ω̃ = Lε̃−1·ω̃|U−{1} ,

since ε has order two. Clearly (U−{1} ↪→ U)∗Lε̃−1·ω̃ is equal to the smooth rank-oneQ`-sheaf Lε̃−1·ω̃
on U/F′ , which is tamely ramified at 0 and ∞. By Grothendieck’s Euler-Poincaré characteristic
formula, χc(U ×SpecF SpecFsep,Lε̃−1·ω̃) = 0, hence Hi

c(U ×SpecF SpecFsep,Lε̃−1·ω̃) = (0) for all i.
From the above we know that (U − {1} ↪→ U)∗Lε(Tr−2) ⊗Lω is a smooth rank-one sheaf on U ,

and we have a short exact sequence

0→ (U − {1} ↪→ U)!(Lε(Tr−2) ⊗ Lω)→ (U − {1} ↪→ U)∗(Lε(Tr−2) ⊗ Lω)
→ (U − {1} ↪→ U)∗(Lε(Tr−2) ⊗ Lω)|u=1 → 0 .

From the associated long exact sequence of cohomologies we get an isomorphism

H1(Y b,F|Y b)
∼= (U − {1} ↪→ U)∗(Lε(Tr−2) ⊗ Lω)|u=1

of Db-modules.
To finish (i) we have to compute the action of Db on (U − {1} ↪→ U)∗(Lε(Tr−2) ⊗ Lω)|u=1.

By definition, the geometric Frobenius element Fr1 as ω(1) = 1 on the restriction of the smooth
rank-one sheaf Lω to the point 1 ∈ U(F), so we only need to compute the Galois action on the
restriction of (U − {1} ↪→ U)∗Lε(Tr−2) to 1 ∈ U(F). Since ε is the non-trivial character of Gm(F)
of order two, the sheaf Lε on Gm is the push-forward of the short exact sequence

1→ µ2 → Gm
[2]−→ Gm → 1
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by the non-trivial character of µ2. Hence the action of Db/Ib ∼= FrZq on the one-dimensional Q`-
vector space (U − {1} ↪→ U)∗Lε(Tr−2)|u=1 can be computed as follows. Pick a generator π1 of the
maximal ideal of the local ring OU,1 and consider the leading term am · πm1 in expansion of the
element Tr−2 ∈ OU,1 as a power series in π1 with coefficients in F. Then every Frobenius element
Frq operates as ε(am) · (−1)m on the one-dimensional space above.

We still need to perform the power series expansion of Tr−2 ∈ OU,1. Pick an element a ∈ F′,
a /∈ F. Let z be the standard coordinate function of Gm/F′

∼= U ×SpecF SpecF′. Then the function
π1 = a z+ aq z−1− a− aq ∈ Γ(OU )⊗F F′ = Γ(Gm/F′ ,OGm/F′ ) is a regular function on U and gives a
uniformizing element of OU,1. Expanded as a series in the monomials of (z − 1), the leading term
of a z + aq z−1 − a − aq is (a − aq) (z − 1). On the other hand, the leading term of the expansion
of Tr−2 in powers of (z − 1) is (z − 1)2. Hence the leading term of the expansion of Tr−2 in the
powers of π1 is (a− aq)−2 π2

1. Since ε((a− aq)2) = −1, we have proved the assertion in (i).

Proof of (ii). The case b = 2 is similar to the case b = −2 before. The only difference is the power
series expansion of Tr +2. Pick an element a ∈ F′, a /∈ F as before. Then π−1 = a z+aq z−1+a+aq is
a uniformizing element for OU,−1, and the leading term of the expansion of Tr +2 in the monomials
of π−1 is −(a− aq)2 π2

−1.

Proof of (iii). The geometric monodromy group is contained in SL(2) by Prop. 2.3 (vi). On the
other hand, we know by [3, Cor. 1.3.9] that the neutral component of the geometric monodromy
group is semisimple, hence it is either trivial or is equal to SL(2) in the present case. According
to the theory of monodromy weight filtration in [3, §1.8], the geometric monodromy group contain
the exponential of the logarithm of N of the inertia action at b = 2 and b = −2. By (i) and (ii),
the monodromy weight filtration is non-trivial both for b = 2 and b = −2, hence the logarithm N

of the inertia action is nontrivial at b = ±2 according to Deligne’s theory in [3, §1.8]. In particular
the geometric monodromy group cannot be finite. This finishes the proof of Theorem 2.9.

(2.9.1) Remarks (1) Suppose that ε has order two. From (i) and (ii) one sees that det(G) is
unramified at ±2. We already know that it is tamely ramified at ∞, therefore det(G) is unramified
since the tame fundamental group of A1 is trivial. This means that det(G) is the pull-back from
SpecF. Then we can determine det(G) from its stalk at 2 or −2 using (i), (ii); or one use the fact
that the characteristic polynomials of Frobenii for G are real to deduce that det(G) = Q`(−1). This
gives an alternative proof of the fact that det(G) is Q`(−1).

(2) If ε2 is not trivial, then det(G) is ramified, hence is not equal to Q`(−1).

(2.10) Theorem Assume that ε is not the trivial character of F×, that ω is not the trivial
character of U(F), and that ε2 and ω2 are not both trivial. Consider the geometric fiber G|η of
G := R1π!F|A1−{2,−2} as a module of the decomposition group D∞ at ∞. Then the wild inertia
group P∞ acts trivially, and I∞ operates via a finite quotient with no non-zero fixed element in G|η.
As a D∞-module, G|η is a direct sum of two one-dimensional D∞-submodules corresponding to two
characters of D∞; each character is ramified (tamely) and pure of weight one.

(2.11) Over F′, the complement of Y ×SpecF SpecF′ in

Y ×SpecF SpecF′ = U ×SpecF P
1 ×SpecF SpecF′

is the union of four divisors:

11



• S0 = {0} × P1,

• S∞ = {∞} × P1,

• Yv = U × {∞},

• Dh, the Zariski closure in Y of the zero locus of Tr +t in Y .

The Frobenius element Frq interchanges S0 and S∞. The divisors Yv and Dh are defined over
F. The three divisors S0,Dh, Yv intersect at the point y0 = (0,∞); the three divisors S∞,Dh, Yv
intersect at the point y∞ = (∞,∞).

Let X → Y be the blowing-up of Y at the two points {y0, y∞}. The inverse image in Z of the
union of the four divisors in Y above is the union of the following six divisors in Z.

• E0, the exceptional divisor above y0,

• E∞, the exceptional divisor above y∞,

• D̃0, the strict transform of S0,

• D̃∞, the strict transform of S∞,

• D̃h, the strict transform of Sh,

• Zv, the strict transform of Yv.

Let Z be the union of six divisors above; it is a reduced divisor with normal crossings. This
divisor has six singularities:

• x0,0, the intersection of D̃0 and E0,

• x0,h, the intersection of D̃h and E0,

• x0,v, the intersection of Zv and E0,

• x∞,∞, the intersection of D̃∞ and E∞,

• x∞,h, the intersection of D̃h and E∞,

• x∞,v, the intersection of Zv and E∞

Denote by j̃ = j̃Y,X : Y ↪→ X the open immersion of Y in X, and let F̃ := j̃!F . Let π̃ : X → P
1

be the projection from X to the base scheme P1, and let X∞ be the divisor E0 ∪ Zv ∪ E∞, the
inverse image of ∞ under π̃. We would like to understand the vanishing cycle complex RΦ∞(F̃)
with respect to π̃.

(2.12) Theorem Assume as in the statement of 2.10 that ε is not the trivial character of F×, that
ω is not the trivial character of U(F), and that ε2 and ω2 are not both trivial.

(i) The i-th cohomology sheaf Φi
∞(F̃) of RΦ∞(F̃) is equal to zero for all i ≥ 1.
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(ii) The stalk of Φ0
∞(F̃)x is equal to zero if x ∈ {x0,0, x0,h, x0,v, x∞,∞, x∞,h, x∞,v}.

(iii) The sheaf Φ0
∞(F̃)|Zv−{x0,v ,x∞,v} is smooth of rank one, tamely ramified at the two points

{x0,v, x∞,v} with respect to Zv − {x0,v, x∞,v} ↪→ Zv. Moreover

(Zv − {x0,v, x∞,v} ↪→ Zv)!

(
Φ0
∞(F̃)|Zv−{x0,v ,x∞,v}

)
= (Zv − {x0,v, x∞,v} ↪→ Zv)∗

(
Φ0
∞(F̃)|Zv−{x0,v ,x∞,v}

)
The inertia group I∞ acts on this sheaf via a one-dimensional tame character whose order is
equal to the order of ε.

(iv) The sheaf Φ0
∞(F̃)|E0−{x0,v ,x0,h,x0,0} is smooth of rank one, tamely ramified at the three point

{x0,v, x0,h, x0,0} with respect to E0 − {x0,v, x0,h, x0,0}. Moreover

(E0 − {x0,v, x0,h, x0,0})!

(
Φ0
∞(F̃)|E0−{x0,v ,x0,h,x0,0}

)
= (E0 − {x0,v, x0,h, x0,0})∗

(
Φ0
∞(F̃)|E0−{x0,v ,x0,h,x0,0}

)
The inertia group I∞ acts on this sheaf via a tame character whose order is equal to the order
of ε̃−1 · ω̃.

(v) The sheaf Φ0
∞(F̃)|E∞−{x∞,v ,x∞,h,x∞,∞} is smooth of rank one, tamely ramified at the three

points {x∞,v, x∞,h, x∞,∞} with respect to E∞ − {x∞,v, x∞,h, x∞,∞}. Moreover

(E∞ − {x∞,v, x∞,h, x∞,∞})!

(
Φ0
∞(F̃)|E∞−{x∞,v ,x∞,h,x∞,∞}

)
= (E∞ − {x∞,v, x∞,h, x∞,∞})∗

(
Φ0
∞(F̃)|E∞−{x∞,v ,x∞,h,x∞,∞}

)
The inertia group I∞ acts on this sheaf via a tame character whose order is equal to the order
of ε̃ · ω̃.

Deduction of Theorem 2.10 from Theorem 2.12. Since the restriction of F̃ to X∞ is zero,
Gη̄ is isomorphic to H1(X∞,RΦ∞(F̃)) as representations of the decomposition group D∞, where
X∞ is the geometric fiber of X over the geometric point ∞ above ∞ ∈ P1. From the statements
(i), (ii) of Theorem 2.12, we see that H1(X∞,RΦ∞(F̃)) is isomorphic to the direct sum of

H1
c(Zv × SpecFsep − {x0,v, x∞,v},Φ0

∞(F̃)),

H1
c(E0 × SpecFsep − {x0,v, x0,h, x0,0},Φ0

∞(F̃)), and

H1
c(E∞ × SpecFsep − {x∞,v, x∞,h, x∞,∞},Φ0

∞(F̃)).

From the Euler-Poincaré characteristic formula we see that first of the three cohomology groups
is zero according to 2.10 (iii). Again by the Euler-Poincaré formula, the latter two cohomology
groups are both one dimensional, and are pure of weight one as representations of the inertia group
D∞ by [3, 3.2.3].
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(2.13) Lemma Let j : Gm ×SpecF Gm ↪→ A
1 ×SpecF A

1 be the natural open immersion. Let
χ1 , χ2 : Gm(F)→ Q`

× be characters of Gm(F) = F
×. We assume that χ1 is non-trivial. Let (x, y)

be the standard coordinates on A1×A1 and on Gm×Gm. Denote by Lχ1 (x)χ2 (y) the smooth rank-one

Q`-sheaf pr∗1Lχ1
⊗ pr∗2Lχ2

on Gm ×SpecF Gm. Let RΦ
(
j!Lχ1 (x)χ2 (y)

)
be the complex of vanishing

cycle for j!
(
Lχ1 (x)χ2 (y)

)
over A1 × {0} with respect to the second projection pr2 : A1 × A1 → A

1.

Then the stalk RΦ
(
j!Lχ1 (x)χ2 (y)

)
(0,0)

of the complex of vanishing cycles at (0, 0) is acyclic.

Proof. According to the definition of vanishing cycles we have a natural isomorphism

RΦ
(
j!Lχ1 (x)χ2 (y)

)
=
(
Lχ2
|η
)
⊗ RΦ

(
j!Lχ1 (x)

)
,

where Lχ2
|η is the stalk of the sheaf Lχ2

over a geometric generic point η of Gm, regarded as a
representation of the decomposition group D0 over the point 0 of the base A1. Therefore we may
and do assume that χ2 is trivial.

Let k : Gm×SpecFA
1 ↪→ A

1×SpecFA
1 be the standard natural inclusion. Denote by pr∗1Lχ1

the
smooth rank-one Q`-sheaf on Gm ×SpecF A

1 obtained by pulling back the sheaf Lχ1
on Gm/F via

the first projection. We have a short exact sequence

0→ j!
(
pr∗1Lχ1

)
→ k!

(
pr∗1Lχ1

)
→ k!

(
pr∗1Lχ1

)
|
A1×{0} → 0 .

By SGA 7 II, exposé XIII, Lemma 2.1.11,

RΦ
(
k!

(
pr∗1Lχ1

))
= 0 .

It follows that
RΦ

(
j!Lχ1 (x)χ2 (y)

)
(0,0)

= k!

(
pr∗1Lχ1

)
|(0,0)[−1] = 0 .

(2.14) Proposition Let j : Gm ×SpecF Gm ↪→ A
2
/F be the natural inclusion. Let f : A2 =

SpecF[x, y] → A
1 = SpecF[t] be the morphism over F given by the F-algebra homomorphism

which sends t to xy. Let
χ1 , χ2 : Gm(F) = F

× → Q`
×

be two characters of F×, χ1 6= χ2. Let Lχ1 (x)·χ2 (y) = pr∗1Lχ1
⊗ pr∗2Lχ2

, where Lχi is the smooth
rank-one Q`-sheaf on Gm given by pushing out the Lang torsor by χi, i = 1, 2. Then the stalk
RΦ(j!Lχ1 (x)·χ2 (y))(0,0) at (0, 0) of the complex RΦ(j!Lχ1 (x)·χ2 (y)) of vanishing cycles with respect to
f is an acyclic complex.

Proof. After tensoring with f∗Lχ−1
2

, we may and do assume that χ2 is trivial, therefore χ1 is
non-trivial.

We partially compactify the morphism f involved as follows. Let U = Gm×SpecFGm, contained
in P1 ×SpecF A

1. Let (x, s) be the standard coordinate functions for Gm × Gm, and let y = s
x .

Let X be the blowing-up of P1 ×SpecF A
1 at (0, 0). Let f : X → A

1 be the composition of the
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blowing-up morphism X → P
1 × A1 and the second projection P1 × A1 → A

1. This is compatible
with the geometric set-up in the statement of Theorem 2.14, since X contains SpecF[x, y] as an
open subscheme. The fiber f−1(0) is the union of the strict transform D̃ of P1 × {0} ⊂ P1 × A1

and the exceptional divisor E of f . Let x̃0 be the intersection of D̃ with E. Let x∞ ∈ D̃ be the
intersection of D̃ with the strict transform of {∞}×A1. Let x′∞ ∈ E be the point on E which lies
outside the affine open subscheme SpecF[x, y] of X. Let k : Gm ×Gm ↪→ X be the inclusion map.
Over Gm ×Gm = Spec [x, x−1, s, s−1] = Spec [x, x−1, y, y−1] we have the smooth rank-one Q` sheaf
Lχ1 (x). Let G = k!Lχ1 (x). Let D′ = D − {x̃0, x∞}, and let E′ = E − {x̃0, x

′
∞}. We compute the

restriction to D′ t E′ of the complex of vanishing cycles for G.
The open subscheme Gm × A1 of P1 × A1 contains D′. Over this open subscheme the sheaf

Lχ1 (x) on SpecF[x, x−1, y, y−1] extends to a smooth rank-one smooth sheaf, the pull-back of the
sheaf Lχ1

on Gm to Gm ×A1 via the second projection Gm ×A1 → Gm. From this we deduce that
the restriction of RΦ(G) to D′ = Spec[x, x−1] ∼= Gm is isomorphic to Lχ1

[1], with trivial action by
the decomposition group.

On the other hand, E′ is contained in the open subscheme SpecF[s, y, y−1]. Over the open sub-
scheme SpecF[s, s−1, y, y−1] ⊂ SpecF[s, y, y−1], we have Lχ1(x) = Lχ1 (s)χ−1

1 (y). From the definition
of vanishing cycles we get

RΦ(G)|E′=SpecF[y,y−1] =
(
Lχ1

)
η
⊗ Lχ−1

1 (y)[1] ,

where the second factor Lχ−1
1

is the smooth rank-one Q`-sheaf on E′ = SpecF[y, y−1] = Gm

attached to the character χ−1
1

, while the first factor
(
Lχ1

)
η

is the geometric generic fiber of the

smooth rank-one Q`-sheaf Lχ1
regarded as a linear representation of the decomposition group D0

at 0.
From Grothendieck’s Euler-Poincaré characteristic formula and the computation above, we

deduce that
H
i
c(D

′,RΦ(G)|D′) = 0 ∀i ∈ Z

and
H
i
c(E

′,RΦ(G)|E′) = 0 ∀i ∈ Z .

Similarly from the Euler-Poincaré formula we have

Hi
c(Gm,Lχ1

) = 0 ∀i ∈ Z .

We have a short exact sequence

0→ (D′ t E′ ↪→ D ∪ E)! (RΦ(G)|D′tE′)→ RΦ(G)
→ RΦ(G)|x̃0 ⊕ RΦ(G)|x̃∞ ⊕ RΦ(G)|x′∞ → 0

Let η be a geometric generic fiber of the base scheme A1. The theory of vanishing cycles gives

0 = Hi
c(Gmη,Lχ1

) = Hi(P1
η,Gη) = H

i
c(D ∪ E,RΦ(G)) ∀i .

From the long exact sequence we deduce that the stalk at x̃0 RΦ(G)|x̃0 of the complex of van-
ishing cycles RΦ(G) is acyclic. This proves Proposition 2.14 since RΦ(G)|x̃0 is isomorphic to
RΦ(j!Lχ1 (x))|(0,0).

15



Proof of Theorem 2.12. The proof is a little tedious, consisting of computation of the restriction
of the complex of vanishing cycles RΦ∞(F̃ ) to the disjoint open subsets E′0 := E0−{x00, x0,h, x0,v},
Z ′v = Zv − {x0,v, x∞,v}, E′∞ = Ev − {x∞,∞, x∞,h, x∞,v} of X∞, and the stalks of the complex of
vanishing cycles at the six points x00, x0,h, x0,v, x∞,∞, x∞,h, x∞,v.

Notice that the automorphism (u, t) 7→ (u−1, t) of U ×Gm sends Lε(Tr +t) ⊗Lω(t) to Lε(Tr +t) ⊗
Lω−1(t), and interchanges y0 and y∞. Therefore it suffices to do the calculation for E′0, Z

′
v, and

x00, x0,h, x0,v.

(a) RΦ∞(F̃ )|E′0 .

Let s = 1
t , a coordinate for P1 at ∞ ∈ P

1. Let u = z
s . The affine open subscheme

SpecF′[u, u−1, 1
s2u2+1+u

, s] ⊂ X contains E′0. On SpecF′[u, u−1, 1
s2u2+1+u

, s] ⊂ X, the sheaf
F̃ is equal to

Lε̃(s2u2+1+u) ⊗ L(ω̃·ε̃−1)(u) ⊗ L(ω̃·ε̃−1)(s) .

Since Lε̃(s2u2+1+u) ⊗ L(ω̃·ε̃−1)(u) is smooth on SpecF′[u, 1
s2u2+1+u

, s], we get

RΦ∞(F̃ )|E′0 = Lε̃(1+u) ⊗ L(ω̃·ε̃−1)(u) ⊗ RΦt=∞(j̃!pr∗2L(ω̃·ε̃−1)(s))|E′0 .

By the definition of the vanishing cycles,

RΦt=∞(j̃!pr∗2L(ω̃·ε̃−1)(s))|E′0
∼= RΨt=∞(j̃!pr∗2L(ω̃·ε̃−1)(s))|E′0

is equal to pr∗2RΨt=∞
(
(Gm ↪→ P

1)!(L(ω̃−1ε̃)(t))
)
|E′0 . By definition, RΦt=∞(j̃!L(ω̃−1ε̃)(t)) is rep-

resented by the D∞-module L(ω̃−1ε̃)(t)|η∞ , “concentrated at degree zero”. In other words,
RΦ∞(F̃)|E′0 “is” the smooth sheaf Lε̃(1+u)⊗L(ω̃·ε̃−1)(u), with D∞ action via the character for
the D∞-module L(ω̃−1ε̃)(t)|η∞ .

(b) RΦ∞(F̃ )|Z′v .
Near Z ′v, we have coordinates z, s, with s = 1

t : Z
′
v ⊂ SpecF′[z, z−1, s] ⊂ X. Over this open

subscheme SpecF′[z, z−1, s, s−1, (sz2 + s+ z)−1], F̃ is equal to

Lε̃(sz2+s+z) ⊗ L(ω̃·ε̃−1)(z) ⊗ Lε̃−1(z) .

Hence
RΦ∞(F̃ )|Z′v = Lω̃(z) ⊗ RΦ∞(j̃!pr∗2Lε−1(s))|Z′v .

In other words, RΦ∞(F̃ )|Z′v “is” equal to the smooth sheaf Lω̃(z) on Z ′v, with the decomposi-
tion group D∞ operating via the character for the D∞-module Lε(t)|η∞ .

(c) RΦ∞(F̃ )x0,0
.

For u = z
s , the affine scheme V0,0 = SpecF′[u, s, 1

s2u2+1+u
] is an open neighborhood of x0,0.

Let U0,0 = SpecF′[u, s, 1
(s2u2+1+u)su

], and let j0,0 : U0,0 ↪→ V0,0 be the natural inclusion. Over
V0,0 we have

F̃ = j0,0!

(
Lε̃(s2u2+1+u) ⊗ L(ω̃·ε̃−1)(s) ⊗ L(ω̃·ε̃)−1(u)

)
.
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Hence

RΦ∞(F̃ )x0,0
= Lε̃(1+u)|u=0 ⊗ L(ω̃−1·ε̃)(t)|η∞ ⊗ RΦ∞

(
j0,0!(L(ω̃·ε̃−1)(u))

)
x0,0

which is acyclic by Lemma. 2.13, since ω̃ · ε̃−1 is non-trivial.

(d) RΦ∞(F̃ )x
0,h

.

Let V0,h = SpecF′[u, s, 1
u ], an affine open subscheme which contains x0,h, and let U0,h =

SpecF′[u, s, 1
su(s2u2+1+u)

]. Let j0,h : U0,h ↪→ V0,h be the open immersion. The elements
(s, s2u2 + 1 + u) form a regular system of parameters at x0,h. Over V0,h we have

F̃ = j0,h!(L(ω̃·ε̃−1)(u) ⊗ Lε̃(s2u2+1+u) ⊗ L(ω̃·ε̃−1)(s)) .

So

RΦ∞(F̃ )x
0,h

= L(ω̃·ε̃−1)(u)|u=−1 ⊗ L(ω̃−1·ε̃)(t)|η∞ ⊗ RΦ∞
(
j0,h!(Lε̃(s2u2+1+u))

)
x

0,h

,

which is acyclic by Lemma 2.13, since ω̃−1 · ε̃ is non-trivial.

(e) RΦ∞(F̃ )x0,v
.

Let v = s
z . The scheme SpecF′[s, v, (z2v + v + 1)−1] is an open neighborhood of the point

x0,v, given by s = v = 0. Over SpecF′[s, v, (z2v + v + 1)−1] we have

Lε̃(z+z−1+s−1) ⊗ Lω̃(z) = Lε̃(z2v+v+1) ⊗ L(ε̃−1·ω̃)(z) ⊗ Lε̃−1(v)

By Prop. 2.14 we conclude that RΦ(F̃)x0,v
is acyclic, because ω̃ is non-trivial.

§3. A family of character sums of the first type

In this section we study the family of character sums denoted by λa,χ in §1.

(3.1) The geometric set-up
Let F be a finite field with q elements, where q is a power of an odd prime number p. Let B

be the base curve P1 with rational function field F(t). Let X be the surface contained in B × P2

defined by the equation
SY 2 = S(X − Z)2 + 4TXZ .

Here S, T are the homogeneous coordinates of B, while X,Y, Z are the homogeneous coordinates
of P2; let t, x, y denote the rational functions T

S ,
X
Z ,

Y
Z respectively. Let f : X → B be the natural

projection. Let η be the generic point of B.
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It is easy to see that X is a proper smooth surface over F. Moreover, f : X → B is smooth
over V = B − {b0, b1, b∞}, where b0, b1, b∞ are the points of B where the value of t is equal to
0, 1,∞ respectively. The three degenerate fibers will be denoted by X0, X1 and X∞ respectively;
one checks easily that they are all reduced with normal crossings. Moreover, each of the three
singular fibers is a union of two copies of P1 intersecting transversally at exactly one F-rational
point. The singular point s0 (resp. s1, resp. s∞) of f is given by equations t = 0, x = 1, y = 0 (resp.
t = 1, x = −1, y = 0, resp. S

T = 0, XY = Z
Y = 0).

Let D0 (resp. D∞) be the divisor of X given by X = 0 (resp. Z = 0). Let U be the complement
in X of the union of D0 and D∞. One checks that D0 is the union of a divisor Dh

0 finite étale over
B with degree two and the component EX,S of X∞ where X vanishes. Similarly D∞ is the union of
a divisor Dh

∞ finite étale over B with degree two and the component EZ,S of X∞ where Z vanishes.
Below we give an explicit description of the divisors involved.

• Dh
0 is defined by the equations {X = 0, Y 2 −Z2 = 0}. It is the disjoint union of two divisors

Dh
Y+Z,X and Dh

Y−Z,X , where the subscripts are the defining equations for the two divisors,
each isomorphic to the base curve B under f .

• EX,S is defined by the equations {X = 0, S = 0}.

• Dh
∞ is defined by the equations {Z = 0, Y 2−X2 = 0}. It is the disjoint union of two divisors

Dh
X−Y,Z and Dh

X+Y,Z , indexed by their defining equations, and each is isomorphic to B.

• EZ,S is defined by the equations {Z = 0, S = 0}.

• X0 is defined by the equations {T = 0, Y 2 − (X − Z)2 = 0}. It is the union of two divisors
Dv
Y−X+Z,T and Dv

Y+X−Z,T , indexed by their defining equations.

• X1 is defined by the equations {S−T = 0, Y 2− (X+Z)2 = 0}. It is the union of two divisors
Dv
Y+X+Z,S−T and Dv

Y−X−Z,S−T , indexed by their defining equations.

• X∞ is defined by the equations {S = 0, XZ = 0}; it is the union of EX,S and EZ,S .

The union of the horizontal divisors meet each of the three singular fibers X0, X1, X∞ transversally
at four F-rational points. For instance the horizontal divisor Dh

∞ meets EZ,S transversally at two
points x∞,∞, x′∞,∞, with projective coordinates ([X : Y : Z :] = [1 : 1 : 0], [S : T ] = [0 : 1]) and
([X : Y : Z :] = [1 : −1 : 0], [S : T ] = [0 : 1]) respectively; the horizontal divisor Dh

0 meets EX,S
transversally at two points x0,0, x′0,0, with projective coordinates ([X : Y : Z] = [0 : 1 : 1], [S : T ] =
[0 : 1]) and ([X : Y : Z] = [0 : 1 : −1], [S : T ] = [0 : 1]) respectively. Denote these four points on
X∞ by s∞,i, i = 1, 2, 3, 4. Similarly we denote by s0,i, i = 1, . . . , 4 (resp. s1,i, i = 1, 2, 3, 4) the
four intersection points of X0 (resp. X0) with the horizontal divisors; the actual numbering will be
unimportant for us.

The rational function x = X
S on X defines a morphism from U to Gm; denote by F(χ) the

pull-back x∗Lχ of the rank-one smooth sheaf Lχ on Gm defined by the character χ of F×. So F(χ)
is a smooth rank-one Q`-sheaf on U . We assume that χ is non-trivial. Let j : U → X be the
inclusion map. Let F(χ) = j!F(χ). The complement of U in X can be regarded as the ramification
divisor of the Q`-sheaf F(χ); it is the union of the horizontal divisors and X∞.
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(3.2) Proposition Assume that χ is a non-trivial character of F×. Then

Ri(f |U )!F(χ) = 0 if i 6= 1 .

The Q`-sheaf G(χ) := R1(f |U )!F(χ) on B − {b0, b1, b∞} is smooth of rank two on V = B −
{b0, b1, b∞}, and is pure of weight one.

Proof. For every geometric point b̄ ∈ V , the restriction of the sheaf F(χ) to the geometric fiber Xb

is smooth outside the four intersection points with the horizontal divisors, and is tamely ramified at
these four intersection points since χ is not trivial. This implies the vanishing statement, and the
statement about the rank follows from the Euler-Poincaré characteristic formula. The purity of the
sheaf G(χ) := R1(f |U )!F(χ) follows from [3, Thm. 3.2.3]. The smoothness of G(χ) := R1(f |U )!F(χ)
follows from Lemma 2.13; it is also a consequence of the local acyclicity of the vanishing cycle
complex for smooth morphisms, since F(χ) is tamely ramified along the horizontal divisors, which
are smooth over B.

(3.3) Lemma The sheaf G(χ) := R1(f |U )!F(χ) is canonically isomorphic to G(χ−1), and the co-
efficients of the characteristic polynomial of the Frobenii on G(χ) are totally real algebraic numbers.
If χ is not trivial, then det(G(χ)) is equal to Q`(−1).

Proof. We have a B-involution ι of X, which interchanges the projective coordinates X,Z and
leaves Y, S, T fixed. Moreover ι∗(F(χ)) = F(χ−1). When χ is non-trivial, the cup product gives a
perfect pairing

R1(f |U )!F(χ)× R1(f |U )!F(χ−1)→ R2(f |U )!Q`
∼−→ Q`(−1)

by [4, dualité, Thm. 1.3, 2.1], and this pairing factors through det(G).

(3.4) Proposition Assume that χ is a non-trivial character of F×. Denote by RΦb0(F(χ)) (resp.
RΦb1(F(χ)) the complex of vanishing cycles for the sheaf F(χ) with respect to the map f : X→ B

over the point b0 ∈ B (resp. b1 ∈ B.)

(i) The stalks of the vanishing cycle complex at the intersection points with the horizontal divisors
are acyclic:

Φj
b0

(F(χ))s0,i = 0 ∀j ≥ 0, i = 1, 2, 3, 4,
Φj
b1

(F(χ))s1,i = 0 ∀j ≥ 0, i = 1, 2, 3, 4.

(ii) At the singular points s0, s1 of X0, X1, we have for i = 0, 1

dim
(
Φj
bi

(F(χ))si
)

=
{

0 if j 6= 1
1 if j = 1

(iii) The action of the decomposition group Dbi on the one-dimensional space Φ1
bi

(F(χ))si is un-
ramified. The geometric Frobenius Frb0 operates as q on Φ1

b0
(F(χ))s0, while the geometric

Frobenius Frb1 operates as χ(−1)q on Φ1
b1

(F(χ))s1.

Proof. The statement (i) follows from Lemma 2.13. The statements (ii) and (iii) are consequences
of [3], (3.1.3) case (a), since the restriction of F(χ) to the F-rational point b0 (resp. b1) is a rank-one
Q`-sheaf over SpecF on which Frq operates as χ(1) = 1 (resp. χ(−1).)
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(3.5) Corollary Assume that χ is non-trivial. Then the representation of the decomposition group
Db on the geometric generic fiber Gη̄ of G is tamely ramified for b = b0 and b = b1. Moreover

(1) At b0, the local Galois representation corresponds to the representation sp(2)⊗Q`(−1) of the
Deligne-Weil group; i.e. it corresponds to the special representation σ(‖ · ‖−1,1) of GL(2)
under the local Langlands correspondence. The local Artin conductor is equal to 1, and the
local L-factor is (1− q−s)−1.

(2) At b1, the local Galois representation corresponds to the representation sp(2)⊗χ−1(−1), where
χ−1(−1) denotes the unramified character whose value at the geometric Frobenius is equal to
χ(−1)q. Its local L-factor is equal to (1− χ(−1)q−s)−1.

(3.6) Theorem Assume that χ is not the trivial character of F×. Let Lχ(t) (resp. Lχ−1(t)) be the
rank-one smooth sheaf on SpecF[t, t−1] = B − {b0, b∞} attached to χ (resp. χ−1), where t is the
rational function T

S on B. Let s∞,1, s∞,2 be the two intersection points of EZ,S with the horizontal
divisors, and let E′Z,S = EZ,S − {s∞, s∞,1, s∞,2}. Similarly let s∞,3, s∞,4 be the two intersection
points of EX,S with the horizontal divisors, and let E′Z,X = EZ,X − {s∞, s∞,3, s∞,4}.

(i) Write E′Z,S = SpecF[u, 1
u2−1

], where u is the restriction to E′Z,S of the rational function Y
X on

X. The restriction of the vanishing cycle complex RΦb∞(F(χ)) to E′Z,S is represented by the
smooth rank-one Q`-sheaf Lχ−1(4−1(u2−1)) in degree zero, and the decomposition group Db∞

acts on this rank-one sheaf via its natural action on
(
Lχ(t)

)
η̄
.

(ii) Write E′X,S = SpecF[y, 1
y2−1

], where u is the restriction to E′X,S of the rational function Y
T

on X. The restriction of the vanishing cycle complex RΦb∞(F(χ)) to E′X,S is represented by
the smooth rank-one Q`-sheaf Lχ(4−1(y2−1)) in degree zero, and the decomposition group Db∞

acts on this rank-one sheaf via its natural action on
(
Lχ−1(t)

)
η̄
.

(iii) The stalk of the vanishing cycle complex RΦb∞(F(χ)) at s∞,i is acyclic for i = 1, 2, 3, 4.

(iv) If χ2 is non trivial, then the stalk of the vanishing cycle complex RΦb∞(F(χ)) at s∞ is acyclic.

(v) If χ2 is trivial, then

dim
(
Φj
b∞

(F(χ))s∞
)

=
{

0 if j 6= 0, 1
1 if j = 0, 1 .

The decomposition group Db∞ operates on the one-dimensional Q`-vector space

Φ0
b∞(F(χ))s∞ (resp. Φ1

b∞(F(χ))s∞ )

via its natural action on
(
Lχ(t)(−1)

)
η̄

(resp.
(
Lχ(t)

)
η̄

.)

Proof. Since the proof of (i) and (ii) are essentially the same, we only give the proof of (i). Let
u = Y

X , v = Z
X and s = S

T . Then near E′Z,S the surface X is defined by the equation

s (u2 − (1− v)2) = 4v .
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We have
Lχ(x) = Lχ(v−1) = Lχ(s−1) ⊗ Lχ−1

(
u2−(1−v)2

4

) ,
and the sheaf L

χ−1
(
u2−(1−v)2

4

) is smooth at points of E′Z,S . This proves (i).

The statement (iii) follows from Lemma 2.13. For (iv) and (v), let u1 = X
Y , v1 = Z

Y , s = S
T ;

u1, v1 is a regular system of parameters for OX,s∞ . The equation for X near s∞ is

s (1− (u1 − v1)2) = 4u1v1 .

We have
Lχ(x) = Lχ(u1 )χ−1(v1 ) = Lχ(s) ⊗ Lχ−2(v1 ) ⊗ L

χ
(

1−(u1−v1 )2

4

) ,
and L

χ
(

1−(u1−v1 )2

4

) is smooth at s∞. The statement (v) follows directly from the above by the

definition of vanishing cycles, while we deduce (iv) from Proposition 2.14.

(3.6.1) Remarks It may be instructive to explain the calculation of vanishing cycles at s∞ in an
analogous complex analytic situation.

(1) When the bad point c is the double point s∞, the variety of vanishing cycles W is

W =
{

(τ, u, v) ∈ H×∆∗ ×∆∗| exp(2π
√
−1τ) = uv

}
,

where H is the upper half-plane and ∆∗ is the punctured unit disk. We have a map f : W →
∆∗ which sends (τ, u, v) to u

v . Let L be a non-trivial rank-one local system on ∆∗. Then
all cohomologies Hi(W, f∗L) vanish, for all i ≥ 0 if L⊗2 is non-trivial. When L⊗2 is trivial,
both H0(W, f∗L) and H1(W, f∗L) are one-dimensional; all other cohomologies vanish. By
homotopy invariance, the above statements quickly reduce to the fact that all cohomologies
of a non-trivial rank-one local system on ∆∗ vanish, while the zeroth and the first cohomology
of the trivial rank-one local system on ∆∗ are one-dimensional.

(2) When the bad point c is one of the four intersection points of the horizontal ramification
divisors with X∞, the situation is even easier. The variety of vanishing cycles is W = H ×
∆, where ∆ is the unit disk. We have a map g : H × ∆∗ → ∆∗, which sends (τ, u) to
exp(2π

√
−1τ)u. Let L again be a non-trivial rank-one local system on ∆∗. Let j : H×∆∗ →W

be the inclusion. Then Hi(W, j!g∗L) = 0 for all i ≥ 0. Homotopy invariance quickly reduces
this to the fact that all cohomologies Hi(∆, (∆∗ ↪→ ∆)!L) vanish.

(3.7) Proposition Let χ be a nontrivial character of F×.

(1) The smooth rank-two sheaf G = R1f∗F(χ) over V is tamely ramified at b∞ with local conductor
equal to 2, and the local L-factor is trivial.

(2) The geometric monodromy group for G is equal to SL(2).
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(3) When χ2 6= 1, the local Galois representation at b∞ is a direct sum of two one-dimensional
characters λ1, λ2 of weight one, and λ1λ2 = ‖ · ‖−1. Both λ1 and λ2 are tamely ramified, and
the restriction of each λi to the tame ramification group is equal to χ±1 if we identify F× as
the canonical quotient of the tame ramification group of Gm at 0 or ∞ via the Lang torsor.

(4) When χ2 = 1, the local Galois representation at b∞ corresponds to the special representation
σ(λ‖·‖−1, λ) of GL(2) under the local Langlands correspondence, where λ is a tamely ramified
character with λ2 = 1 whose restriction to the tame ramification group is the unique character
of order two.

Proof. One deduces statements (1), (3), (4) from Theorem 3.6, using the natural isomorphism

Gη̄ = H1
(
X∞ ×SpecF SpecF,RΦb∞(F(χ))

)
of Db∞-modules. For instance if χ2 is not trivial, then RΦb∞(F(χ) is represented by the smooth
rank-one sheaf on E′Z,S t E′X,S described in (i), (ii) of Theorem 3.6, extended by zero to X∞.
According to Thm. 3.6 (i), the restriction of RΦb∞(F(χ) to E′Z,S is isomorphic to L

χ−1(u
2−1
4

)
,

which is ramified at u = 1,−1,∞; similarly for the restriction to E′X,S . Thus both H1
c

(
E′Z,S ×SpecF

SpecF,RΦb∞(F(χ))
)

and H1
c

(
E′X,S×SpecFSpecF,RΦb∞(F(χ))

)
are one-dimensional, pure of weight

one, with tame action by the decomposition group D∞ as described in (i), (ii) of Thm. 3.6. This
proves (3) and the statement (1) when χ2 is not trivial; the proof of (4) and the rest of (1) is
similar.

Since the determinant of G comes from the sheaf Q`(−1) on SpecF, its geometric monodromy
group is contained in SL(2). On the other hand we see from Prop. 3.4 that the geometric monodromy
group of G is not finite, so this semisimple group must be equal to SL(2). This proves (2).

§4. Automorphic forms and applications to Terras graphs

We shall first reformulate the results in the previous two sections in terms of automorphic forms
for GL(2), and then show their connections to automorphic forms on quaternion group D and
eigenvalues of Terras graphs. LetK be a function field with the field of constants F. For convenience,
the residue field of K at a place v will be denoted Fv, which has cardinality Nv.

(4.1) Let C be the underlying curve of K. Given a rational function a in K, it defines a morphism
from C to P1. Denote by Xa the pull-back surface in C × P2 of the surface X in §3 via a and by
Fa(χ) the pullback sheaf on Xa of the sheaf F(χ) on X. The sheaf R1(pr1)!Fa(χ) is smooth of rank
two when restricted to a sufficiently small open subscheme Uχ,a ⊂ C; it coincides with the pull-back
by the morphism Uχ,a ↪→ C

a−→ P
1 of the sheaf G(χ) in the notation of Lemma 3.3. Let ρa,χ be

the degree two representation of Gal(Ksep/K) attached to R1(pr1)!Fa(χ)|Uχ,a . By the results of
Grothendieck, Deligne, and the converse theorem of GL(2), we know that the L-function attached
to ρa,χ is an automorphic L-function for GL(2) over K. We examine its local factors.

Let g(x) = (x− 1)2 + 4ax. Denote by gv(x) the polynomial g(x) (mod v). Our computation in
the previous section shows that at a place v which is not a pole of a and where a 6≡ 0, 1 (mod v),
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the local factor of L(s, ρa,χ) at v is a polynomial of degree 2 in Nv−s, with the coefficient of Nv−s

being
−λχ(Fv; a) =

∑
x,y∈Fv
y2=gv(x)

χ ◦NmFv/F(x),

and the coefficient of Nv−2s being Nv by Lemma 3.3. Hence the local factor at v is

1− λχ(Fv; a)Nv−s +Nv1−2s.

We have shown

(4.2) Theorem Let K be a function field with the field of constants F. Given a nonzero element
a in K and a nontrivial character χ of F×, there is an automorphic form fa,χ of GL2 over K which
is an eigenfunction of the Hecke operator Tv at all places v of K, which is not a pole of a and where
a 6≡ 0, 1 (mod v), with eigenvalue λχ(Fv; a) as defined above. In other words,

L(s, fa,χ) ∼
∏

v good

1
1− λχ(Fv; a)Nv−s +Nv1−2s

.

Here and later we use L1 ∼ L2 to mean that two Euler products L1 and L2 agree at all but
finitely many factors.

At each place v choose a nonsquare δ in Fv. Observe (cf. [5]) that

−λχ(Fv; a) = −
∑
x,y∈Fv

y2=δgv(x)

χ ◦NmFv/F(x)

since ∑
x,y∈Fv
y2=gv(x)

χ ◦NmFv/F(x) +
∑
x,y∈Fv

y2=δgv(x)

χ ◦NmFv/F(x) = 2
∑
x∈Fv

χ ◦NmFv/F(x) = 0.

Note that the character sum is independent of the choice of δ. Therefore λχ(Fv; a) is nothing but
the eigenvalue λ4a,χ◦NmFv/F

of a Terras graph with base field Fv. This theorem shows that the
eigenvalues of fa,χ with respect to the Hecke operators are eigenvalues of Terras graphs of first
type, parallel to Theorem 3.6.1 in Part I. Its existence for the case K = F(t) was conjectured in
[10].

(4.2.1) As a consequence of Proposition 3.7 (2), the geometric monodromy group of the `-adic
representation ρa,χ is SL(2) provided that a is not a constant. In other words, the Sato-Tate
conjecture holds for fa,χ.

(4.2.2) Corollary With the same notation as in Theorem 4.2, suppose that a is not a constant.
Then the normalized eigenvalues λχ(Fv; a)/

√
|Fv| are uniformly distributed with respect to the Sato-

Tate measure

µST (x) =
1
π

√
1− x2

4
dx

when Nv tends to infinity.
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(4.3) Let D be the algebraic group over K attached to the multiplicative group of the quaternion
algebra H over K ramified exactly at 0 and ∞ as in §1. Given an element b ∈ F not equal to 0 or
1, we specialize Theorem 4.2 to the case K = F(t) and a = (t− 1)/(t− b). The bad places for the
automorphic form fa,χ are 1, b and∞, and the local components of the corresponding representation
of GL(2) over K are special representations at the places 1 and ∞ with nontrivial local L-factors
as shown in Corollary 3.5, and is either a principal series or a special representation at the place
b with trivial local L-factor as shown in Proposition 3.7. Moreover, the local component of fa,χ at
the place b is a new vector for the congruence subgroup Γ0((t− b)2) with central character ‖ · ‖−1.

Conjugation of fa,χ by
(
t− b 0

0 1

)
yields another automorphic form which has the same properties

as fa,χ at all places except b, and at b it is invariant by the principal congruence subgroup Γ(t− b).
By the global correspondence between automorphic representations of the quaternion group D over
K and those of GL(2) over K proved in [6], there is an automorphic form fb,χ on D(AK) right
invariant by Kb (as defined in Introduction) which has the same L-function as fa,χ. In particular,
fb,χ is an eigenfunction of the Hecke operator T0 at the place 0 with eigenvalue λχ(F; 1/b). We
compare the eigenvalue λχ(F; 1/b) with λ4(b−1)/b,χ.

Let z = −x and note that

δ(x− 1)2 + 4δ(b− 1)x/b = δ(x+ 1)2 − 4δx/b = δ(z − 1)2 + 4δz/b,

so we have
λχ(F; 1/b) = χ(−1)λ4(b−1)/b,χ.

Thus if χ is an even character, then fb,χ is an eigenfunction of T0 with eigenvalue λ4(b−1)/b,χ, while
if χ is an odd character, then the eigenvalue of T0 is opposite to what we are looking for. Therefore,
the unramified twist gb,χ of fb,χ defined by

gb,χ(x) = χ(−1)deg Nmrd(x)fb,χ(x)

for x ∈ D(AK) has eigenvalue λ4(b−1)/b,χ at place 0 in both cases. This proves

(4.4) Theorem Let K be the rational function field F(t). Given a nonzero element b ∈ F not
equal to 1 and a nontrivial character χ of F×, there is an automorphic form gb,χ on D(AK), right
invariant by Kb as in Introduction, which is an eigenfunction of Hecke operators Tv for all places
v other than 1, b,∞, and whose associated L-function is

L(s, gb,χ) =
1

1− χ(−1)q−s
· 1

1− q−s
∏

v 6=1,b,∞

1
1− χ(−1)deg vλχ(Fv; t−1

t−b )Nv
−s +Nv1−2s

.

In particular, gb,χ is an eigenfunction of T0 with eigenvalue λ4(b−1)/b,χ.

In the above expression of L-function, the first factor is at place 1, and the second is at place
∞, by Corollary 3.5.
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(4.5) Next we reformulate the results from section 2. Recall that F has cardinality q. As in
the beginning of this section, a rational function a in K defines a morphism from the curve C to
the projective line P1, which in turn yields a map from U ×SpecF C to U ×SpecF P

1. This allows
us to pull back the open subset Y of U ×SpecF A

1 to an open subset Ya of U ×SpecF C. Given a
nontrivial character ε of F× and a regular character ω of the quadratic extension F′ (which induces
a nontrivial character of U(F)), denote by Fa,ε,ω the sheaf on Ya which is the pull-back of the
sheaf Fε,ω on Y . The restriction of the sheaf R1(pr1)!Fa,ε,ω to a sufficiently small open subset
Ua,ε,ω ⊂ P

1 is smooth of rank two; it is equal to the pull-back of the sheaf Gε,ω in 2.6 by the
composition Ua,ε,ω ↪→ C

a−→ P
1. Let ρa,ε,ω be the representation of Gal(Ksep/K) associated to the

smooth rank-two sheaf R1(pr1)!Fa,ε,ω|Ua,ε,ω on Ua,ε,ω, and write ηa,ε,ω for the determinant of ρa,ε,ω.
As before, the global L-function attached to the representation ρa,ε,ω is an automorphic L-function
for GL(2) over K with central character ηa,ε,ω. We examine the local factors of the L-function.

At each place v away from the poles of a and where a 6≡ ±2 (mod v) , let

−λε,ω(Fv; a) =
∑

u∈U(Fv)

ε ◦NmFv/F(TrF′v/Fv(u) + av)ω ◦NmF′v/F
′(u),

where av denotes a (mod v) and F′v = Fv ⊗F F′. When deg v is odd, F′v is a quadratic extension of
Fv and

−λε,ω(Fv; a) =
∑

u∈F′v ,Nm
F
′
v/Fv

(u)=1

ε ◦NmFv/F(TrF′v/Fv(u) + av)ω ◦NmF′v/F
′(u).

When deg v is even, Fv contains F′ so that F′v = Fv×Fv and elements in U(Fv) are the pairs (x, 1/x)
as x runs through all nonzero elements in Fv. In this case

−λε,ω(Fv; a) =
∑

u∈F×v ε ◦NmFv/F(u+ 1
u + av)ω ◦NmFv/F′(

u
uq )

=
∑

u∈Fv ε ◦NmFv/F((u− 1)2 + (av + 2)u)(ε ◦NmFv/F ·ω1−q ◦NmFv/F′)(u).

It follows from the computations in §2 that the L-factor at v is

1− λε,ω(Fv; a)Nv−s + ηa,ε,ω(πv)Nv−2s.

Here πv is a uniformizer at the place v. We summarize the above discussion in

(4.6) Theorem Let K be a function field with the field of constants F. Let a be a nonzero element
in K, ε be a nontrivial character of F×, and ω be a regular character of F′×, such that either ε2 is a
nontrivial character of F×, or ω2 is a regular character of F′×. Then there is an automorphic form
fa,ε,ω of GL2 over K, with central character ηa,ε,ω, which is an eigenfunction of the Hecke operator
Tv at all places v of K, which is not a pole of a and where a 6≡ ±2 (mod v), with eigenvalue
λε,ω(Fv; a) as defined above. In other words,

L(s, fa,ε,ω) ∼
∏

v good

1
1− λε,ω(Fv; a)Nv−s + ηa,ε,ω(πv)Nv−2s

.

Moreover, if ε has order two, then ηa,ε,ω is the unramified idele class character ‖ · ‖−1.
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The last statement follows from Proposition 2.3, (vi). For the remainder of this section, assume
ε has order two. We remark that, up to sign, the eigenvalue λε,ω(Fv; a) of fa,ε,ω at a good place
v is an eigenvalue of a Terras graph with base field Fv. Specifically, the computation above shows
that if the degree of v is odd, then it is equal to −ε(−1)λ2−av ,ω◦Nm

F
′
v/F
′ ; while if the degree of v is

even, it is equal to λav+2,χ with the character χ of F×v being ε ◦NmFv/F ω
1−q ◦NmFv/F′ . Let ga,ε,ω

be the twist of fa,ε,ω by the unramified character −ε(−1), that is,

ga,ε,ω(x) = (−ε(−1))deg det(x)fa,ε,ω(x)

for all x ∈ GL2(AK). Then the eigenvalues of ga,ε,ω at places of odd degree are eigenvalues of Terras
graphs of the second type, while those at places of even degree are eigenvalues of Terras graphs of
the first type.

(4.7) When ε has order two and a is not a constant, we know from Theorem 2.9 that the geometric
monodromy of the representation ρa,ε,ω is SL(2). Therefore, the Sato-Tate conjecture holds for
fa,ε,ω.

(4.7.1) Theorem With the same notation as in Theorem 4.6, assume further that ε is a character
of order two and that a is not a constant. Then the normalized Fourier coefficients λε,ω(Fv; a)/

√
|Fv|

of fa,ε,ω are uniformly distributed with respect to the Sato-Tate measure µST as Nv tends to infinity.

(4.8) We specify Theorem 4.6 to the case K = F(t) and a = 2t−4+2b
t−b for an element b ∈ F

and b 6= 0, 1. Assume that ε has order two and ω has order greater than two. The bad places
for the automorphic form ga,ε,ω are at 1,∞ and b. The local components of the corresponding
representation of GL(2) over K are special representations at 1 and ∞ with nontrivial local L-
factors by Theorem 2.9, and it is a principal series at place b with trivial local L-factor by Theorem
2.12. Moreover, the local component of ga,ε,ω at the place b is a new vector for the congruence
subgroup Γ0((t− b)2) with central character ‖ · ‖−1. By the same argument as in the previous case,
we obtain an automorphic form gb,ε,ω of D(AK) right invariant by Kb (as defined in Introduction)
which has the same L-function as ga,ε,ω. In particular, as remarked right after Theorem 4.6, gb,ε,ω
is an eigenfunction of the Hecke operator T0 at place 0 with eigenvalue −ε(−1)λε,ω(F;−2 + 4/b),
which is equal to the eigenvalue λ4(b−1)/b,ω of the Terras graph X4(b−1)/b as defined in Introduction.

Combining the above discussion with Theorems 2.9 and 2.12, we obtain

(4.8.1) Theorem Let K be the rational function field F(t). Given a nonzero element b ∈ F not
equal to 1, a character ε of F× of order two, and a regular character ω of F′ of order greater than
two, there is an automorphic form gb,ε,ω on D(AK), right invariant by Kb as in Introduction, which
is an eigenfunction of the Hecke operators Tv for all places v outside 1, b,∞, and whose associated
L-function is

L(s, gb,ε,ω) =
1

1− ω(−1)q−s
· 1

1− ε(−1)q−s
∏

v 6=1,b,∞

1
1− (−ε(−1))deg vλε,ω(Fv; 2t−4+2b

t−b )Nv−s +Nv1−2s
.

In particular, gb,ε,ω is an eigenfunction of T0 with eigenvalue λ4(b−1)/b,ω.

26



(4.8.2) Remarks (1) The eigenvalues of gb,ε,ω are eigenvalues of Terras graphs, as discussed in
detail after Theorem 4.6.

(2) In writing L(s, gb,ε,ω) as an Euler product above, the first factor is the local factor at the
place ∞ and the second factor is at the place 1.

(4.9) Recall from Proposition 1.1 that the Terras graph X4(b−1)/b is a quotient graph of the
Morgenstern graph XKb

. For each nontrivial character χ of F×, we have found an automorphic
form gb,χ on XKb

which realizes the eigenvalue λ4(b−1)/b,χ of the Terras graph X4(b−1)/b, and for
each regular character ω of F′ of degree greater than two, we have found an automorphic form
gb,ε,ω on XKb

which realizes the eigenvalue λ4(b−1)/b,ω of the Terras graph X4(b−1)/b. This answers
question (i) in Introduction. As for question (ii), we conclude from Theorems 4.2.2 and 4.7.1 that
eigenvalues of type λa,χ (resp. of type λa,ω) are uniformly distributed with respect to the Sato-Tate
measure, as the cardinality of the underlying finite field of Terras graph tends to infinity.
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[9] W.-C. W. Li. Number Theory with Applications. World Scientific, 1996.

[10] W.-C. W. Li. Eigenvalues of Ramanujan graphs. In Emerging Applications of Number Theory (Min-
neapolis, MN, 1996), volume 109 of IMA Vol. Math. Appl., pages 387-403, Springer, New York, 1999.

[11] M. Morgenstern. Existence and explicit constructions of q + 1 regular Ramanujan graphs for every
prime power q. J. Comb. Theory, series B, 62:44–62, 1994.

[12] A. Terras. Fourier Analysis on Finite Groups and Applications. London Math. Soc. Student Texts, vol.
43, Cambridge University Press, 1999.

27



Ching-Li Chai Wen-Ching Winnie Li
Department of Mathematics Department of Mathematics
University of Pennsylvania Pennsylvania State University
Philadelphia, PA 19104 University Park, PA 16802
U.S.A. U.S.A.

Email: chai@math.upenn.edu Email: wli@math.psu.edu

28


