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ABSTRACT. Two notions of cobordism are defined for compact CR-manifolds. The weaker
notion,complex cobordismrealizes two CR-manifolds as the boundary of a complex man-
ifold; in the stronger notion,strict complex cobordismthere is a strictly plurisubharmonic
function defined on the total space of the cobordism with the boundary components as level
sets of this function. We show that embeddability for a 3-dimensional, strictly pseudocon-
vex CR-manifold is a strict cobordism invariant. De Oliveira has recently shown that this
is false for complex cobordisms. His construction is described in an appendix.
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1. INTRODUCTION

Let Y be a manifold of dimension 2n+1. A CR-structure onY is defined as a subbundle
T0,1Y ⊂ T Y ⊗ C which satisfies the following conditions

[dimension] fiber-dimC T0,1Y = n.
[non-degeneracy] T0,1Y ∩ T0,1Y = zero section ofT Y.

[integrability] If W, Z ∈ C
∞(Y; T0,1Y) then their Lie bracket[W, Z] is as well.

If we let T1,0Y = T0,1Y then there is a real hyperplane bundleH ⊂ T Y such that

(1) T0,1Y ⊕ T1,0Y = H ⊗ C.

Definition 1. If T0,1Y is a CR-structure onY for which (1) holds then we say thatT0,1Y
is a CR-structuresupportedby H.

For θ a non-vanishing one form such thatH = kerθ we define the “Levi form” to be
the Hermitian pairing defined onT1,0Y by idθ,

(Z,W) −→ idθ(Z,W).

If θ ′ is another 1-form definingH then there is non-vanishing functionf so thatθ ′ = f θ
and therefore

dθ ′
∣

∣

T1,0Y⊕T0,1Y = f dθ
∣

∣

T1,0Y⊕T0,1Y.

From this it is clear that, up to an overall sign, the signature of the Levi form is determined
by the CR-structure. If the Levi form is definite then the CR-structure onY is strictly
pseudoconvex (if it is positive) or strictly pseudoconcave(if it is negative). For an abstract
CR-manifold whether one wishes to regard the Levi form as positive or negative is simply
a matter of convention. The choice of a sign for the Levi form is called atransverse
orientationas it is fixed by choosing a non-vanishing vector field transverse toH.

Let X denote a complex manifold of dimension at least 2. A CR-structure is induced on
a real hypersurfaceY ⊂ X by the rule

T0,1Y = T0,1X
∣

∣

Y ∩ T Y ⊗ C.
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If X is a complex manifold with boundaryY then the same construction induces a CR-
structure on the boundary. Suppose thatY is a level set of the smooth functionρ and that
dρ does not vanish alongY. The non-vanishing 1-form−i ∂ρ

∣

∣

Y definesH and the Levi
form is represented by the(1,1)-form

Lρ = ∂∂ρ

restricted toY. The boundary components of a complex manifold have induced transverse
orientations. Suppose thatY is a connected component of the boundary of a complex
manifoldX. Let ρ be a smooth,non-positivefunction which vanishes onY such thatdρ 6=

0 alongY. If Lρ > 0 onT1,0Y thenY is a strictly pseudoconvex boundary component of
X, if Lρ < 0 thenY is a strictly pseudoconcave boundary component ofX. It is easy to see
that the sign of the Levi form is well defined under local biholomorphisms. LetJ denote
the almost complex structure onX. A direction T, transverse toH ⊂ T Y is determined
by the condition that theJ T is anoutwardpointing vector field alongY = bX. This better
explains the terminology “transverse orientation.”

Definition 2. Suppose that(Y, T0,1Y) is an compact CR-manifold. If there exists a com-
pact, complex, connected manifoldX with strictly pseudoconvex boundary(Y, T0,1Y)
then we say thatY is afillable CR-manifold.

It follows from results of Grauert thatX is a holomorphically convex space which is
a proper modification of a normal Stein space,X′, see [15, 16]. The normal Stein space
with boundaryY is uniquely determined, up to biholomorphism. Combining results of
Kohn, Rossi, Boutet de Monvel and Harvey and Lawson one can show that any compact,
strictly pseudoconvex CR-manifold of dimension at least 5 is fillable, see [22, 30, 5, 17].
On the other hand “most” strictly pseudoconvex 3-manifoldsare not fillable, see [11, 14].
On a 3-manifold the integrability condition for a CR-structure is vacuous because the fiber
dimension ofT0,1Y is 1. The CR-structure is strictly pseudoconvex (or concave) if and
only if the hyperplane field underlying the CR-structure is acontact structure. Thus if
H ⊂ T Y is a contact structure then any choice of almost complex structure on the fibers
of H defines a strictly pseudoconvex CR-structure onY. From recent work of Eliashberg,
et. el.. it follows that any 3-manifold has infinitely many inequivalent contact structures. It
is also clear that most of these contact structures do not support any fillable CR-structures.
It is then an interesting question to understand the set of fillable structures. In this note we
investigate the problem of filling strictly pseudoconvex 3-manifolds from the point of view
of cobordism.

In the following definitions we suppose that each connected component of a CR-manifolds
is equipped with a transverse orientation, so that its pseudoconcavity or pseudoconvexity
is fixeda priori. If X is a complex manifold andY is a transversely oriented, CR-manifold
thenbX = Y if

(1) The CR-structure induced onY as the boundary ofX agrees with the given
CR-structure.

(2) The induced transverse orientation agrees with the given transverse orientation.

Definition 3. Suppose thatY1 andY2 are (possibly disconnected) compact CR-manifolds.
We say thatY1 is complex cobordantto Y2 if there exists a complex manifold with boundary
X such thatbX = Y1 ⊔ Y2.

Complex cobordism is, in general not an equivalence relation. A strictly pseudoconvex
CR-manifoldY is never complex cobordant to itself. If it were then one could construct
a compact, complex manifold with two strictly pseudoconvexends, that impossible. Most
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CR-manifolds are not complex cobordant to themselves with the transverse orientation
reversed. A strengthening of this concept is also useful.

Definition 4. Suppose thatY1 andY2 are (possibly disconnected) CR-manifolds andX
defines a complex cobordism betweenY1 andY2. We say thatY1 andY2 arestrictly com-
plex cobordantif there is a strictly plurisubharmonic functionρ defined onX so that the
components ofY1 andY2 are non-critical level sets ofρ.

It follows from the definition that all boundary components of X are either strictly
pseudoconcave or strictly pseudoconvex. Well known approximations results imply that
there is no loss in generality if we suppose thatρ is a Morse function, i.e. its critical points
are non-degenerate.

These definitions suggest two questions. Suppose thatY1 is a strictly pseudoconvex,
compact 3-manifold andY2 is a union of strictly pseudoconcave components.

Question 1. If Y1 is fillable and complex cobordant toY2 does it follow that the compo-
nents ofY2 are also fillable?

Question 2. If Y1 is strictly complex cobordant toY2 andY1 is fillable are the components
of Y2 fillable as well?

Note that the hypothesis thatY1 is fillable and strictly pseudoconvex implies, via the
theorems of Grauert and of Kohn and Rossi that it is connected, see [23]. In this paper we
show that the answer to the second question is yes, even ifX is permitted to be complex
space instead of complex manifold. In a recent preprint, Bruno De Oliveira has produced
examples which show that the answer to the first question is no, see the appendix to this
paper and [10]. If the dimension of the boundary is at least 5 then Rossi’s theorem shows
that the answer to the first question is always affirmative, see [30]. The non-fillability
of complex cobordisms in the surface case is therefore another example of a purely 2-
dimensional phenomenon. These concepts were defined in [13]and an analytic proof of
the result below was sketched.
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We would like to thank Bruno de Oliveira for sharing his results with us and a helpful discussion of
the proof of Lemma 2 and Richard Melrose, for suggesting the title. The research of C.L. Epstein
was partially supported by NSF grant DMS99–70487.

2. STRICT COMPLEX COBORDISMS

We prove the following theorem.

Theorem 1. If Y1 is a compact, fillable, strictly pseudoconvex 3-manifold and Y2 is a union
of strictly pseudoconcave components which is strictly complex cobordant to Y1 then each
component of Y2 is also fillable.

Corollary 1. If under the hypotheses of Theorem 1 a complex manifold X defines complex
cobordism between Y1 and Y2 then X is embeddable inCN .

Remark1. This Corollary implies in particular, the classical embedding results of Kodaira,
Grauert and Andreotti and Tomassini for compact, pseudoconvex and pseudoconcave sur-
faces, respectively, see [21, 16, 3].

Proof. Let X denote a compact, complex manifold with boundary,bX = Y1 ⊔ Y2 which
defines a strict complex cobordism betweenY1 andY2. Hence there is a strictly plurisub-
harmonic, Morse functionρ defined onX with the boundary components contained in
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sub-level sets. Without loss of generality we can assume that there are constantsc0 >

c1 > · · · > cl such that

Y1 = ρ−1(c0) andY j
2 ⊂ ρ−1(c j ).

Indeed by adding the appropriately cut-off multiples of thefunctions log(d(x,Yl
2)+η) and

− log(d(x,Y1)+η), for sufficiently smallη > 0, to a large multiple ofρ it can be arranged
that

c0 = sup{ρ(x) : x ∈ X}, cl = inf{ρ(x) : x ∈ X}.

For anyc let
Xc = ρ−1((c,∞)).

SinceY1 is embeddable it follows from the Lempert approximation theorem, see [24]
that there exists a normal projective varietyV and an embedding9 : Y1 → V ⊂ P

N as
a separating hypersurface. LetV− denote the pseudoconcave part ofV \9(Y1). Let X′ =

X ⊔Y1 V−, this is a compact variety with a (possibly disconnected) strictly pseudoconcave
boundary. The mapping9 is of course defined onV− ⊂ X′ as the identity. For ac < c0
we let X′

c = Xc ⊔Y1 V−.

The varietyV may fail to be smooth, but as it is two dimensional and normal,it is
locally irreducible and its singular locus consists of a finite set of points. The image9(Y1)

can be assumed to lie in an affine chartC
N ≃ P

N \ P
N−1. Henceforth we assume that

linear coordinates are fixed on this affine chart and that the embedding ofY1 into C
N is

given by the coordinate functions

9
∣

∣

Y1
= (ψ1, . . . , ψN ).

Step 1: The first step in the proof of the theorem is to extend the map9 to a holomorphic
map ofX into C

N . As the map is holomorphic the coordinate functions satisfy

∂̄Y
b ψ j = 0

and therefore we can use the Lewy extension theorem to extendthem as holomorphic
functions to a small neighborhood ofY1 in X. Using induction over the level sets ofρ and
Lewy extension we can extend these functions up to the first critical level set ofρ. The
critical points ofρ are isolated and therefore the following elementary resultallows us to
extend the coordinate functions to a neighborhood of a critical point ofρ.

Lemma 1. Letϕ be a plurisubharmonic function defined on a neighborhood U of0 ∈ C
n.

Suppose thatϕ(0) = 0 and that0 is an isolated critical point ofϕ. Set

U+ = U ∩ ϕ−1((0,∞)).

There exists a neighborhood W of0 such that any holomorphic function defined in U+ has
a holomorphic extension to W.

Proof. A simple consequence of the Theorem 15 in [2], see also [19]. �

Using Lemma 1 we extend the coordinate functions across the critical points ofρ. By
alternately inducting over the level sets ofρ and using Lemma 1 we extend the coordinate
functions to all ofX. We continue to use9 = (ψ1, . . . , ψN ) to denote the extended
map. As9(Y1) ⊂ V, the permanence of functional relations implies that9(X) ⊂ V. To
complete the proof of the theorem we show that9 embedsX′ into V. This is proved by
induction over the level sets ofρ. It is clear that there for somec < c0 the extended map
9 embedsX′

c into V. We need to show thatc can actually be taken to be equal tocl . We
show that one boundary component at a time can be filled.
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Step 2: The {c j } are regular values forρ, therefore there exists anǫ > 0 so that, for
each j , the submanifoldsbXc j +δ, for 0 < δ < ǫ are disjoint unions of smooth manifolds

diffeomorphic tobXc j . One component ofbXc j +δ converges toY j
2 asδ → 0. Denote this

component byY j ,δ
2 . If we can show thatY1,δ

2 is embeddable for sufficiently smallδ > 0
then it follows from relative index theory [11], see Lemma 5.1 in [14], thatY1

2 is also
embeddable. In this case there is an normal Stein spaceV1 with bV1 = −Y1

2 . The minus
sign indicates that we take the opposite transverse orientation. Let X(1) = X′ ⊔Y1

2
V1, as

V1 is normal the mapping9 extends toX(1) as well. If we can show that9 embeds a
neighborhood, inX(1) of Xc1 then9(Y1

2 ) is the boundary of a normal Stein domain inV.
By uniqueness it is clear that9 embedsV1 as an open subset ofV with boundary9(Y1

2 ).

We now show thatbXc1 is embedded by9. Suppose that9 embedsX′
c for somec1 <

c < c0 but9 does not embedX′
c+δ for anyδ < 0. First we show that the rank ofd9(x) =

2 for all x ∈ X′
c. This would then imply that there is a pair of points

(2) x1 6= x2 ∈ X′
c such that9(x1) = 9(x2).

After verifying that the rank of the differential cannot drop we show that (2) is also impos-
sible. The claim as to the rank of differential is a consequence of the following lemma.

Lemma 2. Let (W, p) be the germ of a normal surface and letψ be the germ of a holo-
morphic mappingψ : (B2,0) → (W, p). Further suppose that there is a strictly plurisub-
harmonic functionϕ defined in a neighborhood of0 ∈ B

2 such that

(1) The rank of dψ(z) = 2 for z 6= 0.
(2) ϕ(0) = 0.
(3) The restriction ofψ to the setϕ−1(0,∞) is an embedding.

Then the germ W is smooth at p andψ is the germ of an embedding.

Proof. Using hypothesis(1), we apply a theorem of Prill to conclude that the mapψ is
holomorphically conjugate to a quotient map(B2,0) → (B2,0)/G. Here G is a finite
group of germs of biholomorphic maps acting on(B2,0), see [29]. The maps act without
fixed points onB2 \0.We then apply a theorem of H. Cartan to conclude that the action by
the groupG is holomorphically conjugate to a linear action by a finite subgroup ofU(2),
which we continue to denote byG, see [7]. To prove the lemma it suffices to show that the
groupG must be trivial. Using the representation for the map germψ as a quotient map,
the hypotheses of the lemma imply, after possibly scaling the normalized coordinates on
C

2, that there is a fundamental domainFG for the action of the groupG onB
2 \ {0} which

contains the set{z : ϕ(z) > 0}.

SinceG ⊂ U(2) it preserves the unit sphereS
3 and it follows that

(3) |G| =
vol(S3)

vol(FG ∩ S3)
.

If dϕ(0) 6= 0 then it is clear that there exists a fundamental domain for the action byG
which contains a half-space. Hence there is a linear function l such thatFG ⊃ {z : l (z) >
0}. In this case, formula (3) implies that|G| ≤ 2; eitherG is trivial or a group of order
two. If G 6= {Id} then it follows from the classification of finite subgroups ofU(2) that
G is either the groupGA = (Id,A) whereA(z, w) = (−z,−w) or a reflection group
Gv = (Id, Rv ). HereRv is the reflection

Rv (ζ ) = ζ − 2< ζ, v > v.
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BecauseRv(ζ ) = ζ for any vector orthogonal tov, the later case is ruled out by the fact
thatG acts without fixed point onS3. We are therefore reduced to consideration ofGA.

The groupGA is invariant under linear coordinate change and we can therefore choose
linear coordinates(z1, z2) so that

ϕ(z1, z2) = Im z2 + 2 Re
∑

ai j zi z j + 2
∑

bi j zi z̄ j + O(|z|3).

As ϕ is strictly plurisubharmonic the matrixbi j is hermitian and positive definite. Let

ϕ1(z1, z2) = Im z2 + 2 Re
∑

ai j zi z j +
∑

bi j zi z̄ j .

Define the analytic subvariety

QA = {z :
∑

ai j zi z j = 0}

of complex dimension at least 1. This implies thatQA∩{z : Im z2 = 0} is of real dimension
at least 1, and real-homogeneous. Letz0 6= 0 be a point in this intersection. Evidently both
ϕ1(z0) > 0 andϕ1(A(z0)) > 0. By taking|z0| sufficiently small it follows thatϕ(z0) > 0
andϕ(A(z0)) > 0 as well. This shows that there is no fundamental domain forGA that
contains{z : ϕ(z) > 0} and completes the analysis in the case thatdϕ(0) 6= 0.

We now consider the critical case, withdϕ(0) = 0. In any system of linear coordinates

ϕ(z) = 2 Re
∑

ai j zi z j + 2
∑

bi j zi z̄ j + O(|z|3),

with A = ai j , a symmetric matrix andbi j a positive definite hermitian matrix. As before
we set

ϕ1(z) = 2 Re
∑

ai j zi z j +
∑

bi j zi z̄ j .

If A = 0, thenϕ is positive in a deleted neighborhood of 0; therefore the hypothesis of
the lemma already implies the conclusion. The analysis now divides into two further cases
according to whether the rankA is one or two. Let(v, z) = v1z1 + v2z2; if rank A = 1
then there is a non-zero vectorv ∈ C

2 such that

(Az, z) = (v, z)2

and therefore the set{z : Re(v, z)2 = 0} is the union of two real hyperplanes

Lr = {z : Re(v, z) = 0} andL i = {z : Im(v, z) = 0}.

For anyg ∈ U(2) the intersectionsLr ∩ gLr andL i ∩ gLi are at least two (real) dimen-
sional. Suppose that there exists ag ∈ G \ {Id}, then we can choose a small, non-zero
vectorz0 in one of these intersections. Evidently bothϕ1(z0) andϕ1(gz0) > 0. Therefore,
by choosingz0 6= 0, of sufficiently small norm we obtain a contradiction to the assertions
thatG 6= {Id} and that there is a fundamental domainFG ⊃ {z : ϕ(z) > 0}.

We are left to consider the critical case with rankA = 2.We define the two open sets

S±
A = {z : ± Re(Az, z) > 0}.

Observe that ifz ∈ S+
A theni z ∈ S−

A and vice versa. Hence multiplication byi defines an
isometric diffeomorphism ofS+

A andS−
A . Since the rankA = 2 the complement ofS+

A ∪S−
A

has empty interior and therefore

(4) vol(S±
A ∩ S

3) =
1

2
vol(S3).

That rankA = 2 implies that the signature of the quadratic form Re(Az, z) is (2,2). By
a linear change of coordinates, it is equivalent to the quadratic formx2

1 + x2
2 − y2

1 − y2
2.
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This implies thatS±
A ∩S

3 are connected sets. Suppose that for some elementg ∈ U(2) the
intersection

(5) {z ∈ S
3 : Re(Az, z) = 0} ∩ {z ∈ S

3 : Re(Agz, gz) = 0}

is empty, then{z ∈ S
3 : Re(Agz, gz) = 0} is a subset of eitherS+

A ∩ S
3 or S−

A ∩ S
3,

sayS+
A ∩ S

3. As the setsS±
gt Ag ∩ S

3 are connected this implies that one of these sets is a

relatively compact subset ofS+
A ∩ S

3, sayS+
gt Ag ∩ S

3. This, in turn implies that

vol(S+
gt Ag ∩ S

3) < vol(S+
A ∩ S

3) =
1

2
vol(S3).

However this contradicts (4) withgt Ag in place ofA. Any other set of the possible choices
for ± would of course lead to the same contradiction and therefore, for anyg ∈ U(2) the
intersection in (5) is non-empty. Arguing as in the rank 1 case we again deduce that the
groupG must be trivial. This completes the proof of the lemma. �

We now return to the induction argument. Recall that we are assuming the9 embeds
X′

c for ac1 < c < c0 but fails to embedX′
c+δ for anyδ < 0. From Lemma 2 it follows that

rankd9(x) = 2 for all x ∈ Xc.

Step 3: The only way that9 can fail to embedX′
c+δ for anyδ < 0 is if there exists a

pair of points as in (2). There are two possibilities: 1. Bothpoints lie onbXc or 2. One
point, which we denote byx1 lies onbXc and the other pointx2 lies in X′

c. Let us suppose
that case 1 holds and case 2 does not hold. This implies that there is a pointp ∈ V \9(X′

c)

such thatp = 9(x1) = 9(x2). Let U1 andU2 denote disjoint neighborhoods ofx1 and
x2 respectively. Choose the neighborhoods sufficiently smallsuch thatU1 ∪ U2 is disjoint
from the singular locus ofX′ and9

∣

∣

Ui
, i = 1,2 are embeddings. LetU+

i = Ui ∩ Xc, and

U−
i = Ui \ U+

i , from the induction hypothesis it follows that

(6) 9(U+
1 ) ∩9(U

+
2 ) = ∅.

On the other, as9(x1) = 9(x2), (6) implies that the germ(V, p) is not locally reducible.
The only way that this could fail is that either9(U+

1 ) ⊂ 9(U−
2 ) or9(U+

2 ) ⊂ 9(U−
1 ).

Suppose, without loss of generality, that the first inclusion holds. This would violate the
maximum principle. We can find a holomorphic diskD which lies inU+

1 ∪{x1} and meets
x1 at an interior point. This is easily seen whether or notx1 is a critical point ofϕ. Using
9 to pull backρ from9(U−

2 ) we would obtain a subharmonic function which assumes it
maximum value,c at an interior point. This subharmonic function must therefore be con-
stant, i.e.9(D) ⊂ bXc. However this is also impossible asbXc is strictly pseudoconcave.
Thus the germ(V, p) is not locally reducible. This is also not possible asV was assumed
to be a normal surface.

We are reduced to consideration of case 2. The argument is similar, as before letp =

9(x1) = 9(x2) andUi , i = 1,2 be disjoint neighborhoods ofxi , i = 1,2 and suppose
that9

∣

∣

U1
is an embedding. WithU±

1 defined as above the induction hypothesis implies
that

(7) 9(U+
1 ) ∩9(U2) = ∅.

It is an immediate consequence of (7) that the intersection9(U1) ∩ 9(U2) is a proper
subvariety and therefore the germ(V, p) is not locally reducible. This again violates the
normality ofV and thus completes the proof that9 embedsX′

c for anyc > c1.

Step 4: As noted above this implies that the boundaryY1
2 is embeddable and therefore

bounds a normal Stein spaceV1. Following the outline in step 2, we setX(1) = X′ ⊔Y1
2

V1.
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The varietyX(1) is smooth in a neighborhood ofbXc1 and therefore the argument in step
3 shows that9 extends to define an embedding of a neighborhood, inX(1) of X′

c1
. In

particular9
∣

∣

Y1
2

is an embedding and therefore the extension of9 to V1 is an embedding.

The varietyV1 has a strictly plurisubharmonic exhaustion function and therefore we can
use the argument just presented to show that9

∣

∣

X′
c1

⊔V1
is an embedding. Indeed as9

∣

∣

V1
is

an embedding, we only need to consider case 2, in step 3. The argument follows exactly
as above.

We use this argument inductively for each of the remaining ends. Suppose that we
have shown that the ends{Y1

2 , . . . ,Y
j −1

2 } are embeddable and bound normal varieties
{V1, . . . ,Vj −1}. For i ≤ j − 1 we set

X(i ) = X′ ⊔Y1
2

V1 ⊔Y2
2

· · · ⊔Yi
2

Vi

and forc ≤ ci let
X(i )c = X′

c ⊔Y1
2

V1 ⊔Y2
2

· · · ⊔Yi
2

Vi .

We suppose moreover that the extension of9 to X( j −1)
c j −1 is an embedding.

Using Lemma 2 and the argument in step 3 we show that9 embedsX( j −1)
c j . As noted

in step 2, this implies thatY j
2 is embeddable and therefore bounds a normal Stein space

Vj . Let X( j ) = X( j −1) ⊔
Y j

2
Vj , the mapping9 extends toX( j ). As beforeX( j ) is smooth

in a neighborhood ofbXc j and we can therefore repeat the argument in step 3 to conclude

that9 embeds a neighborhood, inX( j ) of X( j −1)
c j . As before this implies that9(Y j

2 ) is
embedded inV as the boundary of a normal Stein domain. Thus, by uniqueness9

∣

∣

Vj
is an

embedding. Using a plurisubharmonic exhaustion ofVj and Step 3 we show that, in fact
9

∣

∣

X( j )
cj

is an embedding. This completes the induction step and therefore the proof of the

theorem. �

3. ∂̄ -EQUATION ON SINGULAR DOMAINS.

We now consider an extension of Theorem 1 which allows the bounding hypersurfaces,
as well as the cobordism to have singularities. To prove these results we need versions of
the regularity statements for the∂̄-equation on Stein subsets of complexspaces. Some of
these statements are proved usingL2-methods, and others by kernel methods.

L2-methods. Let W+ be a relatively compact, open Stein subset in the Stein complex
spaceW of dimensionn. For a measurable functionψ defined onW+ we denote by
H n,q
(2) (W+,e−ψ ), q = 0,1, . . . ,n, theL2-∂̄-cohomology spaces ofW+ with respect to the

norm

‖ f ‖2
L2(W+,e−ψ )

=

∫

W+

| f |2e−2ψdv.

Heredv is the volume form for the Kähler metric on RegW+, induced by an embedding
of W in C

N .

Definition 5. We say thatα ∈ L2
0,n−q(RegW+,eψ ) satisfies the (weak) Dirichlet bound-

ary conditions for∂ if
∫

Reg W+

g ∧ α = (−1)n+q
∫

RegW+

f ∧ ∂̄α

for all g ∈ L2
n,q(Reg W+,e−ψ ) such thatg = ∂̄ f for some f ∈ L2

n,q−1(RegW+,e−ψ ).
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Let H 0,q
(2)∘(W+,eψ ) denoteL2-∂̄-cohomology spaces of RegW+ with (weak) Dirichlet

boundary conditions.

Proposition 1(Version of Andreotti-Vesentini,L2-estimate for̄∂). For any pluri-subharmonic
functionψ on W+ we have

(1) The spaces Hn,q(2) (W+,e−ψ ) and H0,n−q
(2)∘ (W+,eψ ) vanish for q= 1, . . . ,n.

(2) The space H0,n(2)∘(W+,eψ ) is dual to the space Hn,0(2) (W+,e−ψ ), the duality is

realized by the pairing
∫

W+
g∧α, where g∈ H n,0

(2) (W+,e−ψ ), α ∈ H 0,n
(2)∘(W+,eψ ).

Remark2. The first part of this proposition is an analogue, for Stein spaces of theL2-
version of the Kodaira vanishing theorem for projective varieties proved in [28].

Proof. Letω be the (1,1)-form, associated with the Kähler metric onW. Letρ be a contin-
uous strictly plurisubharmonic function onW. BecauseW̄+ ⊂ W there exists a constant
σ > 0 such that, as currents,i ∂∂̄ρ ≥ σω on W+. Following Andreotti-Vesentini [4]
and Demailly [9] we use the fact that RegW+ carries a complete Kähler metric and ob-
tain that, for anyg ∈ L2

n,q(W+,e−ψ ), q = 1, . . . ,n, satisfying∂̄g = 0, there exists

f ∈ L2
n,q−1(W+,e−ψ ) such that̄∂ f = g and

∫

W+

| f |2e−2(ψ+ρ)dv ≤
1

σ

∫

W+

|g|2e−2(ψ+ρ)dv.

Hence,

‖ f ‖L2(W+,e−ψ ) ≤
1

σ
exp 2(sup

W+

ρ − inf
W+

ρ) ‖g‖L2(W+,e−ψ ).

This proves the vanishing statement forH n,q
(2) (W+,e−ψ ), 1 ≤ q ≤ n.

The vanishing ofH n,q
(2) (W+,e−ψ ), q = 1, . . . ,n, and standard duality arguments (see,

for example, §20 in [20])α ∈ L2
0,n−q(Reg W+,eψ ), with ∂̄α = 0, 0< n − q < n, sat-

isfying the (weak) Dirichlet boundary condition, there existsβ ∈ L2
0,n−q−1(RegW+,eψ )

such that
∫

RegW+

g ∧ α = (−1)n+q+1
∫

Reg W+

∂̄g ∧ β

for all g ∈ L2
n,q(W+,e−ψ ) with ∂̄g ∈ L2

n,q+1(W+,e−ψ ).

This means thatα = ∂̄β, whereβ ∈ L2
0,n−q−1(RegW+,eψ ) and satisfies the (weak)

Dirichlet boundary conditions. This shows that

H 0,n−q
(2)∘ (W+,e

−ψ ) = 0, for 0 ≤ n − q < n.

If n − q = n, then these arguments show thatα = ∂̄β; β ∈ L2
0,n−1(RegW+,eψ ) and

satisfies the Dirichlet boundary conditions, if and only if
∫

Reg W+

g ∧ α = 0

for any L2-holomorphic form: g ∈ L2
n,0(W+,e−ψ ), with ∂̄g = 0. This implies that

H 0,n
(2)∘(W+,eψ ) is dual toH n,0

(2) (W+,e−ψ ). �

Kernel methods. Let X be ann-dimensional Stein space with at worst isolated singular
points. Letρ be aC

∞ strictly plurisubharmonic exhaustion function with at most isolated
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critical points defined onX, the definitions can be found in §1 of [15]. For a real number
θ we let Xθ denote the strictly pseudoconvex, relatively compact subset of X defined by

Xθ = {x ∈ X : ρ(x) < θ},

As above we use the Riemannian metric induced onX by an embedding intoCN .
Let π : Ux,ε → Tx(Reg X) denote the orthogonal projection of theε-neighborhood

Ux,ε of the pointx ∈ Reg X on the tangent planeTx(Reg X). For α > 0 let Cα
0,q(X̄θ )

denote the space of all those (0,q)-formsf ∈ Cα
0,q(Reg Xθ ), for which

‖ f ‖Cα(X̄θ ) = sup
x∈Reg Xθ

inf
ε>0

‖π∗ f ‖Cα0,q(π(Ux,ε∩Xθ )) < ∞.

Let Aα0,q(X̄θ ) denote the space of those formsf ∈ Cα
0,q(X̄θ ), which are∂̄-closed on

Reg Xθ . ForY ⊂ X̄θ we denote byCα
0,q(X̄θ ,Y) the space of those formsf ∈ Cα

0,q(X̄θ ),
for which

inf
ε>0

‖π∗ f ‖Cα0,q(π(Ux,ε∩Xθ )) → 0,

wherex ∈ Reg Xθ and geodesic distance(x,Y) → 0.
Let

Aα0,q(X̄θ ,Y) = Cα
0,q(X̄θ ,Y) ∩ Aα0,q(X̄θ ).

Proposition 2(Regularity for∂̄ in strictly pseudoconvex domains). For anyθ ′ andα′ there
existγ > 0 andα > 0 such that for allθ ≤ θ ′ and q = 1,2, . . . ,n one can construct a
continuous linear operator

Rq,θ : Aα0,q(X̄θ ,Sing X̄θ ) → C
α′

0,q−1(X̄θ ,Sing X̄θ )

with the properties

∂̄Rq,θg = g on X̄θ ∀ g ∈ Aα0,q(X̄θ ,Sing X̄θ )

and
‖Rq,θg‖

Cα
′
(X̄θ )

≤ γ ‖g‖
Cα(X̄θ )

.

Remark3. If X is smooth then in this Proposition one can takeα = α′ − 1/2 (see [19]).

Unfortunately, we can only prove Proposition 2 in parallel with the following Whitney
type extension theorem.

A connected compactK ⊂ R
N is called (see [31])ε-regular if∃ c > 0 andε > 0 such

that∀ x, y ∈ K we have|x − y|ε ≥ cδ(x, y), whereδ(·, ·) is geodesic distance. From the
classical Łojaciewicz inequality it follows that, for anyθ, the compact set̄Xθ is ε-regular
for someε > 0.

Proposition 3 (Version of Whitney extension theorem). Let the space X be properly em-
bedded as a closed analytic set inC

N , i.e.

X = {z ∈ C
N : Fν(z) = 0, Fν ∈ O(CN), ν = 1,2, . . . ,m}.

Then for any q= 0,1, . . . ,n and anyα′ ≥ 0 there exists anα ≥ 0 and a continuous
extension operator

E : Aα0,q(X̄θ ,Sing X̄θ ) → C
α′

0,q(C
n,Sing X̄θ )

such that∂̄Eg vanishes together with derivatives up to orderα′ on X̄θ ⊂ C
N for any

g ∈ Aα0,q(X̄θ ,Sing X̄θ ).
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Proof. Step 1.Proposition 3 for givenq = r = 1,2, . . . ,n implies Proposition 2 for the
sameq = r.

Let E be the extension operator from Proposition 3 for givenq. Then forg0 ∈ Aα0,r (X̄θ ,Sing X̄θ )

and forEg0 ∈ C
α′

0,r (C
n,Sing X̄θ ) we can apply the Propositions (2.2.1), (2.3.1) from [1],

which show that∀α′′ ≥ 0 and∀θ ′ there existα′ ≥ α′′, γ > 0 and a continuous linear
operator

(8) R : C
α′

0,r (C
n,Sing X̄θ ) −→ C

α′′

0,r−1(X̄θ ,Sing X̄θ )

such that

(9) g0
∣

∣

X̄θ
= ∂̄REg0

∣

∣

X̄θ
and

(10) ‖REg0‖
C
α′′

0,r−1(X̄θ )
≤ γ ‖g0‖

C
α
0,r (X̄θ )

, θ ≤ θ ′.

Step 2.Proposition 2 for givenq = r = 1,2, . . . ,n implies Proposition 3 forq = r − 1.
To avoid non-essential technical details we will consider here only the case whenX is

embeddable inCn+1 as complex hypersurface, i.e. let

(11) X = {z ∈ C
n+1 : F(z) = 0}, F ∈ O(Cn+1),

(12) Xθ = {z ∈ X : ρ(z) < θ},

ρ is a strictly plurisubharmonic function and

Sing X = {z ∈ X : d F(z) = 0}.

We suppose that SingX 6= ∅, otherwise the result is standard. Following the approach of
Whitney, see [31, 32], we consider a locally uniformly, finite covering of RegX ⊂ C

n+1

by the polydiscsD j = D j (z j , r j ) ⊂ C
n+1 with centers at pointsz j ∈ Reg X and radii

r j = δ [dist(z j ,Sing X)]ν .
Let

D j ,θ = {z ∈ D j : ρ(z) < θ}.

If ν is large enough andδ is small then enough there is an orthogonal change of the coor-
dinatesz → z̃ such that

D j ,θ ∩ X = {z̃ ∈ D j ,θ : z̃n+1 = F̃(z̃1, . . . , z̃n)}.

In this open set(z̃1, . . . , z̃n) are local coordinates onX.
The formg ∈ Aα0,r−1(X̄θ ,Sing X̄θ ) restricted toD j ,θ ∩ X can be represented in the

form

g(z̃1, . . . , z̃n) =
∑

j1< j2<...< jr−1≤n

g j1,..., jr−1(z̃1, . . . , z̃n, F̃(z̃1, . . . , z̃n))d ¯̃z j1 ∧ . . . ∧ ¯̃z jr−1.

We extend suchg on D j ,θ to be independent of̃zn+1, that is

(E j g)(z̃1, . . . , z̃n+1) = g(z̃1, . . . , z̃n).

We obtain extension operators

E j : Aα0,r−1(X̄θ ,Sing Xθ ) → Aα0,r−1(D̄ j ,θ ),

with the properties

‖E j g‖
Cβ (D̄ j ,θ )

= O([dist(D j ,Sing X)](α−β)ε)‖g‖
Cα(X̄θ )
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for any g ∈ Aα0,r−1(X̄θ ,Sing Xθ ), β ≤ α. The constantε > 0 corresponds to theε-

regularity of the compact subsetX̄θ .
Let {χ j } be a partition of unity on a neighborhoodUθ of Reg Xθ , subordinate to the

covering∪B j ⊃ Reg Xθ and with the property|Dνχ j | = O(r −ν
j ) for any derivative of

any orderν of any functionχ j .
Following the standard cohomological construction and thefact that the ideal ofX is

generated byF , we introduce the following forms:

(E j g − Ekg)
∣

∣

D j ,θ∩Dk,θ
= g j ,kF,

g̃ j
∣

∣

D j ,θ
=

∑

k

χkg j ,k
∣

∣

D j ,θ
and

ψ = {∂̄ g̃ j =
∑

k

∂̄χkg j ,k, z ∈ D j ,θ }.

(13)

We have obtained a formψ ∈ Aβ0,r (Ūθ ,Sing X̄θ ) with β = O(αε/ν).

Proposition 2 implies that there exists a formRψ ∈ Cβ ′

0,r−1(Ūθ ,Sing X̄θ ) such that

ψ = ∂̄Rψ on X̄θ together with derivatives up to orderβ ′. We can define now the necessary
extension operator by the formula

Eg = {E j g − (g̃ j − Rψ)F, z ∈ D j ,θ }.

Step 3.Proof of Proposition 3 forq = n.
In this case Proposition 3 can be proved the same way as in Step2. The reference to

Proposition 2 need only be replaced by the classical statement (see, for example, §11 in
[20]) aboutCβ -solvability of the∂̄-equation∂̄ f = ψ on Ūθ ⊂ C

n+1 for the casē∂-closed
(0,q)-formψ of maximal degreeq = n + 1.

Propositions 2 and 3 follow by recurrence: at first Step 3 + Step 1 + Step 2 forq = n,
after Step 1 + Step 2 forq = n − 1, etc..., Step 1 + Step 2 forq = 1. �

Proposition 2 has several important consequences.

Proposition 4 (Versions of Hartogs-Lewy extension theorem). Under the hypotheses of
Proposition 2 letρ̃ be a plurisubharmonic function on X⊃ X0 and Y= {x ∈ X : ρ̃(x) <
0}. Then for givenα′ > 0 there existsα > 0 such that: If f̃ ∈ C

α(Ȳ) and ∂̄ f̃ vanishes
onY ∩ bX0 together with all derivatives up to orderα then there exists̃F ∈ C

α′
(Y ∩ X0)

with the properties:F̃ ∈ O(Y ∩ X0) and F̃ − f̃ vanishes onY ∩ bX0 together with all
derivatives up to orderα′.

Remark4. If X andbX0 are smooth then in this Proposition one can takeα = α′ (see [8]).

Proof. Let χ be suchC∞-function onX thatχ = 1 on a neighborhood ofbX0 andχ = 0
on a neighborhood of SingX0. Let

(14) g =

{

∂̄(χ f̃ ) onY ∩ X0

0 onȲ \ (X1 \ X̄0).

We haveg ∈ C
α−1
0,1 (Y ∩ X1,Sing Y ∩ X1) and∂̄g = 0.

Proposition 2 implies the existence ofu ∈ C
α′
(Y ∩ X1) such that̄∂u = g. If we set

F̃1 = f̃ − u onY ∩ X0 and

f̃2 = −u onY ∩ (X1 \ X0),
(15)
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then

F̃1 ∈ C
α′

(Y ∩ X0) ∩ O(Y ∩ X0) and

f̃2 ∈ C
α′

(Y ∩ (X1 \ X0)) ∩ O(Y ∩ (X1 \ X̄0)).
(16)

Applying the Hartogs-Levi extension theorem on complex spaces ([2], Proposition 15)
to the function f̃2 we obtain a holomorphic functioñF2 ∈ O(Y ∩ X) such thatF̃2 =

f̃2 on Y ∩ (X1\X̄0). Hence, functionF̃ = F̃1 − F̃2 has the necessary propertiesF̃ ∈

C
α′
(Y ∩ X0)∩ O(Y ∩ X0) andF̃ − f̃ vanishes onY ∩ bX0 together with all derivatives up

to orderα′.
�

Proposition 5 (Regularity for∂̄ in strictly pseudoconcave domains). Under the hypothe-
ses of Proposition 2, let�0 be strictly pseudoconvex neighborhood in X of a point x0 ∈

bX0. Then for some smaller neighborhood D0 of x0 and for anyα′ ≥ 0 there exist
α ≥ α′ and γ > 0 such that for any h∈ C(�0\X0) with the property f = ∂̄h ∈

C
α
0,1(�0\X0,Sing�0\X0) the following estimate is valid

‖h‖
Cα

′
(D0\X0)

≤ γ (‖∂̄h‖
C
α
0,1(�0\X0)

+ ‖h‖C(�0\X0)
).

Proof. Let the spaceX be embedded as closed analytic subset inC
N such that

X = {z ∈ C
N : Fν(z) = 0, ν = 1, . . . ,m},

�0 = {z ∈ X : ρ0(z) < 0},

X0 = {z ∈ X : ρ(z) < 0},

(17)

whereFν ∈ O(CN), ρ andρ0 are smooth strictly plurisubharmonic functions onC
N .

For the manifold�0\X0 we apply the integral formula, (2.2.16) from Proposition 2.2.1
of [1], using in it the barriers functions for domainsX0 and�0 from Propositions 2.3.1,
3.3.1 of [1].

We obtain for f = ∂̄h ∈ C
α
0,1(�0\X0,Sing�0\X0) the integral representation of the

form
f = ∂̄ R̃ f + K̃ f,

whereR̃ f ∈ C
α′
(�0\X0,Sing�0\X0) and K̃ f =

˜̃K h ∈ C
∞
0,1(D̄0,Sing D̄0) for a suffi-

ciently small neighborhoodD0 ⊂⊂ �0 of pointx0 ∈ bX0 andh ∈ C0,1(�0\X0).

Applying Proposition 2 to thē∂-closed form ˜̃K h on D0 we obtain the representation

f
∣

∣

D0
= ∂̄ ˜̃R f , where ˜̃R f ∈ C

α′
(D̄0).

To finish the proof we remark thath
∣

∣

D0
=

˜̃R f + h̃, whereh̃ ∈ O(D0). �

4. COMPLEX COBORDISMS ON ANALYTIC SPACES

Let ρ be aC
∞ strictly plurisubharmonic function with at most isolated critical points

on the (almost) complex spaceX of dimension 2 with at most isolated singularities.

Definition 6. A compact oriented subsetM in an (almost) complex spaceX of the form
M = bX+ = −bX−, whereX± = {x ∈ X : ±ρ(x) < 0} will be called a strictly
pseudoconvexCR-hypersurface. Such a CR-hypersurface will be called CR-embeddable in
complex affine spaceCN if for anyα ≥ 1 there exists a realC

α-embedding8 : X → C
N

with the property:̄∂8 vanishes onM together with all derivatives up to orderα − 1.
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If the domainsX± are relatively compact inX then they are called respectively strictly
pseudoconvex and strictly pseudoconcave domains inX. By a realCα-embedding8 :

X → C
N we mean the restriction toX of a C

α-embedding8̃ : Z → C
N for some

ambient smooth manifoldZ ⊃ X.

Definition 7. A compact CR-hypersurfaceM0 is called strictly CR-cobordant to a compact
CR-hypersurfaceM1 if there exists an (almost) complex spaceX̃ with at most isolated
singularities and aC∞-strictly plurisubharmonic functionρ with at most isolated critical
points onX̃ such that the setX = {x ∈ X̃ : 0 < ρ(x) < 1} is a relatively compact,
complex subspace iñX andbX = M1 − M0.

Theorem 2. Let M1 be embeddable strictly pseudoconvex CR-hypersurface. Then any (not
necessary smooth) CR-hypersurface M0, strictly cobordant to M1, is also embeddable.

Corollary 2. If under the hypothesis of Theorem 2 a complex space X defines complex
cobordism between M1 and M0, then X is embeddable inCN .

Remark5. This Corollary implies, in particular, the embeddings results of Grauert, R.
Narasimhan, Andreotti and Y.-T.Siu for compact, pseudoconvex and pseudoconcave two-
dimensional complex spaces, respectively, see [15, 27, 3].

The first small step in the proof of this theorem is the following.

Proposition 6. Let X be a relatively compact, complex subspace in an (almost) complex
spaceX̃ with at most isolated singularities such that

X = {x ∈ X̃ : 0< ρ(x) < 1},

whereρ is a strictly plurisubharmonic function with at most isolated critical points onX̃ .
If the CR-hypersurface M1 = {x ∈ X̃ : ρ(x) = 1} is CR-embeddable, then there exists
θ1 < 1 such that the space{x ∈ X : θ1 < ρ(x) < 1} is holomorphically embeddable in
C

N .

Proof. Let 8 : X̃ → C
N be a realCα-embedding with the property:̄∂8 vanishes on

M1 together with derivatives up to orderα − 1. From Proposition 4 it follows that for any
α′ > 0 there existα ≥ α′ and another mapping̃8 : X̃ → C

N such that8̃ ∈ C
α′
(X̃),

8̃ = 8 on {x ∈ X̃ : ρ(x) > 1} and8̃
∣

∣

X is holomorphic.

From these properties it follows that ifα′ ≥ 1, then the mapping̃8 is regular at any
point of M1 in the sense of §1 in [15] and is embedding on{x ∈ X̃ : ρ(x) > 1}. Hence
by Andreotti’s proposition (see §1, [15]) it follows that there existsθ1 < 1 such that the
mapping8̃ is C

α′
-real embedding of{x ∈ X̃ : ρ(x) > θ1} and holomorphic embedding

of {x ∈ X̃ : θ1 < ρ(x) < 1}. The Proposition is proved. �

Definition 8. A form f ∈ Cα
0,q(bXθ ) is called a CR-form (on the given space) if

∂̄τ f
∣

∣

RegbXθ
= 0,

where∂̄τ is the tangential Cauchy-Riemann operator.

The second step in the proof of the Theorem 2 is the following.

Proposition 7. [Version of Boutet de Monvel embedding theorem] Under the hypotheses
of Proposition 6, let M= {x ∈ X̃ : ρ(x) = 0} and C⊥β

0,1 (X̄θ ,Sing X̄θ ) be the space of

those f ∈ Cβ
0,1(X̄θ ,Sing X̄θ ), which are∂̄-closed onReg Xθ and∂̄τ -exact on M. Then M
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is embeddable in a complex affine space if for anyθ0 > 0 and for anyα > 0 there exists
θ < θ0 andβ ≥ α, a constantγ > 0 and a linear operator

Tθ : C⊥β
0,1 (X̄θ ,Sing X̄θ ) → Cα(X̄θ )

such that̄∂Tθ f = f onReg Xθ and

‖Tθ f ‖
Cα(X̄θ )

≤ γ ‖ f ‖
C
β
0,1(X̄θ )

∀ f ∈ C⊥β
0,1 (X̄θ ,Sing X̄θ ).

Remark6. For a smooth hypersurfaceM this statement first appeared in [6] as an interpre-
tation of the results in[5].

Proof. We only give the proof for the case of̃X a complex space. Letp ∈ M and� be
a neighborhood ofp in X̃, for which there exists a holomorphic embeddingZ : x 7→

z(x) = {z1(x), . . . , zN(x)} of � in a neighborhoodB = {z ∈ C
N : |z| < 1} of 0 ∈ C

N .

The coordinates can be chosen so thatz(p) = 0 and

M̃ = Z(M ∩�) = {z ∈ C
N : |z| < 1, ρ̃(z) = 0, Fν(z) = 0, ν = 1, . . . ,m},

where Fν ∈ O(CN), ρ̃ is a strictly plurisubharmonic function onB, ρ̃(z(x)) = ρ(x),
x ∈ �.

Let g be the Levi polynomial for̃ρ(z) at zero. The polynomialg has the properties:

g ∈ O(B), g(0) = 0, Re g ≥ c|z|2, c > 0, ∀ z ∈ M̃ .

Let χ be a function with compact support inB such thatχ ≡ 1 on(1/2)B = {z ∈ C
N :

|z| < 1/2} anddχ = 0 in a neighborhood of Sing̃M.
Let us consider now the following sequence of smooth∂̄-exact(0,1)-forms onM

fk(x) =

{

∂̄[χ(z(x)) exp(−kg(z(x)))], x ∈ � ∩ X

0, x ∈ X\�.

For sufficiently smallθ0 we havefk → 0, k → ∞, in C
∞(Xθ0,Sing Xθ0).

For someθ < θ0, the properties of the operatorTθ imply that the functionsuk =

Tθ fk → 0 in C
α(X̄θ ) as k → ∞, and ∂̄uk = fk on Xθ . Hence the functionshk =

χ exp(−kg) − uk are CR-functions onM with the propertieshk(p) → 1, k → ∞, and
hk(x) → 0, k → ∞, ∀ x ∈ M\{p}. Becausep is arbitrary point ofM, we have obtained
that ∀α > 0 the CR-functions of classCα(M) separate the points ofM.

To finish the proof we must now find for everyα ≥ 1 and for an arbitrary pointp ∈ M
a CR-mappingx 7→ z̃(x), x ∈ M, which can be extended to a neighborhoodD of p as real
C(α)-embedding with the property:̄∂ z̃ vanishes onD ∩ M together with all derivatives up
to orderα − 1.

For this let us consider another sequence of∂̄-exact forms,

fk, j =

{

∂̄z j (x)χ(z(x)) exp(−kg(z(x)), x ∈ �

0, x ∈ X\�,

k = 1,2, . . .; j = 1,2, . . . , N.
For sufficiently smallθ0 we have thatfk, j → 0, k → ∞, in C

∞(X̄θ0,Sing X̄θ0). For
someθ < θ0 the properties of the operatorTθ imply that the functionsuk, j = Tθ fk, j → 0
in C

α(X̄θ ) ask → ∞.

Let us prove that fork large enough the CR-functions

z(k)j (x) = z j (x)χ(z(x)) exp(−kg(z(x)))− uk, j (x), x ∈ M,
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j = 1,2, . . . , N, give the necessary CR-mappingx 7→ z̃(k)(x), x ∈ M.
Because by construction for some�0 ⊂ �, p ∈ �0, we have fk, j

∣

∣

X∩�0
= 0, the

functionsuk, j are holomorphic onX ∩�0 such that

‖uk, j ‖Cα(X∩�0)
→ 0, k → ∞.

By the Hartogs-Levi theorem on a complex space see [2] there exists a smaller neigh-
borhoodD0 ⊂ �0 of the point p ∈ M such that functions theuk, j have holomorphic
extensions

u+
k, j in D+

0 = {x ∈ D0 : ρ(x) < 0} and(18)

‖u+
k, j ‖Cα

′
(D̄+

0 )
→ 0, ask → ∞.(19)

The compact set̄D+
0 is ε-regular for someε > 0. By results of Whitney [32] and

Tougeron [31] the functionsu+
k, j can be extended as functionsũk, j , in the first instance

definedD0 and thence to the ambient domainD̃0 ⊂ C
N such that for someε > 0

‖ũk, j ‖Cεα
′
(D̃0)

→ 0, k → ∞.

Let us suppose thatα is so large thatεα′ ≥ 1. Then for the functions

z̃(k)j = z jχ exp(−kg)− ũk, j

we have
∂ z̃(k)j

∂zi
(p) → δi j , k → ∞,

whereδi j = 1, if i = j , δi j = 0, if i 6= j , i , j = 1,2, . . . , N.
Hence fork large enough the mappingx 7→ z̃(k)(x) gives a realCεα

′
-embedding of

some (sufficiently small) neighborhood ofp in X and besides̄∂ z̃(k) vanishes onD0 ∩ M
together with all derivatives up to orderεα′ − 1. �

The main step in the proof of Theorem 2 is the following.

Proposition 8. Let X be a relatively compact domain in the complex spaceX̃ of dimension
2 with at most isolated singularities such that bX= M1 − M0, where M0 is a strictly
pseudoconvex CR-varietyand M1 is a strictly pseudoconvex CR-manifold. If there exists a
holomorphic embeddingϕ : X ∪ M1 → C

N , then the variety M0 is also CR-embeddable.

For the proof of Proposition 8 we need several lemmas.
Let X be as in Proposition 8 andϕ : X ∪ M1 → C

N an holomorphic embedding. By
the result of Rossi [30] there exists a Stein spaceW with isolated singularities and smooth
strictly pseudoconvex boundarybM1 embedded inCN such that

W− = ϕ(X) ⊂ W and W+ = W\W̄−

is relatively compact domain inW.
From the concavity ofX nearM0 and the Hartogs-Levi extension theorem on complex

spaces [2] it follows that the holomorphic mappingϕ has a holomorphic extension to the
neighborhoodU0 of M0 in X̃.

Let ρ0 be a smooth, strictly plurisubharmonic function, defined inU0 such that

M0 = {x ∈ U0 : ρ0(x) = 0} and ρ0 > 0 on U0 ∩ X.

Let G be the analytic, exceptional subset of thosex ∈ X ∪ U0, for which x ∈ Sing X
or x ∈ Reg X, but rank ofdϕ(x) < 2. From injectivity ofϕ on X and from maximum
principle forρ0

∣

∣

G, it follows that exceptional setG must be a finite set.
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Lemma 3. W+ is a Stein open subset in the space W.

Proof. Forε > 0 we consider

X−
ε = X\{x ∈ U0 : ρ0(x) ≤ ε},

Wε− = ϕ(X−
ε ) and Wε+ = W\W̄ε−.

(20)

For all sufficiently smallε > 0, the setWε+ is a domain with strictly pseudoconvex bound-
ary in the Stein spaceW. Hence,Wε+ and alsoW+ = int ∩ε>0Wε+ are also Stein. �

Define the functions

ρ(z) =
∑

z∗∈ϕ(G)

ln |z − z∗| and r = eρ .

Let31
0,q(W̄±) be the spaces of (0,q)-forms on̄W± with coefficients in the space of Lips-

chitz functions. For real numbersν± we define the spaces

3
1,ν±
0,q (W̄±) = r −ν±31

0,q(W̄±).

Lemma 4. For the given mappingϕ : X → W− ⊂ C
N there existsν− ≥ 0 such that the

operator

ϕ∗ : C(1)
0,1(X̄) → 3

1,ν−
0,1 (W̄−)

is continuous.

Proof. Using the Łojasiewicz inequality the authors obtained in [12] the following esti-
mate: There are positive constantsc, A such that

|ϕ(x)− ϕ(y)| ≥ cd(x, y)[d(x,G)+ d(y,G)]A, x, y ∈ X̄.

Hered(·, ·) denotes the distance oñX, measured with respect to a Riemannian metric on
X̃.

It follows from this estimate that there exists aν > 0 such that if f ∈ C
1(X̄) and

|∇ f (p)| ≤ c[d(p,G)]ν, thenϕ∗ f (w) = f (ϕ−1(w)) belongs to31(ϕ(X̄)). So for any
f ∈ C

1(X̄) we have obtained an estimate of the form

|ϕ∗ f |31(ϕ(X̄)) ≤ c
(

‖ f ‖C(X) + sup
p∈X

|∇ f (p)|

[d(p,G)]ν
)

.

Using Cramer’s rule and the Łojasiewicz inequality one can show that if f ∈ C
1
0,1(X̄)

vanishes to high enough order onG then we can representf in terms ofϕ∗(dz̄ j ), j =

1,2, . . . , N, with C
1-coefficients, vanishing to any specified order onG. �

Using the Lipschitz extension theorem from [25] and [32] it follows that, for the given
W± andν− ≥ 0, there existsν+ ≥ 0 and a continuous linear extension operator

(21) E+ : 3
1,ν−
0,1 (W̄−) → 3

1,ν+
0,1 (W̄+).

There exists alsoµ+ ≥ 0 such that the operator

∂̄ : 3
1,ν−
0,1 (W̄+) → L2

0,2(W+,e
µ+ρ)

is continuous.
LetC⊥s

0,1(X̄) be the space ofs-times differentiable(0,1)-forms onX̄, which are∂̄-closed

on X̄ and∂̄τ -exact onM0.
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Lemma 5. For any f ∈ C⊥1
0,1(X̄), the form b+ = ∂̄E+ϕ∗ f belongs to L20,2(W+,eµ+ρ) and

satisfies the following orthogonality property

(22)
∫

W+

b+ ∧ h = 0 ∀ h ∈ H 2,0
(2) (W+,e

−µ+ρ).

Proof. Let us fixε > 0 andhε ∈ H 2,0
(2) (Wε+,e−µ+ρ). We have

∫

Wε+

b+ ∧ hε =

∫

Wε+

∂̄E+g− ∧ hε
L2Stokes

=

∫

bWε+

E+g− ∧ hε =

∫

bWε+

g− ∧ hε =

∫

Mε

ϕ∗g− ∧ ϕ∗hε =

∫

Mε

f ∧ ϕ∗hε.

(23)

To prove that the last integral is equal to zero we remark thatthe propertyhε ∈ H 2,0
(2) (Wε+,e−µ+ρ)

implies that the formϕ∗hε ∈ H 2,0
(2) ((X\X−

ε )\G). An L2-holomorphic form of maximal
degree on a complex space has an holomorphic extension through analytic singularities.

From Proposition 1, using the approximation arguments in §10 of [20], which are in
turn based on the solution of Cousin’s problem with estimates in Wε+, it follows that
∀ h ∈ H 2,0

(2) (W+,e−µ+ρ) one can findhε j ∈ H 2,0
(2) (Wε j +,e

−µ+ρ) such thathε j → h in

H 2,0
(2) (W+,e−µ+ρ), ε j → 0. Henceϕ∗h

∣

∣

M0
is ∂̄τ -closed form in the distribution sense on

M0. This means that
∫

M0

f ∧ ϕ∗h =

∫

M0

∂̄τα ∧ ϕ∗h = 0.

�

Let L⊥2
0,2(W+,eµ+ρ) denote the subspace inL2

0,2(W+,eµ+ρ) consisting of the forms
with the property (22). Proposition 1 and Lemma 3 imply the following lemma.

Lemma 6. There exists an operator

T+ : L⊥2
0,2(W+,e

µ+ρ) → L2
0,1(W+,e

µ+ρ)

such that for any b+ ∈ L⊥2
0,2(W+,eµ+ρ) we have

‖T+b+‖L2(W+,eµ+ρ) ≤ const‖b+‖L2(W+,eµ+ρ),(24)

T+b+

∣

∣

bW+
= 0 in the L2 distribution sense,(25)

∂̄T+b+ = b+ on W+.(26)

We also need the following version ofL2-solvability for the∂̄-equation on a Stein space
with isolated singularities.

Lemma 7. For anyµ ≥ 0 there exists a continuous operator

T : L2
0,1(W,e

µρ) → L2(W,eµρ)

such that f= ∂̄T f onRegW for any f from a finite codimensional subspace in the space

(27) { f ∈ L2
0,1(W,e

µρ) : ∂̄ f = 0 on RegW}.
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Proof. From Proposition 1 it follows that the spaceH 0,1
(2)∘(W,e

µρ) = 0. To prove the
lemma it is sufficient to check the following statement:

(28) For the elementsf of a finite-codimensional subspace of the space (27),

the restrictionsf
∣

∣

bW are∂̄τ − exact onbW.

By Theorem 10.3 from [18], the formf
∣

∣

bW is ∂̄τ -exact if and only if
∫

bW
f ∧ h = 0 ∀ h ∈ H 2,0(bW) ∩ C

∞
2,0(bW).

From the generalized Hartogs-Levi theorem [2] it follows that the space

H 2,0
(2) (W,e

−µρ) ∩ C
∞
2,0(W̄)

can be considered as a finite co-dimensional subspace of the spaceH 2,0(bW)∩C
∞
2,0(bW).

For anyh ∈ H 2,0
(2) (W,e

−µρ) ∩ C
∞
2,0(W̄) the equality

∫

bW f ∧ h = 0 follows from Stokes
formula. The statement mentioned above is verified and Lemma7 is proved. �

Proof. Now we complete the proof of Proposition 8. Letf̃ ∈ C⊥α
0,1(X̄,Sing X̄). Lemma 4

implies thatg− = ϕ∗ f̃ ∈ 3
1,ν−
0,1 (W̄−). Applying Lemma 5 forg− ∈ 3

1,ν−
0,1 (W−) we obtain

that form∂̄E+g− belongs toL⊥2
0,2(W+,eµ+ρ), where operatorE+ is defined by (21).

Let T+ be an operator defined in Lemma 6. Then the following operatorg− 7→ E+g− =

E+g− − T+(∂̄E+g−) has the properties

E+g− ∈ L2
0,1(W+,e

µ+ρ), E+g−

∣

∣

bW−
= g−

∣

∣

bW−

and∂̄E+g− = 0 onW+. Let us set

g =

{

E+g− for z ∈ W+

g− for z ∈ W−.
.

Theng ∈ L2
0,1(W,e

µρ), whereµ = max(µ+, µ−) and∂̄g = 0 on RegW.

By Lemma 7 for anyg from the finite-codimensional subspaceB2
0,1(W,e

µρ) of the
space

{g ∈ L2
0,1(W,e

µρ) : ∂̄g = 0 on RegW}

we haveg = ∂̄T g, whereT : L2
0,1(W,e

µρ) → L2(W,eµρ) is continuous linear operator.

Hence for f̃ from the finite-codimensional subspace

ϕ∗B2
0,1(W,e

µρ) ∩ C⊥1
0,1(X̄,Sing X̄) ⊂ C⊥1

0,1(X̄,Sing X̄)

we have

f̃ = ϕ∗g = ∂̄Tϕ∗g = ∂̄R f̃ ,

where the functionR f̃ (x) = T g(ϕ(x)) is continuous onX\G and has at most polynomial
growth nearM0 ∪ G.

From the concavity of the varietyX in a neighborhoodU0 of M0 ∪ G it follows that
there exists a smooth family of holomorphic Levi-discsSb ⊂ X\G, Sb ∋ b, parametrized
by the pointsb ∈ U0 ∩ X such that there exists a compact setK ⊂ X\G, containing all
the closed curvesbSb.
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Applying Proposition 2 to the restrictions̃f
∣

∣

Sb
, b ∈ U0 ∩ X\G, we can find for large

enoughα a family of functionsRb f̃ ∈ C(S̄b) depending continuously on the parameterb
such that

∂̄Rb f̃
∣

∣

Sb
= f̃

∣

∣

Sb
and ‖Rb f̃ ‖

C(S̄b)
≤ γ ‖ f̃ ‖

Cα (X̄),

whereγ does not depend onb. Hence, for the restrictionsR f̃
∣

∣

Sb
we have a representation

R f̃
∣

∣

Sb
= Rb f̃ + Kb f̃ , where Kb f̃ ∈ O(Sb).

Now allowingb to tend toM0 ∪ G we obtain from this representation and the maximum
principle forKb f̃ on Sb the inequality

sup
x∈U0∩X\G

|R f̃ (x)| ≤ γ̃ (‖ f ‖C(α)(X̄) + sup
x∈K

|R f̃ (x)|).

This implies thatR f̃ ∈ C(X ∪ M0).
From Proposition 5 it follows that for everyα′ there existsα ≥ α′ such thatR f̃ ∈

C
α′
(X∪M0) if f̃ ∈ C

α
0,1(X̄,Sing X̄) andR f̃ ∈ C(X∪M0). We have therefore constructed

a continuous linear operatorR : C⊥α
0,1(X̄,Sing X̄) → Cα′

(X̄) such that∂̄R f = f on

Reg X for a finite co-dimensional subspace off ∈ C⊥α
0,1(X̄,Sing X̄).

Because, in the argument above, one can takeXθ instead ofX, Proposition 7 implies
the embeddability ofM0 in affine space. �

Proof of Theorem 2.Let X−
θ = {x ∈ X : ρ(x) > θ} andMθ = {x ∈ M : ρ(x) = θ}.

Let ϕ1 : M1 → C
N be a CR-embedding. By Proposition 6 the mappingϕ1 admits an

holomorphic extension as a holomorphic embeddingψθ : X−
θ → C

N for someθ < 1.
Let θ1 be the infimum of numbersθ such that there exists an embeddingψθ : X−

θ → C
N .

Using Rossi’s “filling of holes” result, [30] we deduce the existence of a holomorphic
embedding ofX−

θ1
in a normal Stein space. Applying the Remmert embedding theorem

to this Stein space we obtain an embeddingψθ1 : X−
θ1

→ C
N . From the Hartogs type

extension theorem on complex spaces [2] it follows that the holomorphic mappingψθ1
admits holomorphic extension toX.

From Proposition 8 we obtain the existence of a CR-embeddingϕθ1 : Mθ1 → C
N . To

finish the proof it is sufficient to show thatθ1 = 0. Suppose thatθ1 > 0. From Propo-
sition 6 it follows that the mappingϕθ1 admits a holomorphic extension as a holomorphic
embedding

ψ̃θ2 : (X−
θ2

\X−
θ1
) → C

N for some θ2 < θ1.

From Hartogs-Levi extension theorem and Oka-Weil approximation theorem on complex
spaces [2] it follows that the holomorphic embeddingψ̃θ2 can be chosen to be holomorphic
on X.

Hence holomorphic functions onX−
θ2

separate all points ofX−
θ2

and we can again apply

Rossi’s and Remmert’s results to obtain the existence of an embeddingψθ2 : X−
θ2

→ C
N

with θ2 < θ1. This contradicts the minimality ofθ1 and proves Theorem 2. �

5. APPENDIX: EMBEDDABILITY IS NOT A COMPLEX COBORDISM INVARIANT

BY BRUNO DE OLIVEIRA

UNIVERSITY OF PENNSYLVANIA AND HARVARD UNIVERSITY

In this Appendix we state some results on embeddability and complex-cobordisms of
strictly pseudoconvex 3-manifolds that will appear in fulldetail in [10]. In that paper we
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also study the non-extendibility of CR-functions from the pseudoconvex component of the
boundary of a complex manifoldX.

Theorem 3. Fillability of strictly pseudoconvex 3-manifolds is not a complex cobordism
invariant.

Theorem 4. Let M0 be an embeddable strictly pseudoconvex 3-manifold. The embeddabil-
ity of strictly pseudoconvex 3-manifolds complex cobordant to M0 is not stable, for small
deformations of the CR-structure preserving the property of being complex cobordant to
M0.

These results follow from the construction sketched below.In the paper [10] more
general examples of this type are described.

Let C1 andC2 be two distinct linearP1’s in P
2 andx0 = C1 ∩ C2. Construct an open

covering of a neighborhoodU of C = C1 ∪ C2, consisting ofU0, U1 andU2 such that
x0 ∈ U0, C1 ⊂ U0∪U1, C2 ⊂ U0∪U2, andU1∩U2 = ∅. By [26] one has a smooth family
of gluings ofU0 andU2, such that the initial gluing is the given one and all other gluings
give rise to open surfaces containingC2 with the same normal bundle but non-equivalent
embeddings. In the cited paper it is shown that the only surface germ containingP1 with
the standard normal bundle, which is fillable is that of the linear embedding ofP1 into P

2.

Let ω : V → 1 be a family of surfaces, with= Vt = ω−1(t) andV0 = U , obtained
by fixing the gluing ofU0 to U1 but changing the gluing ofU0 with U2, using a family
gluings dependent ont as described in the previous paragraph. Each member,Vt of the
family contains the curveC embedded with the same normal bundle. Hence the tubular
neighborhoods ofC in all theVt are diffeomorphic to the tubular neighborhoodW of C in
V0. There is a smooth mapφ : W ×1 → V, with eachφt : W → Wt = φ(W × t) ⊂ Vt

a diffeomorphism fromW to a tubular neighborhood ofC in Vt . The family of surfaces
{Wt : t ∈ 1} can be therefore described as the deformation of the complexstructure on
W, induced by the diffeomorphismsφt .

One can construct a strictly plurisubharmonic exhaustion function f : V0 \C → R. For
large enoughc

Sc = {x ∈ V0 : f (x) ≥ c} ⊂⊂ W.

Fix somec ≫ 0, after possibly shrinking1, one can assume that for allt ∈ 1, f :

W\C → R is strictly plurisubharmonic on a neighborhood ofSc for the complex structures
on W induced byφt .

As a consequence, for each sufficiently smallt 6= 0 the surfaceWt contains a pseudo-
concave neighborhood,Yt− of C. We denote its boundary byM1t = φt (Sc). The strictly
pseudoconcave manifoldYt− contains both the neighborhood germ of a linearP

1 ⊂ P
2

and the neighborhood germ of a nontrivial deformation of thelinear embedding ofP1. Any
nontrivial deformation of the neighborhood germ of a linearP

1 in P
2 cannot be contained

in a embeddable pseudoconcave surface. This implies that the pseudoconcave surfaces
Yt− ⊂ Wt , t 6= 0 are not embeddable and hence the strictly pseudoconvex 3-manifolds,
M1t are not embeddable. On the other hand eachM1t is complex-cobordant to an em-
beddable strictly pseudoconvex 3-manifoldM0 contained in the neighborhood germ of the
linearP

1. Because this neighborhood contains a subset biholomorphic to a neighborhood
of infinity in C

2, each of the CR-manifoldsM1t is, in fact complex-cobordant to a round
S3.
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