CAN A GOOD MANIFOLD COME TO A BAD END?

CHARLES L. EPSTEIN AND GENNADI M. HENKIN

Abstract

Two notions of cobordism are defined for compact CR-manifolds. The weaker notion, complex cobordism realizes two CR-manifolds as the boundary of a complex manifold; in the stronger notion, strict complex cobordism there is a strictly plurisubharmonic function defined on the total space of the cobordism with the boundary components as level sets of this function. We show that embeddability for a 3-dimensional, strictly pseudoconvex CR-manifold is a strict cobordism invariant. De Oliveira has recently shown that this is false for complex cobordisms. His construction is described in an appendix.

Date: October 11, 2000, corrected April 17, 2006 ; Run: April 17, 2006

1. Introduction

Let Y be a manifold of dimension $2 n+1$. A CR-structure on Y is defined as a subbundle $T^{0,1} Y \subset T Y \otimes \mathbb{C}$ which satisfies the following conditions

[dimension] fiber- $\operatorname{dim}_{\mathbb{C}} T^{0,1} Y=n$.
 [non-degeneracy] $\quad T^{0,1} Y \cap \overline{T^{0,1} Y}=$ zero section of $T Y$.

[integrability] If $\bar{W}, \bar{Z} \in \mathscr{C}^{\infty}\left(Y ; T^{0,1} Y\right)$ then their Lie bracket $[\bar{W}, \bar{Z}]$ is as well.
If we let $T^{1,0} Y=\overline{T^{0,1} Y}$ then there is a real hyperplane bundle $H \subset T Y$ such that

$$
\begin{equation*}
T^{0,1} Y \oplus T^{1,0} Y=H \otimes \mathbb{C} \tag{1}
\end{equation*}
$$

Definition 1. If $T^{0,1} Y$ is a CR-structure on Y for which (1) holds then we say that $T^{0,1} Y$ is a CR-structure supported by H.

For θ a non-vanishing one form such that $H=\operatorname{ker} \theta$ we define the "Levi form" to be the Hermitian pairing defined on $T^{1,0} Y$ by $i d \theta$,

$$
(Z, W) \longrightarrow i d \theta(Z, \bar{W})
$$

If θ^{\prime} is another 1-form defining H then there is non-vanishing function f so that $\theta^{\prime}=f \theta$ and therefore

$$
\left.d \theta^{\prime}\right|_{T^{1,0} Y \oplus T^{0,1} Y}=\left.f d \theta\right|_{T^{1,0} Y \oplus T^{0,1} Y}
$$

From this it is clear that, up to an overall sign, the signature of the Levi form is determined by the CR-structure. If the Levi form is definite then the CR-structure on Y is strictly pseudoconvex (if it is positive) or strictly pseudoconcave (if it is negative). For an abstract CR-manifold whether one wishes to regard the Levi form as positive or negative is simply a matter of convention. The choice of a sign for the Levi form is called a transverse orientation as it is fixed by choosing a non-vanishing vector field transverse to H.

Let X denote a complex manifold of dimension at least 2. A CR-structure is induced on a real hypersurface $Y \subset X$ by the rule

$$
T^{0,1} Y=\left.T_{1}^{0,1} X\right|_{Y} \cap T Y \otimes \mathbb{C}
$$

If X is a complex manifold with boundary Y then the same construction induces a CRstructure on the boundary. Suppose that Y is a level set of the smooth function ρ and that $d \rho$ does not vanish along Y. The non-vanishing 1-form $-\left.i \bar{\partial} \rho\right|_{Y}$ defines H and the Levi form is represented by the $(1,1)$-form

$$
\mathscr{L}_{\rho}=\partial \bar{\partial} \rho
$$

restricted to Y. The boundary components of a complex manifold have induced transverse orientations. Suppose that Y is a connected component of the boundary of a complex manifold X. Let ρ be a smooth, non-positive function which vanishes on Y such that $d \rho \neq$ 0 along Y. If $\mathscr{L}_{\rho}>0$ on $T^{1,0} Y$ then Y is a strictly pseudoconvex boundary component of X, if $\mathscr{L}_{\rho}<0$ then Y is a strictly pseudoconcave boundary component of X. It is easy to see that the sign of the Levi form is well defined under local biholomorphisms. Let J denote the almost complex structure on X. A direction T, transverse to $H \subset T Y$ is determined by the condition that the $J T$ is an outward pointing vector field along $Y=b X$. This better explains the terminology "transverse orientation."
Definition 2. Suppose that $\left(Y, T^{0,1} Y\right)$ is an compact CR-manifold. If there exists a compact, complex, connected manifold X with strictly pseudoconvex boundary $\left(Y, T^{0,1} Y\right)$ then we say that Y is a fillable CR-manifold.

It follows from results of Grauert that X is a holomorphically convex space which is a proper modification of a normal Stein space, X^{\prime}, see [15, 16]. The normal Stein space with boundary Y is uniquely determined, up to biholomorphism. Combining results of Kohn, Rossi, Boutet de Monvel and Harvey and Lawson one can show that any compact, strictly pseudoconvex CR-manifold of dimension at least 5 is fillable, see [22, 30, 5, 17]. On the other hand "most" strictly pseudoconvex 3-manifolds are not fillable, see [11, 14]. On a 3-manifold the integrability condition for a CR-structure is vacuous because the fiber dimension of $T^{0,1} Y$ is 1 . The CR-structure is strictly pseudoconvex (or concave) if and only if the hyperplane field underlying the CR-structure is a contact structure. Thus if $H \subset T Y$ is a contact structure then any choice of almost complex structure on the fibers of H defines a strictly pseudoconvex CR-structure on Y. From recent work of Eliashberg, et. el.. it follows that any 3 -manifold has infinitely many inequivalent contact structures. It is also clear that most of these contact structures do not support any fillable CR-structures. It is then an interesting question to understand the set of fillable structures. In this note we investigate the problem of filling strictly pseudoconvex 3-manifolds from the point of view of cobordism.

In the following definitions we suppose that each connected component of a CR-manifolds is equipped with a transverse orientation, so that its pseudoconcavity or pseudoconvexity is fixed a priori. If X is a complex manifold and Y is a transversely oriented, CR-manifold then $b X=Y$ if
(1) The CR-structure induced on Y as the boundary of X agrees with the given CR-structure.
(2) The induced transverse orientation agrees with the given transverse orientation.

Definition 3. Suppose that Y_{1} and Y_{2} are (possibly disconnected) compact CR-manifolds. We say that Y_{1} is complex cobordant to Y_{2} if there exists a complex manifold with boundary X such that $b X=Y_{1} \sqcup Y_{2}$.

Complex cobordism is, in general not an equivalence relation. A strictly pseudoconvex CR-manifold Y is never complex cobordant to itself. If it were then one could construct a compact, complex manifold with two strictly pseudoconvex ends, that impossible. Most

CR-manifolds are not complex cobordant to themselves with the transverse orientation reversed. A strengthening of this concept is also useful.

Definition 4. Suppose that Y_{1} and Y_{2} are (possibly disconnected) CR-manifolds and X defines a complex cobordism between Y_{1} and Y_{2}. We say that Y_{1} and Y_{2} are strictly complex cobordant if there is a strictly plurisubharmonic function ρ defined on X so that the components of Y_{1} and Y_{2} are non-critical level sets of ρ.

It follows from the definition that all boundary components of X are either strictly pseudoconcave or strictly pseudoconvex. Well known approximations results imply that there is no loss in generality if we suppose that ρ is a Morse function, i.e. its critical points are non-degenerate.

These definitions suggest two questions. Suppose that Y_{1} is a strictly pseudoconvex, compact 3-manifold and Y_{2} is a union of strictly pseudoconcave components.

Question 1. If Y_{1} is fillable and complex cobordant to Y_{2} does it follow that the components of Y_{2} are also fillable?

Question 2. If Y_{1} is strictly complex cobordant to Y_{2} and Y_{1} is fillable are the components of Y_{2} fillable as well?

Note that the hypothesis that Y_{1} is fillable and strictly pseudoconvex implies, via the theorems of Grauert and of Kohn and Rossi that it is connected, see [23]. In this paper we show that the answer to the second question is yes, even if X is permitted to be complex space instead of complex manifold. In a recent preprint, Bruno De Oliveira has produced examples which show that the answer to the first question is no, see the appendix to this paper and [10]. If the dimension of the boundary is at least 5 then Rossi's theorem shows that the answer to the first question is always affirmative, see [30]. The non-fillability of complex cobordisms in the surface case is therefore another example of a purely 2dimensional phenomenon. These concepts were defined in [13] and an analytic proof of the result below was sketched.

Acknowledgments

We would like to thank Bruno de Oliveira for sharing his results with us and a helpful discussion of the proof of Lemma 2 and Richard Melrose, for suggesting the title. The research of C.L. Epstein was partially supported by NSF grant DMS99-70487.

2. Strict complex cobordisms

We prove the following theorem.
Theorem 1. If Y_{1} is a compact, fillable, strictly pseudoconvex 3-manifold and Y_{2} is a union of strictly pseudoconcave components which is strictly complex cobordant to Y_{1} then each component of Y_{2} is also fillable.

Corollary 1. If under the hypotheses of Theorem 1 a complex manifold X defines complex cobordism between Y_{1} and Y_{2} then X is embeddable in \mathbb{C}^{N}.

Remark 1. This Corollary implies in particular, the classical embedding results of Kodaira, Grauert and Andreotti and Tomassini for compact, pseudoconvex and pseudoconcave surfaces, respectively, see $[21,16,3]$.
Proof. Let X denote a compact, complex manifold with boundary, $b X=Y_{1} \sqcup Y_{2}$ which defines a strict complex cobordism between Y_{1} and Y_{2}. Hence there is a strictly plurisubharmonic, Morse function ρ defined on X with the boundary components contained in
sub-level sets. Without loss of generality we can assume that there are constants $c_{0}>$ $c_{1}>\cdots>c_{l}$ such that

$$
Y_{1}=\rho^{-1}\left(c_{0}\right) \text { and } Y_{2}^{j} \subset \rho^{-1}\left(c_{j}\right)
$$

Indeed by adding the appropriately cut-off multiples of the functions $\log \left(d\left(x, Y_{2}^{l}\right)+\eta\right)$ and $-\log \left(d\left(x, Y_{1}\right)+\eta\right)$, for sufficiently small $\eta>0$, to a large multiple of ρ it can be arranged that

$$
c_{0}=\sup \{\rho(x): x \in X\}, \quad c_{l}=\inf \{\rho(x): x \in X\}
$$

For any c let

$$
X_{c}=\rho^{-1}((c, \infty))
$$

Since Y_{1} is embeddable it follows from the Lempert approximation theorem, see [24] that there exists a normal projective variety V and an embedding $\Psi: Y_{1} \rightarrow V \subset \mathbb{P}^{N}$ as a separating hypersurface. Let V_{-}denote the pseudoconcave part of $V \backslash \Psi\left(Y_{1}\right)$. Let $X^{\prime}=$ $X \sqcup_{Y_{1}} V_{-}$, this is a compact variety with a (possibly disconnected) strictly pseudoconcave boundary. The mapping Ψ is of course defined on $V_{-} \subset X^{\prime}$ as the identity. For a $c<c_{0}$ we let $X_{c}^{\prime}=X_{c} \sqcup_{Y_{1}} V_{-}$.

The variety V may fail to be smooth, but as it is two dimensional and normal, it is locally irreducible and its singular locus consists of a finite set of points. The image $\Psi\left(Y_{1}\right)$ can be assumed to lie in an affine chart $\mathbb{C}^{N} \simeq \mathbb{P}^{N} \backslash \mathbb{P}^{N-1}$. Henceforth we assume that linear coordinates are fixed on this affine chart and that the embedding of Y_{1} into \mathbb{C}^{N} is given by the coordinate functions

$$
\left.\Psi\right|_{Y_{1}}=\left(\psi_{1}, \ldots, \psi_{N}\right)
$$

Step 1: The first step in the proof of the theorem is to extend the map Ψ to a holomorphic map of X into \mathbb{C}^{N}. As the map is holomorphic the coordinate functions satisfy

$$
\bar{\partial}_{b}^{Y} \psi_{j}=0
$$

and therefore we can use the Lewy extension theorem to extend them as holomorphic functions to a small neighborhood of Y_{1} in X. Using induction over the level sets of ρ and Lewy extension we can extend these functions up to the first critical level set of ρ. The critical points of ρ are isolated and therefore the following elementary result allows us to extend the coordinate functions to a neighborhood of a critical point of ρ.

Lemma 1. Let φ be a plurisubharmonic function defined on a neighborhood U of $0 \in \mathbb{C}^{n}$. Suppose that $\varphi(0)=0$ and that 0 is an isolated critical point of φ. Set

$$
U_{+}=U \cap \varphi^{-1}((0, \infty))
$$

There exists a neighborhood W of 0 such that any holomorphic function defined in U_{+}has a holomorphic extension to W.

Proof. A simple consequence of the Theorem 15 in [2], see also [19].
Using Lemma 1 we extend the coordinate functions across the critical points of ρ. By alternately inducting over the level sets of ρ and using Lemma 1 we extend the coordinate functions to all of X. We continue to use $\Psi=\left(\psi_{1}, \ldots, \psi_{N}\right)$ to denote the extended map. As $\Psi\left(Y_{1}\right) \subset V$, the permanence of functional relations implies that $\Psi(X) \subset V$. To complete the proof of the theorem we show that Ψ embeds X^{\prime} into V. This is proved by induction over the level sets of ρ. It is clear that there for some $c<c_{0}$ the extended map Ψ embeds X_{c}^{\prime} into V. We need to show that c can actually be taken to be equal to c_{l}. We show that one boundary component at a time can be filled.

Step 2: The $\left\{c_{j}\right\}$ are regular values for ρ, therefore there exists an $\epsilon>0$ so that, for each j, the submanifolds $b X_{c_{j}+\delta}$, for $0<\delta<\epsilon$ are disjoint unions of smooth manifolds diffeomorphic to $b X_{c_{j}}$. One component of $b X_{c_{j}+\delta}$ converges to Y_{2}^{j} as $\delta \rightarrow 0$. Denote this component by $Y_{2}^{j, \delta}$. If we can show that $Y_{2}^{1, \delta}$ is embeddable for sufficiently small $\delta>0$ then it follows from relative index theory [11], see Lemma 5.1 in [14], that Y_{2}^{1} is also embeddable. In this case there is an normal Stein space V_{1} with $b V_{1}=-Y_{2}^{1}$. The minus sign indicates that we take the opposite transverse orientation. Let $X^{(1)}=X^{\prime} \sqcup_{Y_{2}^{1}} V_{1}$, as V_{1} is normal the mapping Ψ extends to $X^{(1)}$ as well. If we can show that Ψ embeds a neighborhood, in $X^{(1)}$ of $\overline{X_{c_{1}}}$ then $\Psi\left(Y_{2}^{1}\right)$ is the boundary of a normal Stein domain in V. By uniqueness it is clear that Ψ embeds V_{1} as an open subset of V with boundary $\Psi\left(Y_{2}^{1}\right)$.

We now show that $b X_{c_{1}}$ is embedded by Ψ. Suppose that Ψ embeds X_{c}^{\prime} for some $c_{1}<$ $c<c_{0}$ but Ψ does not embed $X_{c+\delta}^{\prime}$ for any $\delta<0$. First we show that the rank of $d \Psi(x)=$ 2 for all $x \in \overline{X_{c}^{\prime}}$. This would then imply that there is a pair of points

$$
\begin{equation*}
x_{1} \neq x_{2} \in \overline{X_{c}^{\prime}} \text { such that } \Psi\left(x_{1}\right)=\Psi\left(x_{2}\right) \tag{2}
\end{equation*}
$$

After verifying that the rank of the differential cannot drop we show that (2) is also impossible. The claim as to the rank of differential is a consequence of the following lemma.

Lemma 2. Let (W, p) be the germ of a normal surface and let ψ be the germ of a holomorphic mapping $\psi:\left(\mathbb{B}^{2}, 0\right) \rightarrow(W, p)$. Further suppose that there is a strictly plurisubharmonic function φ defined in a neighborhood of $0 \in \mathbb{B}^{2}$ such that
(1) The rank of $d \psi(z)=2$ for $z \neq 0$.
(2) $\varphi(0)=0$.
(3) The restriction of ψ to the $\operatorname{set} \varphi^{-1}(0, \infty)$ is an embedding.

Then the germ W is smooth at p and ψ is the germ of an embedding.
Proof. Using hypothesis (1), we apply a theorem of Prill to conclude that the map ψ is holomorphically conjugate to a quotient map $\left(\mathbb{B}^{2}, 0\right) \rightarrow\left(\mathbb{B}^{2}, 0\right) / G$. Here G is a finite group of germs of biholomorphic maps acting on $\left(\mathbb{B}^{2}, 0\right)$, see [29]. The maps act without fixed points on $\mathbb{B}^{2} \backslash 0$. We then apply a theorem of H . Cartan to conclude that the action by the group G is holomorphically conjugate to a linear action by a finite subgroup of $U(2)$, which we continue to denote by G, see [7]. To prove the lemma it suffices to show that the group G must be trivial. Using the representation for the map germ ψ as a quotient map, the hypotheses of the lemma imply, after possibly scaling the normalized coordinates on \mathbb{C}^{2}, that there is a fundamental domain \mathscr{F}_{G} for the action of the group G on $\mathbb{B}^{2} \backslash\{0\}$ which contains the set $\{z: \varphi(z)>0\}$.

Since $G \subset U(2)$ it preserves the unit sphere \mathbb{S}^{3} and it follows that

$$
\begin{equation*}
|G|=\frac{\operatorname{vol}\left(\mathbb{S}^{3}\right)}{\operatorname{vol}\left(\mathscr{F}_{G} \cap \mathbb{S}^{3}\right)} . \tag{3}
\end{equation*}
$$

If $d \varphi(0) \neq 0$ then it is clear that there exists a fundamental domain for the action by G which contains a half-space. Hence there is a linear function l such that $\mathscr{F}_{G} \supset\{z: l(z)>$ $0\}$. In this case, formula (3) implies that $|G| \leq 2$; either G is trivial or a group of order two. If $G \neq\{\mathrm{Id}\}$ then it follows from the classification of finite subgroups of $U(2)$ that G is either the group $G_{\mathscr{A}}=(\operatorname{Id}, \mathscr{A})$ where $\mathscr{A}(z, w)=(-z,-w)$ or a reflection group $G_{v}=\left(\operatorname{Id}, R_{v}\right)$. Here R_{v} is the reflection

$$
R_{v}(\zeta)=\zeta-2<\zeta, v>v .
$$

Because $R_{v}(\zeta)=\zeta$ for any vector orthogonal to v, the later case is ruled out by the fact that G acts without fixed point on \mathbb{S}^{3}. We are therefore reduced to consideration of $G_{\mathscr{A}}$.

The group $G_{\mathscr{A}}$ is invariant under linear coordinate change and we can therefore choose linear coordinates $\left(z_{1}, z_{2}\right)$ so that

$$
\varphi\left(z_{1}, z_{2}\right)=\operatorname{Im} z_{2}+2 \operatorname{Re} \sum a_{i j} z_{i} z_{j}+2 \sum b_{i j} z_{i} \bar{z}_{j}+O\left(|z|^{3}\right)
$$

As φ is strictly plurisubharmonic the matrix $b_{i j}$ is hermitian and positive definite. Let

$$
\varphi_{1}\left(z_{1}, z_{2}\right)=\operatorname{Im} z_{2}+2 \operatorname{Re} \sum a_{i j} z_{i} z_{j}+\sum b_{i j} z_{i} \bar{z}_{j}
$$

Define the analytic subvariety

$$
Q_{A}=\left\{z: \sum a_{i j} z_{i} z_{j}=0\right\}
$$

of complex dimension at least 1 . This implies that $Q_{A} \cap\left\{z: \operatorname{Im} z_{2}=0\right\}$ is of real dimension at least 1, and real-homogeneous. Let $z_{0} \neq 0$ be a point in this intersection. Evidently both $\varphi_{1}\left(z_{0}\right)>0$ and $\varphi_{1}\left(\mathscr{A}\left(z_{0}\right)\right)>0$. By taking $\left|z_{0}\right|$ sufficiently small it follows that $\varphi\left(z_{0}\right)>0$ and $\varphi\left(\mathscr{A}\left(z_{0}\right)\right)>0$ as well. This shows that there is no fundamental domain for $G_{\mathscr{A}}$ that contains $\{z: \varphi(z)>0\}$ and completes the analysis in the case that $d \varphi(0) \neq 0$.

We now consider the critical case, with $d \varphi(0)=0$. In any system of linear coordinates

$$
\varphi(z)=2 \operatorname{Re} \sum a_{i j} z_{i} z_{j}+2 \sum b_{i j} z_{i} \bar{z}_{j}+O\left(|z|^{3}\right)
$$

with $A=a_{i j}$, a symmetric matrix and $b_{i j}$ a positive definite hermitian matrix. As before we set

$$
\varphi_{1}(z)=2 \operatorname{Re} \sum a_{i j} z_{i} z_{j}+\sum b_{i j} z_{i} \bar{z}_{j} .
$$

If $A=0$, then φ is positive in a deleted neighborhood of 0 ; therefore the hypothesis of the lemma already implies the conclusion. The analysis now divides into two further cases according to whether the rank A is one or two. Let $(v, z)=v_{1} z_{1}+v_{2} z_{2}$; if rank $A=1$ then there is a non-zero vector $v \in \mathbb{C}^{2}$ such that

$$
(A z, z)=(v, z)^{2}
$$

and therefore the set $\left\{z: \operatorname{Re}(v, z)^{2}=0\right\}$ is the union of two real hyperplanes

$$
L_{r}=\{z: \operatorname{Re}(v, z)=0\} \text { and } L_{i}=\{z: \operatorname{Im}(v, z)=0\}
$$

For any $g \in U(2)$ the intersections $L_{r} \cap g L_{r}$ and $L_{i} \cap g L_{i}$ are at least two (real) dimensional. Suppose that there exists a $g \in G \backslash\{I d\}$, then we can choose a small, non-zero vector z_{0} in one of these intersections. Evidently both $\varphi_{1}\left(z_{0}\right)$ and $\varphi_{1}\left(g z_{0}\right)>0$. Therefore, by choosing $z_{0} \neq 0$, of sufficiently small norm we obtain a contradiction to the assertions that $G \neq\{\mathrm{Id}\}$ and that there is a fundamental domain $\mathscr{F}_{G} \supset\{z: \varphi(z)>0\}$.

We are left to consider the critical case with rank $A=2$. We define the two open sets

$$
S_{A}^{ \pm}=\{z: \pm \operatorname{Re}(A z, z)>0\}
$$

Observe that if $z \in S_{A}^{+}$then $i z \in S_{A}^{-}$and vice versa. Hence multiplication by i defines an isometric diffeomorphism of S_{A}^{+}and S_{A}^{-}. Since the rank $A=2$ the complement of $S_{A}^{+} \cup S_{A}^{-}$ has empty interior and therefore

$$
\begin{equation*}
\operatorname{vol}\left(S_{A}^{ \pm} \cap \mathbb{S}^{3}\right)=\frac{1}{2} \operatorname{vol}\left(\mathbb{S}^{3}\right) \tag{4}
\end{equation*}
$$

That $\operatorname{rank} A=2$ implies that the signature of the quadratic form $\operatorname{Re}(A z, z)$ is $(2,2)$. By a linear change of coordinates, it is equivalent to the quadratic form $x_{1}^{2}+x_{2}^{2}-y_{1}^{2}-y_{2}^{2}$.

This implies that $S_{A}^{ \pm} \cap \mathbb{S}^{3}$ are connected sets. Suppose that for some element $g \in U(2)$ the intersection

$$
\begin{equation*}
\left\{z \in \mathbb{S}^{3}: \operatorname{Re}(A z, z)=0\right\} \cap\left\{z \in \mathbb{S}^{3}: \operatorname{Re}(A g z, g z)=0\right\} \tag{5}
\end{equation*}
$$

is empty, then $\left\{z \in \mathbb{S}^{3}: \operatorname{Re}(A g z, g z)=0\right\}$ is a subset of either $S_{A}^{+} \cap \mathbb{S}^{3}$ or $S_{A}^{-} \cap \mathbb{S}^{3}$, say $S_{A}^{+} \cap \mathbb{S}^{3}$. As the sets $S_{g^{t} A g}^{ \pm} \cap \mathbb{S}^{3}$ are connected this implies that one of these sets is a relatively compact subset of $S_{A}^{+} \cap \mathbb{S}^{3}$, say $S_{g^{t} A g}^{+} \cap \mathbb{S}^{3}$. This, in turn implies that

$$
\operatorname{vol}\left(S_{g^{t} A g}^{+} \cap \mathbb{S}^{3}\right)<\operatorname{vol}\left(S_{A}^{+} \cap \mathbb{S}^{3}\right)=\frac{1}{2} \operatorname{vol}\left(\mathbb{S}^{3}\right)
$$

However this contradicts (4) with $g^{t} A g$ in place of A. Any other set of the possible choices for \pm would of course lead to the same contradiction and therefore, for any $g \in U(2)$ the intersection in (5) is non-empty. Arguing as in the rank 1 case we again deduce that the group G must be trivial. This completes the proof of the lemma.

We now return to the induction argument. Recall that we are assuming the Ψ embeds X_{c}^{\prime} for a $c_{1}<c<c_{0}$ but fails to embed $X_{c+\delta}^{\prime}$ for any $\delta<0$. From Lemma 2 it follows that $\operatorname{rank} d \Psi(x)=2$ for all $x \in \overline{X_{c}}$.
Step 3: The only way that Ψ can fail to embed $X_{c+\delta}^{\prime}$ for any $\delta<0$ is if there exists a pair of points as in (2). There are two possibilities: 1. Both points lie on $b X_{c}$ or 2. One point, which we denote by x_{1} lies on $b X_{c}$ and the other point x_{2} lies in X_{c}^{\prime}. Let us suppose that case 1 holds and case 2 does not hold. This implies that there is a point $p \in V \backslash \Psi\left(X_{c}^{\prime}\right)$ such that $p=\Psi\left(x_{1}\right)=\Psi\left(x_{2}\right)$. Let U_{1} and U_{2} denote disjoint neighborhoods of x_{1} and x_{2} respectively. Choose the neighborhoods sufficiently small such that $U_{1} \cup U_{2}$ is disjoint from the singular locus of X^{\prime} and $\left.\Psi\right|_{U_{i}}, i=1,2$ are embeddings. Let $U_{i}^{+}=U_{i} \cap X_{c}$, and $U_{i}^{-}=U_{i} \backslash U_{i}^{+}$, from the induction hypothesis it follows that

$$
\begin{equation*}
\Psi\left(U_{1}^{+}\right) \cap \Psi\left(U_{2}^{+}\right)=\emptyset \tag{6}
\end{equation*}
$$

On the other, as $\Psi\left(x_{1}\right)=\Psi\left(x_{2}\right)$, (6) implies that the germ (V, p) is not locally reducible.
The only way that this could fail is that either $\Psi\left(U_{1}^{+}\right) \subset \Psi\left(U_{2}^{-}\right)$or $\Psi\left(U_{2}^{+}\right) \subset \Psi\left(U_{1}^{-}\right)$. Suppose, without loss of generality, that the first inclusion holds. This would violate the maximum principle. We can find a holomorphic disk D which lies in $U_{1}^{+} \cup\left\{x_{1}\right\}$ and meets x_{1} at an interior point. This is easily seen whether or not x_{1} is a critical point of φ. Using Ψ to pull back ρ from $\Psi\left(U_{2}^{-}\right)$we would obtain a subharmonic function which assumes it maximum value, c at an interior point. This subharmonic function must therefore be constant, i.e. $\Psi(D) \subset b X_{c}$. However this is also impossible as $b X_{c}$ is strictly pseudoconcave. Thus the germ (V, p) is not locally reducible. This is also not possible as V was assumed to be a normal surface.

We are reduced to consideration of case 2 . The argument is similar, as before let $p=$ $\Psi\left(x_{1}\right)=\Psi\left(x_{2}\right)$ and $U_{i}, i=1,2$ be disjoint neighborhoods of $x_{i}, i=1,2$ and suppose that $\left.\Psi\right|_{U_{1}}$ is an embedding. With $U_{1}^{ \pm}$defined as above the induction hypothesis implies that

$$
\begin{equation*}
\Psi\left(U_{1}^{+}\right) \cap \Psi\left(U_{2}\right)=\emptyset \tag{7}
\end{equation*}
$$

It is an immediate consequence of (7) that the intersection $\Psi\left(U_{1}\right) \cap \Psi\left(U_{2}\right)$ is a proper subvariety and therefore the germ (V, p) is not locally reducible. This again violates the normality of V and thus completes the proof that Ψ embeds $\overline{X_{c}^{\prime}}$ for any $c>c_{1}$.
Step 4: As noted above this implies that the boundary Y_{2}^{1} is embeddable and therefore bounds a normal Stein space V_{1}. Following the outline in step 2, we set $X^{(1)}=X^{\prime} \sqcup_{Y_{2}^{1}} V_{1}$.

The variety $X^{(1)}$ is smooth in a neighborhood of $b X_{c_{1}}$ and therefore the argument in step 3 shows that Ψ extends to define an embedding of a neighborhood, in $X^{(1)}$ of $X_{c_{1}}^{\prime}$. In particular $\left.\Psi\right|_{Y_{2}^{1}}$ is an embedding and therefore the extension of Ψ to V_{1} is an embedding. The variety V_{1}^{2} has a strictly plurisubharmonic exhaustion function and therefore we can use the argument just presented to show that $\left.\Psi\right|_{X_{c_{1}}{ }^{\prime} V_{1}}$ is an embedding. Indeed as $\left.\Psi\right|_{V_{1}}$ is an embedding, we only need to consider case 2 , in step 3 . The argument follows exactly as above.

We use this argument inductively for each of the remaining ends. Suppose that we have shown that the ends $\left\{Y_{2}^{1}, \ldots, Y_{2}^{j-1}\right\}$ are embeddable and bound normal varieties $\left\{V_{1}, \ldots, V_{j-1}\right\}$. For $i \leq j-1$ we set

$$
X^{(i)}=X^{\prime} \sqcup_{Y_{2}^{1}} V_{1} \sqcup_{Y_{2}^{2}} \cdots \sqcup_{Y_{2}^{i}} V_{i}
$$

and for $c \leq c_{i}$ let

$$
X_{c}^{(i)}=X_{c}^{\prime} \sqcup_{Y_{2}^{1}} V_{1} \sqcup_{Y_{2}^{2}} \cdots \sqcup_{Y_{2}^{i}} V_{i}
$$

We suppose moreover that the extension of Ψ to $X_{c_{j-1}}^{(j-1)}$ is an embedding.
Using Lemma 2 and the argument in step 3 we show that Ψ embeds $X_{c_{j}}^{(j-1)}$. As noted in step 2, this implies that Y_{2}^{j} is embeddable and therefore bounds a normal Stein space V_{j}. Let $X^{(j)}=X^{(j-1)} \sqcup_{Y_{2}^{j}} V_{j}$, the mapping Ψ extends to $X^{(j)}$. As before $X^{(j)}$ is smooth in a neighborhood of $b X_{c_{j}}$ and we can therefore repeat the argument in step 3 to conclude that Ψ embeds a neighborhood, in $X^{(j)}$ of $X_{c_{j}}^{(j-1)}$. As before this implies that $\Psi\left(Y_{2}^{j}\right)$ is embedded in V as the boundary of a normal Stein domain. Thus, by uniqueness $\left.\Psi\right|_{V_{j}}$ is an embedding. Using a plurisubharmonic exhaustion of V_{j} and Step 3 we show that, in fact $\left.\Psi\right|_{X_{c_{j}}^{(j)}}$ is an embedding. This completes the induction step and therefore the proof of the theorem.

3. $\bar{\partial}$-EQUATION ON SINGULAR DOMAINS.

We now consider an extension of Theorem 1 which allows the bounding hypersurfaces, as well as the cobordism to have singularities. To prove these results we need versions of the regularity statements for the $\bar{\partial}$-equation on Stein subsets of complex spaces. Some of these statements are proved using L^{2}-methods, and others by kernel methods.
L^{2}-methods. Let W_{+}be a relatively compact, open Stein subset in the Stein complex space W of dimension n. For a measurable function ψ defined on W_{+}we denote by $H_{(2)}^{n, q}\left(W_{+}, e^{-\psi}\right), q=0,1, \ldots, n$, the $L_{2}-\bar{\partial}$-cohomology spaces of W_{+}with respect to the norm

$$
\|f\|_{L^{2}\left(W_{+}, e^{-\psi}\right)}^{2}=\int_{W_{+}}|f|^{2} e^{-2 \psi} d v
$$

Here $d v$ is the volume form for the Kähler metric on Reg W_{+}, induced by an embedding of W in \mathbb{C}^{N}.

Definition 5. We say that $\alpha \in L_{0, n-q}^{2}\left(\operatorname{Reg} W_{+}, e^{\psi}\right)$ satisfies the (weak) Dirichlet boundary conditions for $\bar{\partial}$ if

$$
\int_{\operatorname{Reg} W_{+}} g \wedge \alpha=(-1)^{n+q} \int_{\operatorname{Reg} W_{+}} f \wedge \bar{\partial} \alpha
$$

for all $g \in L_{n, q}^{2}\left(\operatorname{Reg} W_{+}, e^{-\psi}\right)$ such that $g=\bar{\partial} f$ for some $f \in L_{n, q-1}^{2}\left(\operatorname{Reg} W_{+}, e^{-\psi}\right)$.

Let $H_{(2) \circ}^{0, q}\left(W_{+}, e^{\psi}\right)$ denote $L_{2}-\bar{\partial}$-cohomology spaces of Reg W_{+}with (weak) Dirichlet boundary conditions.

Proposition 1 (Version of Andreotti-Vesentini, L^{2}-estimate for $\bar{\partial}$). For any pluri-subharmonic function ψ on W_{+}we have

The spaces $H_{(2)}^{n, q}\left(W_{+}, e^{-\psi}\right)$ and $H_{(2) \circ}^{0, n-q}\left(W_{+}, e^{\psi}\right)$ vanish for $q=1, \ldots, n$.
The space $H_{(2) \circ}^{0, n}\left(W_{+}, e^{\psi}\right)$ is dual to the space $H_{(2)}^{n, 0}\left(W_{+}, e^{-\psi}\right)$, the duality is realized by the pairing $\int_{W_{+}} g \wedge \alpha$, where $g \in H_{(2)}^{n, 0}\left(W_{+}, e^{-\psi}\right), \alpha \in H_{(2) \circ}^{0, n}\left(W_{+}, e^{\psi}\right)$.

Remark 2. The first part of this proposition is an analogue, for Stein spaces of the L^{2} version of the Kodaira vanishing theorem for projective varieties proved in [28].

Proof. Let ω be the (1,1)-form, associated with the Kähler metric on W. Let ρ be a continuous strictly plurisubharmonic function on W. Because $\bar{W}_{+} \subset W$ there exists a constant $\sigma>0$ such that, as currents, $i \partial \bar{\partial} \rho \geq \sigma \omega$ on W_{+}. Following Andreotti-Vesentini [4] and Demailly [9] we use the fact that Reg W_{+}carries a complete Kähler metric and obtain that, for any $g \in L_{n, q}^{2}\left(W_{+}, e^{-\psi}\right), q=1, \ldots, n$, satisfying $\bar{\partial} g=0$, there exists $f \in L_{n, q-1}^{2}\left(W_{+}, e^{-\psi}\right)$ such that $\bar{\partial} f=g$ and

$$
\int_{W_{+}}|f|^{2} e^{-2(\psi+\rho)} d v \leq \frac{1}{\sigma} \int_{W_{+}}|g|^{2} e^{-2(\psi+\rho)} d v
$$

Hence,

$$
\|f\|_{L^{2}\left(W_{+}, e^{-\psi}\right)} \leq \frac{1}{\sigma} \exp 2\left(\sup _{W_{+}} \rho-\inf _{W_{+}} \rho\right)\|g\|_{L^{2}\left(W_{+}, e^{-\psi}\right)} .
$$

This proves the vanishing statement for $H_{(2)}^{n, q}\left(W_{+}, e^{-\psi}\right), 1 \leq q \leq n$.
The vanishing of $H_{(2)}^{n, q}\left(W_{+}, e^{-\psi}\right), q=1, \ldots, n$, and standard duality arguments (see, for example, $\S 20$ in [20]) $\alpha \in L_{0, n-q}^{2}\left(\operatorname{Reg} W_{+}, e^{\psi}\right)$, with $\bar{\partial} \alpha=0,0<n-q<n$, satisfying the (weak) Dirichlet boundary condition, there exists $\beta \in L_{0, n-q-1}^{2}\left(\operatorname{Reg} W_{+}, e^{\psi}\right)$ such that

$$
\int_{\operatorname{Reg} W_{+}} g \wedge \alpha=(-1)^{n+q+1} \int_{\operatorname{Reg} W_{+}} \bar{\partial} g \wedge \beta
$$

for all $g \in L_{n, q}^{2}\left(W_{+}, e^{-\psi}\right)$ with $\bar{\partial} g \in L_{n, q+1}^{2}\left(W_{+}, e^{-\psi}\right)$.
This means that $\alpha=\bar{\partial} \beta$, where $\beta \in L_{0, n-q-1}^{2}\left(\operatorname{Reg} W_{+}, e^{\psi}\right)$ and satisfies the (weak) Dirichlet boundary conditions. This shows that

$$
H_{(2) \circ}^{0, n-q}\left(W_{+}, e^{-\psi}\right)=0, \text { for } 0 \leq n-q<n .
$$

If $n-q=n$, then these arguments show that $\alpha=\bar{\partial} \beta ; \beta \in L_{0, n-1}^{2}\left(\operatorname{Reg} W_{+}, e^{\psi}\right)$ and satisfies the Dirichlet boundary conditions, if and only if

$$
\int_{\operatorname{Reg} W_{+}} g \wedge \alpha=0
$$

for any L^{2}-holomorphic form: $g \in L_{n, 0}^{2}\left(W_{+}, e^{-\psi}\right)$, with $\bar{\partial} g=0$. This implies that $H_{(2) \circ}^{0, n}\left(W_{+}, e^{\psi}\right)$ is dual to $H_{(2)}^{n, 0}\left(W_{+}, e^{-\psi}\right)$.

Kernel methods. Let X be an n-dimensional Stein space with at worst isolated singular points. Let ρ be a \mathscr{C}^{∞} strictly plurisubharmonic exhaustion function with at most isolated
critical points defined on X, the definitions can be found in $\S 1$ of [15]. For a real number θ we let X_{θ} denote the strictly pseudoconvex, relatively compact subset of X defined by

$$
X_{\theta}=\{x \in X: \rho(x)<\theta\}
$$

As above we use the Riemannian metric induced on X by an embedding into \mathbb{C}^{N}.
Let $\pi: U_{x, \varepsilon} \rightarrow T_{x}(\operatorname{Reg} X)$ denote the orthogonal projection of the ε-neighborhood $U_{x, \varepsilon}$ of the point $x \in \operatorname{Reg} X$ on the tangent plane $T_{x}(\operatorname{Reg} X)$. For $\alpha>0$ let $C_{0, q}^{\alpha}\left(\bar{X}_{\theta}\right)$ denote the space of all those $(0, q)$-forms $f \in C_{0, q}^{\alpha}\left(\operatorname{Reg} X_{\theta}\right)$, for which

$$
\|f\|_{C^{\alpha}\left(\bar{X}_{\theta}\right)}=\sup _{x \in \operatorname{Reg} X_{\theta}} \inf _{\varepsilon>0}\left\|\pi_{*} f\right\|_{C_{0, q}^{\alpha}\left(\pi\left(U_{x, \varepsilon} \cap X_{\theta}\right)\right)}<\infty
$$

Let $A_{0, q}^{\alpha}\left(\bar{X}_{\theta}\right)$ denote the space of those forms $f \in C_{0, q}^{\alpha}\left(\bar{X}_{\theta}\right)$, which are $\bar{\partial}$-closed on Reg X_{θ}. For $Y \subset \bar{X}_{\theta}$ we denote by $C_{0, q}^{\alpha}\left(\bar{X}_{\theta}, Y\right)$ the space of those forms $f \in C_{0, q}^{\alpha}\left(\bar{X}_{\theta}\right)$, for which

$$
\inf _{\varepsilon>0}\left\|\pi_{*} f\right\|_{C_{0, q}^{\alpha}\left(\pi\left(U_{x, \varepsilon} \cap X_{\theta}\right)\right)} \rightarrow 0
$$

where $x \in \operatorname{Reg} X_{\theta}$ and geodesic distance $(x, Y) \rightarrow 0$.
Let

$$
A_{0, q}^{\alpha}\left(\bar{X}_{\theta}, Y\right)=C_{0, q}^{\alpha}\left(\bar{X}_{\theta}, Y\right) \cap A_{0, q}^{\alpha}\left(\bar{X}_{\theta}\right)
$$

Proposition 2 (Regularity for $\bar{\partial}$ in strictly pseudoconvex domains). For any θ^{\prime} and α^{\prime} there exist $\gamma>0$ and $\alpha>0$ such that for all $\theta \leq \theta^{\prime}$ and $q=1,2, \ldots, n$ one can construct a continuous linear operator

$$
R_{q, \theta}: A_{0, q}^{\alpha}\left(\bar{X}_{\theta}, \text { Sing } \bar{X}_{\theta}\right) \rightarrow \mathscr{C}_{0, q-1}^{\alpha^{\prime}}\left(\bar{X}_{\theta}, \text {, } \operatorname{sing} \bar{X}_{\theta}\right)
$$

with the properties

$$
\bar{\partial} R_{q, \theta} g=g \quad \text { on } \quad \bar{X}_{\theta} \quad \forall g \in A_{0, q}^{\alpha}\left(\bar{X}_{\theta}, \text { Sing } \bar{X}_{\theta}\right)
$$

and

$$
\left\|R_{q, \theta} g\right\|_{\mathscr{C}^{\alpha^{\prime}}\left(\bar{X}_{\theta}\right)} \leq \gamma\|g\|_{\mathscr{C}^{\alpha}\left(\bar{X}_{\theta}\right)} .
$$

Remark 3. If X is smooth then in this Proposition one can take $\alpha=\alpha^{\prime}-1 / 2$ (see [19]).
Unfortunately, we can only prove Proposition 2 in parallel with the following Whitney type extension theorem.

A connected compact $K \subset \mathbb{R}^{N}$ is called (see [31]) ε-regular if $\exists c>0$ and $\varepsilon>0$ such that $\forall x, y \in K$ we have $|x-y|^{\varepsilon} \geq c \delta(x, y)$, where $\delta(\cdot, \cdot)$ is geodesic distance. From the classical Łojaciewicz inequality it follows that, for any θ, the compact set \bar{X}_{θ} is ε-regular for some $\varepsilon>0$.

Proposition 3 (Version of Whitney extension theorem). Let the space X be properly embedded as a closed analytic set in \mathbb{C}^{N}, i.e.

$$
X=\left\{z \in \mathbb{C}^{N}: F_{\nu}(z)=0, F_{v} \in \mathbb{O}\left(\mathbb{C}^{N}\right), v=1,2, \ldots, m\right\}
$$

Then for any $q=0,1, \ldots, n$ and any $\alpha^{\prime} \geq 0$ there exists an $\alpha \geq 0$ and a continuous extension operator

$$
E: A_{0, q}^{\alpha}\left(\bar{X}_{\theta}, \operatorname{Sing} \bar{X}_{\theta}\right) \rightarrow \mathscr{C}_{0, q}^{\alpha^{\prime}}\left(\mathbb{C}^{n}, \text { Sing } \bar{X}_{\theta}\right)
$$

such that $\bar{\partial} E g$ vanishes together with derivatives up to order α^{\prime} on $\bar{X}_{\theta} \subset \mathbb{C}^{N}$ for any $g \in A_{0, q}^{\alpha}\left(\bar{X}_{\theta}, \operatorname{Sing} \bar{X}_{\theta}\right)$.

Proof. Step 1. Proposition 3 for given $q=r=1,2, \ldots, n$ implies Proposition 2 for the same $q=r$.

Let E be the extension operator from Proposition 3 for given q. Then for $g^{0} \in A_{0, r}^{\alpha}\left(\bar{X}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$ and for $E g^{0} \in \mathscr{C}_{0, r}^{\alpha^{\prime}}\left(\mathbb{C}^{n}, \operatorname{Sing} \bar{X}_{\theta}\right)$ we can apply the Propositions (2.2.1), (2.3.1) from [1], which show that $\forall \alpha^{\prime \prime} \geq 0$ and $\forall \theta^{\prime}$ there exist $\alpha^{\prime} \geq \alpha^{\prime \prime}, \gamma>0$ and a continuous linear operator

$$
\begin{equation*}
R: \mathscr{C}_{0, r}^{\alpha^{\prime}}\left(\mathbb{C}^{n}, \text { Sing } \bar{X}_{\theta}\right) \longrightarrow \mathscr{C}_{0, r-1}^{\alpha^{\prime \prime}}\left(\bar{X}_{\theta}, \text { Sing } \bar{X}_{\theta}\right) \tag{8}
\end{equation*}
$$

such that

$$
\begin{gather*}
\left.g^{0}\right|_{\bar{X}_{\theta}}=\left.\bar{\partial} R E g^{0}\right|_{\bar{X}_{\theta}} \text { and } \tag{9}\\
\left\|R E g^{0}\right\|_{\mathscr{C}_{0, r-1}^{\alpha^{\prime \prime}}\left(\bar{X}_{\theta}\right)} \leq \gamma\left\|g^{0}\right\|_{\mathscr{C}_{0, r}^{\alpha}\left(\bar{X}_{\theta}\right)}, \quad \theta \leq \theta^{\prime} . \tag{10}
\end{gather*}
$$

Step 2. Proposition 2 for given $q=r=1,2, \ldots, n$ implies Proposition 3 for $q=r-1$.
To avoid non-essential technical details we will consider here only the case when X is embeddable in \mathbb{C}^{n+1} as complex hypersurface, i.e. let

$$
\begin{gather*}
X=\left\{z \in \mathbb{C}^{n+1}: F(z)=0\right\}, F \in \mathbb{O}\left(\mathbb{C}^{n+1}\right), \tag{11}\\
X_{\theta}=\{z \in X: \rho(z)<\theta\} \tag{12}
\end{gather*}
$$

ρ is a strictly plurisubharmonic function and

$$
\operatorname{Sing} X=\{z \in X: d F(z)=0\}
$$

We suppose that $\operatorname{Sing} X \neq \emptyset$, otherwise the result is standard. Following the approach of Whitney, see [31, 32], we consider a locally uniformly, finite covering of $\operatorname{Reg} X \subset \mathbb{C}^{n+1}$ by the polydiscs $D_{j}=D_{j}\left(z_{j}, r_{j}\right) \subset \mathbb{C}^{n+1}$ with centers at points $z_{j} \in \operatorname{Reg} X$ and radii $r_{j}=\delta\left[\operatorname{dist}\left(z_{j}, \operatorname{Sing} X\right)\right]^{\nu}$.

Let

$$
D_{j, \theta}=\left\{z \in D_{j}: \rho(z)<\theta\right\}
$$

If v is large enough and δ is small then enough there is an orthogonal change of the coordinates $z \rightarrow \tilde{z}$ such that

$$
D_{j, \theta} \cap X=\left\{\tilde{z} \in D_{j, \theta}: \tilde{z}_{n+1}=\tilde{F}\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)\right\}
$$

In this open set $\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)$ are local coordinates on X.
The form $g \in A_{0, r-1}^{\alpha}\left(\bar{X}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$ restricted to $D_{j, \theta} \cap X$ can be represented in the form

$$
g\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)=\sum_{j_{1}<j_{2}<\ldots<j_{r-1} \leq n} g_{j_{1}, \ldots, j_{r-1}}\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}, \tilde{F}\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)\right) d \bar{z}_{j_{1}} \wedge \ldots \wedge \overline{\tilde{z}}_{j_{r-1}}
$$

We extend such g on $D_{j, \theta}$ to be independent of \tilde{z}_{n+1}, that is

$$
\left(E_{j} g\right)\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n+1}\right)=g\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)
$$

We obtain extension operators

$$
E_{j}: A_{0, r-1}^{\alpha}\left(\bar{X}_{\theta}, \text { Sing } X_{\theta}\right) \rightarrow A_{0, r-1}^{\alpha}\left(\bar{D}_{j, \theta}\right)
$$

with the properties

$$
\left\|E_{j} g\right\|_{\mathscr{C}_{\beta} \beta\left(\bar{D}_{j, \theta)}\right.}=O\left(\left[\operatorname{dist}\left(D_{j}, \operatorname{Sing} X\right)\right]^{(\alpha-\beta) \varepsilon}\right)\|g\|_{\mathscr{C}^{\alpha}\left(\bar{X}_{\theta}\right)}
$$

for any $g \in A_{0, r-1}^{\alpha}\left(\bar{X}_{\theta}, \operatorname{Sing} X_{\theta}\right), \beta \leq \alpha$. The constant $\varepsilon>0$ corresponds to the ε regularity of the compact subset \bar{X}_{θ}.

Let $\left\{\chi_{j}\right\}$ be a partition of unity on a neighborhood U_{θ} of $\operatorname{Reg} X_{\theta}$, subordinate to the covering $\cup B_{j} \supset \operatorname{Reg} X_{\theta}$ and with the property $\left|D^{v} \chi_{j}\right|=O\left(r_{j}^{-v}\right)$ for any derivative of any order v of any function χ_{j}.

Following the standard cohomological construction and the fact that the ideal of X is generated by F, we introduce the following forms:

$$
\begin{align*}
& \left.\left(E_{j} g-E_{k} g\right)\right|_{D_{j, \theta} \cap D_{k, \theta}}=g_{j, k} F, \\
& \left.\tilde{g}_{j}\right|_{D_{j, \theta}}=\left.\sum_{k} \chi_{k} g_{j, k}\right|_{D_{j, \theta}} \text { and } \tag{13}\\
& \psi=\left\{\bar{\partial} \tilde{g}_{j}=\sum_{k} \bar{\partial} \chi_{k} g_{j, k}, z \in D_{j, \theta}\right\} .
\end{align*}
$$

We have obtained a form $\psi \in A_{0, r}^{\beta}\left(\bar{थ}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$ with $\beta=O(\alpha \varepsilon / v)$.
Proposition 2 implies that there exists a form $R \psi \in C_{0, r-1}^{\beta^{\prime}}\left(\bar{थ}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$ such that $\psi=\bar{\partial} R \psi$ on \bar{X}_{θ} together with derivatives up to order β^{\prime}. We can define now the necessary extension operator by the formula

$$
E g=\left\{E_{j} g-\left(\tilde{g}_{j}-R \psi\right) F, \quad z \in D_{j, \theta}\right\}
$$

Step 3. Proof of Proposition 3 for $q=n$.
In this case Proposition 3 can be proved the same way as in Step 2. The reference to Proposition 2 need only be replaced by the classical statement (see, for example, $\S 11$ in [20]) about \mathscr{C}^{β}-solvability of the $\bar{\partial}$-equation $\bar{\partial} f=\psi$ on $\bar{U}_{\theta} \subset \mathbb{C}^{n+1}$ for the case $\bar{\partial}$-closed ($0, \mathrm{q}$)-form ψ of maximal degree $q=n+1$.

Propositions 2 and 3 follow by recurrence: at first Step $3+$ Step $1+$ Step 2 for $q=n$, after Step $1+$ Step 2 for $q=n-1$, etc..., Step $1+$ Step 2 for $q=1$.

Proposition 2 has several important consequences.
Proposition 4 (Versions of Hartogs-Lewy extension theorem). Under the hypotheses of Proposition 2 let $\tilde{\rho}$ be a plurisubharmonic function on $X \supset X_{0}$ and $Y=\{x \in X: \tilde{\rho}(x)<$ $0\}$. Then for given $\alpha^{\prime}>0$ there exists $\alpha>0$ such that: If $\tilde{f} \in \mathscr{C}^{\alpha}(\bar{Y})$ and $\bar{\partial} \tilde{f}$ vanishes on $\overline{Y \cap b X_{0}}$ together with all derivatives up to order α then there exists $\tilde{F} \in \mathscr{C}^{\alpha^{\prime}}\left(\overline{Y \cap X_{0}}\right)$ with the properties: $\tilde{F} \in \mathcal{O}\left(Y \cap X_{0}\right)$ and $\tilde{F}-\tilde{f}$ vanishes on $\overline{Y \cap b X_{0}}$ together with all derivatives up to order α^{\prime}.

Remark 4. If X and $b X_{0}$ are smooth then in this Proposition one can take $\alpha=\alpha^{\prime}$ (see [8]).
Proof. Let χ be such C^{∞}-function on X that $\chi=1$ on a neighborhood of $b X_{0}$ and $\chi=0$ on a neighborhood of $\operatorname{Sing} X_{0}$. Let

$$
g= \begin{cases}\bar{\partial}(\chi \tilde{f}) & \text { on } \overline{Y \cap X_{0}} \tag{14}\\ 0 & \text { on } \bar{Y} \backslash\left(X_{1} \backslash \bar{X}_{0}\right)\end{cases}
$$

We have $g \in \mathscr{C}_{0,1}^{\alpha-1}\left(\overline{Y \cap X_{1}}\right.$, Sing $\left.\overline{Y \cap X_{1}}\right)$ and $\bar{\partial} g=0$.
Proposition 2 implies the existence of $u \in \mathscr{C}^{\alpha^{\prime}}\left(\overline{Y \cap X_{1}}\right)$ such that $\bar{\partial} u=g$. If we set

$$
\begin{align*}
\tilde{F}_{1} & =\tilde{f}-u \text { on } \overline{Y \cap X_{0}} \text { and } \\
\tilde{f}_{2} & =-u \text { on } \overline{Y \cap\left(X_{1} \backslash X_{0}\right)}, \tag{15}
\end{align*}
$$

then

$$
\begin{align*}
& \tilde{F}_{1} \in \mathscr{C}^{\alpha^{\prime}}\left(\overline{Y \cap X_{0}}\right) \cap \mathbb{O}\left(Y \cap X_{0}\right) \text { and } \\
& \tilde{f}_{2} \in \mathscr{C}^{\alpha^{\prime}}\left(\overline{Y \cap\left(X_{1} \backslash X_{0}\right)}\right) \cap \mathbb{O}\left(Y \cap\left(X_{1} \backslash \bar{X}_{0}\right)\right) . \tag{16}
\end{align*}
$$

Applying the Hartogs-Levi extension theorem on complex spaces ([2], Proposition 15) to the function \tilde{f}_{2} we obtain a holomorphic function $\tilde{F}_{2} \in \mathbb{O}(Y \cap X)$ such that $\tilde{F}_{2}=$ \tilde{f}_{2} on $Y \cap\left(X_{1} \backslash \bar{X}_{0}\right)$. Hence, function $\tilde{F}=\tilde{F}_{1}-\tilde{F}_{2}$ has the necessary properties $\tilde{F} \in$ $\mathscr{C}^{\alpha^{\prime}}\left(\overline{Y \cap X_{0}}\right) \cap \mathcal{O}\left(Y \cap X_{0}\right)$ and $\tilde{F}-\tilde{f}$ vanishes on $\overline{Y \cap b X_{0}}$ together with all derivatives up to order α^{\prime}.

Proposition 5 (Regularity for $\bar{\partial}$ in strictly pseudoconcave domains). Under the hypotheses of Proposition 2, let Ω_{0} be strictly pseudoconvex neighborhood in X of a point $x^{0} \in$ $b X_{0}$. Then for some smaller neighborhood D_{0} of x^{0} and for any $\alpha^{\prime} \geq 0$ there exist $\alpha \geq \alpha^{\prime}$ and $\gamma>0$ such that for any $h \in C\left(\overline{\Omega_{0} \backslash X_{0}}\right)$ with the property $f=\bar{\partial} h \in$ $\mathscr{C}_{0,1}^{\alpha}\left(\overline{\Omega_{0} \backslash X_{0}}\right.$, Sing $\left.\overline{\Omega_{0} \backslash X_{0}}\right)$ the following estimate is valid

$$
\|h\|_{\mathscr{C}^{\prime}}\left(\overline{D_{0} \backslash X_{0}}\right) \leq \gamma\left(\|\bar{\partial} h\|_{\mathscr{C}_{0,1}^{\alpha}}\left(\overline{\Omega_{0} \backslash X_{0}}\right)+\|h\|_{C\left(\overline{\Omega_{0} \backslash X_{0}}\right)}\right) .
$$

Proof. Let the space X be embedded as closed analytic subset in \mathbb{C}^{N} such that

$$
\begin{align*}
& X=\left\{z \in \mathbb{C}^{N}: F_{v}(z)=0, \quad v=1, \ldots, m\right\} \\
& \Omega_{0}=\left\{z \in X: \rho_{0}(z)<0\right\} \tag{17}\\
& X_{0}=\{z \in X: \rho(z)<0\}
\end{align*}
$$

where $F_{\nu} \in \mathcal{O}\left(\mathbb{C}^{N}\right), \rho$ and ρ_{0} are smooth strictly plurisubharmonic functions on \mathbb{C}^{N}.
For the manifold $\bar{\Omega}_{0} \backslash X_{0}$ we apply the integral formula, (2.2.16) from Proposition 2.2.1 of [1], using in it the barriers functions for domains X_{0} and Ω_{0} from Propositions 2.3.1, 3.3.1 of [1].

We obtain for $f=\bar{\partial} h \in \mathscr{C}_{0,1}^{\alpha}\left(\bar{\Omega}_{0} \backslash X_{0}\right.$, Sing $\left.\bar{\Omega}_{0} \backslash X_{0}\right)$ the integral representation of the form

$$
f=\bar{\partial} \tilde{R} f+\tilde{K} f
$$

where $\tilde{R} f \in \mathscr{C}^{\alpha^{\prime}}\left(\bar{\Omega}_{0} \backslash X_{0}\right.$, Sing $\left.\bar{\Omega}_{0} \backslash X_{0}\right)$ and $\tilde{K} f=\tilde{\tilde{K}} h \in \mathscr{C}_{0,1}^{\infty}\left(\bar{D}_{0}\right.$, Sing $\left.\bar{D}_{0}\right)$ for a sufficiently small neighborhood $D_{0} \subset \subset \Omega_{0}$ of point $x^{0} \in b X_{0}$ and $h \in \mathscr{C}_{0,1}\left(\bar{\Omega}_{0} \backslash X_{0}\right)$.

Applying Proposition 2 to the $\bar{\partial}$-closed form $\tilde{\tilde{K}} h$ on D_{0} we obtain the representation $\left.f\right|_{D_{0}}=\bar{\partial} \tilde{\tilde{R}} f$, where $\tilde{\tilde{R}} f \in \mathscr{C}^{\alpha^{\prime}}\left(\bar{D}_{0}\right)$.

To finish the proof we remark that $\left.h\right|_{D_{0}}=\tilde{\tilde{R}} f+\tilde{h}$, where $\tilde{h} \in \mathcal{O}\left(D_{0}\right)$.

4. COMPLEX COBORDISMS ON ANALYTIC SPACES

Let ρ be a \mathscr{C}^{∞} strictly plurisubharmonic function with at most isolated critical points on the (almost) complex space X of dimension 2 with at most isolated singularities.

Definition 6. A compact oriented subset M in an (almost) complex space X of the form $M=b X_{+}=-b X_{-}$, where $X_{ \pm}=\{x \in X: \pm \rho(x)<0\}$ will be called a strictly pseudoconvex CR-hypersurface. Such a CR-hypersurface will be called CR-embeddable in complex affine space \mathbb{C}^{N} if for any $\alpha \geq 1$ there exists a real \mathscr{C}^{α}-embedding $\Phi: X \rightarrow \mathbb{C}^{N}$ with the property: $\bar{\partial} \Phi$ vanishes on M together with all derivatives up to order $\alpha-1$.

If the domains $X_{ \pm}$are relatively compact in X then they are called respectively strictly pseudoconvex and strictly pseudoconcave domains in X. By a real \mathscr{C}^{α}-embedding Φ : $X \rightarrow \mathbb{C}^{N}$ we mean the restriction to X of a \mathscr{C}^{α}-embedding $\tilde{\Phi}: Z \rightarrow \mathbb{C}^{N}$ for some ambient smooth manifold $Z \supset X$.

Definition 7. A compact CR-hypersurface M_{0} is called strictly CR-cobordant to a compact CR-hypersurface M_{1} if there exists an (almost) complex space \tilde{X} with at most isolated singularities and a \mathscr{C}^{∞}-strictly plurisubharmonic function ρ with at most isolated critical points on \tilde{X} such that the set $X=\{x \in \tilde{X}: 0<\rho(x)<1\}$ is a relatively compact, complex subspace in \tilde{X} and $b X=M_{1}-M_{0}$.

Theorem 2. Let M_{1} be embeddable strictly pseudoconvex CR-hypersurface. Then any (not necessary smooth) $C R$-hypersurface M_{0}, strictly cobordant to M_{1}, is also embeddable.

Corollary 2. If under the hypothesis of Theorem 2 a complex space X defines complex cobordism between M_{1} and M_{0}, then X is embeddable in \mathbb{C}^{N}.

Remark 5. This Corollary implies, in particular, the embeddings results of Grauert, R. Narasimhan, Andreotti and Y.-T.Siu for compact, pseudoconvex and pseudoconcave twodimensional complex spaces, respectively, see [15, 27, 3].

The first small step in the proof of this theorem is the following.
Proposition 6. Let X be a relatively compact, complex subspace in an (almost) complex space \tilde{X} with at most isolated singularities such that

$$
X=\{x \in \tilde{X}: 0<\rho(x)<1\}
$$

where ρ is a strictly plurisubharmonic function with at most isolated critical points on \tilde{X}. If the CR-hypersurface $M_{1}=\{x \in \tilde{X}: \rho(x)=1\}$ is CR-embeddable, then there exists $\theta_{1}<1$ such that the space $\left\{x \in X: \theta_{1}<\rho(x)<1\right\}$ is holomorphically embeddable in \mathbb{C}^{N}.

Proof. Let $\Phi: \tilde{X} \rightarrow \mathbb{C}^{N}$ be a real \mathscr{C}^{α}-embedding with the property: $\bar{\partial} \Phi$ vanishes on M_{1} together with derivatives up to order $\alpha-1$. From Proposition 4 it follows that for any $\alpha^{\prime}>0$ there exist $\alpha \geq \alpha^{\prime}$ and another mapping $\tilde{\Phi}: \tilde{X} \rightarrow \mathbb{C}^{N}$ such that $\tilde{\Phi} \in \mathscr{C}^{\alpha^{\prime}}(\tilde{X})$, $\tilde{\Phi}=\Phi$ on $\{x \in \tilde{X}: \rho(x)>1\}$ and $\left.\tilde{\Phi}\right|_{X}$ is holomorphic.

From these properties it follows that if $\alpha^{\prime} \geq 1$, then the mapping $\tilde{\Phi}$ is regular at any point of M_{1} in the sense of $\S 1$ in [15] and is embedding on $\{x \in \tilde{X}: \rho(x)>1\}$. Hence by Andreotti's proposition (see $\S 1,[15]$) it follows that there exists $\theta_{1}<1$ such that the mapping $\tilde{\Phi}$ is $\mathscr{C}^{\alpha^{\prime}}$-real embedding of $\left\{x \in \tilde{X}: \rho(x)>\theta_{1}\right\}$ and holomorphic embedding of $\left\{x \in \tilde{X}: \theta_{1}<\rho(x)<1\right\}$. The Proposition is proved.

Definition 8. A form $f \in C_{0, q}^{\alpha}\left(b X_{\theta}\right)$ is called a CR-form (on the given space) if

$$
\left.\bar{\partial}_{\tau} f\right|_{\operatorname{Reg} b X_{\theta}}=0
$$

where $\bar{\partial}_{\tau}$ is the tangential Cauchy-Riemann operator.
The second step in the proof of the Theorem 2 is the following.
Proposition 7. [Version of Boutet de Monvel embedding theorem] Under the hypotheses of Proposition 6, let $M=\{x \in \tilde{X}: \rho(x)=0\}$ and $C_{0,1}^{\perp \beta}\left(\bar{X}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$ be the space of those $f \in C_{0,1}^{\beta}\left(\bar{X}_{\theta}\right.$, Sing $\left.\bar{X}_{\theta}\right)$, which are $\bar{\partial}$-closed on $\operatorname{Reg} X_{\theta}$ and $\bar{\partial}_{\tau}$-exact on M. Then M
is embeddable in a complex affine space if for any $\theta_{0}>0$ and for any $\alpha>0$ there exists $\theta<\theta_{0}$ and $\beta \geq \alpha$, a constant $\gamma>0$ and a linear operator

$$
T_{\theta}: C_{0,1}^{\perp \beta}\left(\bar{X}_{\theta}, \text { Sing } \bar{X}_{\theta}\right) \rightarrow C^{\alpha}\left(\bar{X}_{\theta}\right)
$$

such that $\bar{\partial} T_{\theta} f=f$ on $\operatorname{Reg} X_{\theta}$ and

$$
\left\|T_{\theta} f\right\|_{\mathscr{C}^{\alpha}\left(\bar{X}_{\theta}\right)} \leq \gamma\|f\|_{\mathscr{C}_{0,1}^{\beta}\left(\bar{X}_{\theta}\right)} \forall f \in C_{0,1}^{\perp \beta}\left(\bar{X}_{\theta}, \text { Sing } \bar{X}_{\theta}\right) .
$$

Remark 6. For a smooth hypersurface M this statement first appeared in [6] as an interpretation of the results in[5].

Proof. We only give the proof for the case of \tilde{X} a complex space. Let $p \in M$ and Ω be a neighborhood of p in \tilde{X}, for which there exists a holomorphic embedding $Z: x \mapsto$ $z(x)=\left\{z_{1}(x), \ldots, z_{N}(x)\right\}$ of Ω in a neighborhood $B=\left\{z \in \mathbb{C}^{N}:|z|<1\right\}$ of $0 \in \mathbb{C}^{N}$.

The coordinates can be chosen so that $z(p)=0$ and

$$
\tilde{M}=Z(M \cap \Omega)=\left\{z \in \mathbb{C}^{N}:|z|<1, \quad \tilde{\rho}(z)=0, \quad F_{v}(z)=0, \quad v=1, \ldots, m\right\}
$$

where $F_{\nu} \in \mathcal{O}\left(\mathbb{C}^{N}\right), \tilde{\rho}$ is a strictly plurisubharmonic function on $B, \tilde{\rho}(z(x))=\rho(x)$, $x \in \Omega$.

Let g be the Levi polynomial for $\tilde{\rho}(z)$ at zero. The polynomial g has the properties:

$$
g \in \mathbb{O}(B), \quad g(0)=0, \operatorname{Re} g \geq c|z|^{2}, \quad c>0, \quad \forall z \in \tilde{M}
$$

Let χ be a function with compact support in B such that $\chi \equiv 1$ on $(1 / 2) B=\left\{z \in \mathbb{C}^{N}\right.$:
$|z|<1 / 2\}$ and $d \chi=0$ in a neighborhood of Sing \tilde{M}.
Let us consider now the following sequence of smooth $\bar{\partial}$-exact $(0,1)$-forms on M

$$
f_{k}(x)=\left\{\begin{array}{l}
\bar{\partial}[\chi(z(x)) \exp (-k g(z(x)))], \quad x \in \Omega \cap X \\
0, \quad x \in X \backslash \bar{\Omega} .
\end{array}\right.
$$

For sufficiently small θ_{0} we have $f_{k} \rightarrow 0, k \rightarrow \infty$, in $\mathscr{C}^{\infty}\left(X_{\theta_{0}}\right.$, Sing $\left.X_{\theta_{0}}\right)$.
For some $\theta<\theta_{0}$, the properties of the operator T_{θ} imply that the functions $u_{k}=$ $T_{\theta} f_{k} \rightarrow 0$ in $\mathscr{C}^{\alpha}\left(\bar{X}_{\theta}\right)$ as $k \rightarrow \infty$, and $\bar{\partial} u_{k}=f_{k}$ on X_{θ}. Hence the functions $h_{k}=$ $\chi \exp (-k g)-u_{k}$ are CR-functions on M with the properties $h_{k}(p) \rightarrow 1, k \rightarrow \infty$, and $h_{k}(x) \rightarrow 0, k \rightarrow \infty, \forall x \in M \backslash\{p\}$. Because p is arbitrary point of M, we have obtained that $\forall \alpha>0$ the CR-functions of class $\mathscr{C}^{\alpha}(M)$ separate the points of M.

To finish the proof we must now find for every $\alpha \geq 1$ and for an arbitrary point $p \in M$ a CR-mapping $x \mapsto \tilde{z}(x), x \in M$, which can be extended to a neighborhood D of p as real $C^{(\alpha)}$-embedding with the property: $\bar{\partial} \tilde{z}$ vanishes on $D \cap M$ together with all derivatives up to order $\alpha-1$.

For this let us consider another sequence of $\bar{\partial}$-exact forms,

$$
f_{k, j}=\left\{\begin{array}{l}
\bar{\partial} z_{j}(x) \chi(z(x)) \exp (-k g(z(x)), \quad x \in \Omega \\
0, \quad x \in X \backslash \bar{\Omega},
\end{array}\right.
$$

$k=1,2, \ldots ; j=1,2, \ldots, N$.
For sufficiently small θ_{0} we have that $f_{k, j} \rightarrow 0, k \rightarrow \infty$, in $\mathscr{C}^{\infty}\left(\bar{X}_{\theta_{0}}\right.$, Sing $\left.\bar{X}_{\theta_{0}}\right)$. For some $\theta<\theta_{0}$ the properties of the operator T_{θ} imply that the functions $u_{k, j}=T_{\theta} f_{k, j} \rightarrow 0$ in $\mathscr{C}^{\alpha}\left(\bar{X}_{\theta}\right)$ as $k \rightarrow \infty$.

Let us prove that for k large enough the CR-functions

$$
z_{j}^{(k)}(x)=z_{j}(x) \chi(z(x)) \exp (-k g(z(x)))-u_{k, j}(x), \quad x \in M
$$

$j=1,2, \ldots, N$, give the necessary CR-mapping $x \mapsto \tilde{z}^{(k)}(x), x \in M$.
Because by construction for some $\Omega_{0} \subset \Omega, p \in \Omega_{0}$, we have $\left.f_{k, j}\right|_{X \cap \Omega_{0}}=0$, the functions $u_{k, j}$ are holomorphic on $X \cap \Omega_{0}$ such that

$$
\left\|u_{k, j}\right\|_{\mathscr{C}^{\alpha}\left(\overline{X \cap \Omega_{0}}\right)} \rightarrow 0, \quad k \rightarrow \infty .
$$

By the Hartogs-Levi theorem on a complex space see [2] there exists a smaller neighborhood $D_{0} \subset \Omega_{0}$ of the point $p \in M$ such that functions the $u_{k, j}$ have holomorphic extensions

$$
\begin{align*}
& u_{k, j}^{+} \text {in } D_{0}^{+}=\left\{x \in D_{0}: \rho(x)<0\right\} \text { and } \tag{18}\\
& \left\|u_{k, j}^{+}\right\|_{\mathscr{C}^{\alpha^{\prime}}\left(\bar{D}_{0}^{+}\right)} \rightarrow 0, \text { as } k \rightarrow \infty . \tag{19}
\end{align*}
$$

The compact set \bar{D}_{0}^{+}is ε-regular for some $\varepsilon>0$. By results of Whitney [32] and Tougeron [31] the functions $u_{k, j}^{+}$can be extended as functions $\tilde{u}_{k, j}$, in the first instance defined D_{0} and thence to the ambient domain $\tilde{D}_{0} \subset \mathbb{C}^{N}$ such that for some $\varepsilon>0$

$$
\left\|\tilde{u}_{k, j}\right\|_{\mathscr{C} \varepsilon \alpha^{\prime}\left(\tilde{D}_{0}\right)} \rightarrow 0, k \rightarrow \infty .
$$

Let us suppose that α is so large that $\varepsilon \alpha^{\prime} \geq 1$. Then for the functions

$$
\tilde{z}_{j}^{(k)}=z_{j} \chi \exp (-k g)-\tilde{u}_{k, j}
$$

we have

$$
\frac{\partial \tilde{z}_{j}^{(k)}}{\partial z_{i}}(p) \rightarrow \delta_{i j}, \quad k \rightarrow \infty
$$

where $\delta_{i j}=1$, if $i=j, \delta_{i j}=0$, if $i \neq j, i, j=1,2, \ldots, N$.
Hence for k large enough the mapping $x \mapsto \tilde{z}^{(k)}(x)$ gives a real $\mathscr{C}^{\varepsilon \alpha^{\prime}}$-embedding of some (sufficiently small) neighborhood of p in X and besides $\bar{\partial} \tilde{z}^{(k)}$ vanishes on $D_{0} \cap M$ together with all derivatives up to order $\varepsilon \alpha^{\prime}-1$.

The main step in the proof of Theorem 2 is the following.
Proposition 8. Let X be a relatively compact domain in the complex space \tilde{X} of dimension 2 with at most isolated singularities such that $b X=M_{1}-M_{0}$, where M_{0} is a strictly pseudoconvex $C R$-variety and M_{1} is a strictly pseudoconvex $C R$-manifold. If there exists a holomorphic embedding $\varphi: X \cup M_{1} \rightarrow \mathbb{C}^{N}$, then the variety M_{0} is also CR-embeddable.

For the proof of Proposition 8 we need several lemmas.
Let X be as in Proposition 8 and $\varphi: X \cup M_{1} \rightarrow \mathbb{C}^{N}$ an holomorphic embedding. By the result of Rossi [30] there exists a Stein space W with isolated singularities and smooth strictly pseudoconvex boundary $b M_{1}$ embedded in \mathbb{C}^{N} such that

$$
W_{-}=\varphi(X) \subset W \quad \text { and } \quad W_{+}=W \backslash \bar{W}_{-}
$$

is relatively compact domain in W.
From the concavity of X near M_{0} and the Hartogs-Levi extension theorem on complex spaces [2] it follows that the holomorphic mapping φ has a holomorphic extension to the neighborhood U_{0} of M_{0} in \tilde{X}.

Let ρ_{0} be a smooth, strictly plurisubharmonic function, defined in \varkappa_{0} such that

$$
M_{0}=\left\{x \in U_{0}: \rho_{0}(x)=0\right\} \text { and } \rho_{0}>0 \text { on } U_{0} \cap X .
$$

Let G be the analytic, exceptional subset of those $x \in X \cup \vartheta_{0}$, for which $x \in \operatorname{Sing} X$ or $x \in \operatorname{Reg} X$, but rank of $d \varphi(x)<2$. From injectivity of φ on X and from maximum principle for $\left.\rho_{0}\right|_{G}$, it follows that exceptional set G must be a finite set.

Lemma 3. W_{+}is a Stein open subset in the space W.
Proof. For $\varepsilon>0$ we consider

$$
\begin{align*}
& X_{\varepsilon}^{-}=X \backslash\left\{x \in U_{0}: \rho_{0}(x) \leq \varepsilon\right\} \\
& W_{\varepsilon-}=\varphi\left(X_{\varepsilon}^{-}\right) \text {and } W_{\varepsilon+}=W \backslash \bar{W}_{\varepsilon-} \tag{20}
\end{align*}
$$

For all sufficiently small $\varepsilon>0$, the set $W_{\varepsilon+}$ is a domain with strictly pseudoconvex boundary in the Stein space W. Hence, $W_{\varepsilon+}$ and also $W_{+}=$int $\cap_{\varepsilon>0} W_{\varepsilon+}$ are also Stein.

Define the functions

$$
\rho(z)=\sum_{z^{*} \in \varphi(G)} \ln \left|z-z^{*}\right| \text { and } r=e^{\rho}
$$

Let $\Lambda_{0, q}^{1}\left(\bar{W}_{ \pm}\right)$be the spaces of $(0, \mathrm{q})$-forms on $\bar{W}_{ \pm}$with coefficients in the space of Lipschitz functions. For real numbers $\nu_{ \pm}$we define the spaces

$$
\Lambda_{0, q}^{1, v_{ \pm}}\left(\bar{W}_{ \pm}\right)=r^{-v_{ \pm}} \Lambda_{0, q}^{1}\left(\bar{W}_{ \pm}\right)
$$

Lemma 4. For the given mapping $\varphi: X \rightarrow W_{-} \subset \mathbb{C}^{N}$ there exists $v_{-} \geq 0$ such that the operator

$$
\varphi_{*}: C_{0,1}^{(1)}(\bar{X}) \rightarrow \Lambda_{0,1}^{1, v_{-}}\left(\bar{W}_{-}\right)
$$

is continuous.
Proof. Using the Łojasiewicz inequality the authors obtained in [12] the following estimate: There are positive constants c, A such that

$$
|\varphi(x)-\varphi(y)| \geq c d(x, y)[d(x, G)+d(y, G)]^{A}, \quad x, y \in \bar{X}
$$

Here $d(\cdot, \cdot)$ denotes the distance on \tilde{X}, measured with respect to a Riemannian metric on \tilde{X}.

It follows from this estimate that there exists a $v>0$ such that if $f \in \mathscr{C}^{1}(\bar{X})$ and $|\nabla f(p)| \leq c[d(p, G)]^{\nu}$, then $\varphi_{*} f(w)=f\left(\varphi^{-1}(w)\right)$ belongs to $\Lambda^{1}(\varphi(\bar{X}))$. So for any $f \in \mathscr{C}^{1}(\bar{X})$ we have obtained an estimate of the form

$$
\left|\varphi_{*} f\right|_{\Lambda^{1}(\varphi(\bar{X}))} \leq c\left(\|f\|_{C(X)}+\sup _{p \in X} \frac{|\nabla f(p)|}{[d(p, G)]^{\nu}}\right)
$$

Using Cramer's rule and the Łojasiewicz inequality one can show that if $f \in \mathscr{C}_{0,1}^{1}(\bar{X})$ vanishes to high enough order on G then we can represent f in terms of $\varphi^{*}\left(d \bar{z}_{j}\right), j=$ $1,2, \ldots, N$, with \mathscr{C}^{1}-coefficients, vanishing to any specified order on G.

Using the Lipschitz extension theorem from [25] and [32] it follows that, for the given $W_{ \pm}$and $\nu_{-} \geq 0$, there exists $\nu_{+} \geq 0$ and a continuous linear extension operator

$$
\begin{equation*}
\mathscr{E}_{+}: \Lambda_{0,1}^{1, \nu_{-}}\left(\bar{W}_{-}\right) \rightarrow \Lambda_{0,1}^{1, v_{+}}\left(\bar{W}_{+}\right) \tag{21}
\end{equation*}
$$

There exists also $\mu_{+} \geq 0$ such that the operator

$$
\bar{\partial}: \Lambda_{0,1}^{1, \nu_{-}}\left(\bar{W}_{+}\right) \rightarrow L_{0,2}^{2}\left(W_{+}, e^{\mu_{+} \rho}\right)
$$

is continuous.
Let $C_{0,1}^{\perp s}(\bar{X})$ be the space of s-times differentiable $(0,1)$-forms on \bar{X}, which are $\bar{\partial}$-closed on \bar{X} and $\bar{\partial}_{\tau}$-exact on M_{0}.

Lemma 5. For any $f \in C_{0,1}^{\perp 1}(\bar{X})$, the form $b_{+}=\bar{\partial} \mathscr{C}_{+} \varphi_{*} f$ belongs to $L_{0,2}^{2}\left(W_{+}, e^{\mu+\rho}\right)$ and satisfies the following orthogonality property

$$
\begin{equation*}
\int_{W_{+}} b_{+} \wedge h=0 \forall h \in H_{(2)}^{2,0}\left(W_{+}, e^{-\mu_{+} \rho}\right) . \tag{22}
\end{equation*}
$$

Proof. Let us fix $\varepsilon>0$ and $h_{\varepsilon} \in H_{(2)}^{2,0}\left(W_{\varepsilon+}, e^{-\mu_{+} \rho}\right)$. We have

$$
\begin{align*}
& \int_{W_{\varepsilon+}} b_{+} \wedge h_{\varepsilon}= \\
& \int_{W_{\varepsilon+}} \bar{\partial}_{\mathscr{\varepsilon}}^{+}, \tag{23}\\
& g_{-} \wedge h_{\varepsilon} \stackrel{L^{2} \text { Stokes }}{=} \int_{b W_{\varepsilon+}} \mathscr{E}_{+} g_{-} \wedge h_{\varepsilon}= \\
& \int_{b W_{\varepsilon+}} g_{-} \wedge h_{\varepsilon}=\int_{M_{\varepsilon}} \varphi^{*} g_{-} \wedge \varphi^{*} h_{\varepsilon}=\int_{M_{\varepsilon}} f \wedge \varphi^{*} h_{\varepsilon}
\end{align*}
$$

To prove that the last integral is equal to zero we remark that the property $h_{\varepsilon} \in H_{(2)}^{2,0}\left(W_{\varepsilon+}, e^{-\mu_{+} \rho}\right)$ implies that the form $\varphi^{*} h_{\varepsilon} \in H_{(2)}^{2,0}\left(\left(X \backslash X_{\varepsilon}^{-}\right) \backslash G\right)$. An L^{2}-holomorphic form of maximal degree on a complex space has an holomorphic extension through analytic singularities.

From Proposition 1, using the approximation arguments in $\S 10$ of [20], which are in turn based on the solution of Cousin's problem with estimates in $W_{\varepsilon+}$, it follows that $\forall h \in H_{(2)}^{2,0}\left(W_{+}, e^{-\mu_{+} \rho}\right)$ one can find $h_{\varepsilon_{j}} \in H_{(2)}^{2,0}\left(W_{\varepsilon_{j}+}, e^{-\mu_{+} \rho}\right)$ such that $h_{\varepsilon_{j}} \rightarrow h$ in $H_{(2)}^{2,0}\left(W_{+}, e^{-\mu_{+} \rho}\right), \varepsilon_{j} \rightarrow 0$. Hence $\left.\varphi^{*} h\right|_{M_{0}}$ is $\bar{\partial}_{\tau}$-closed form in the distribution sense on M_{0}. This means that

$$
\int_{M_{0}} f \wedge \varphi^{*} h=\int_{M_{0}} \bar{\partial}_{\tau} \alpha \wedge \varphi^{*} h=0
$$

Let $L_{0,2}^{\perp 2}\left(W_{+}, e^{\mu+\rho}\right)$ denote the subspace in $L_{0,2}^{2}\left(W_{+}, e^{\mu+\rho}\right)$ consisting of the forms with the property (22). Proposition 1 and Lemma 3 imply the following lemma.

Lemma 6. There exists an operator

$$
T_{+}: L_{0,2}^{\perp 2}\left(W_{+}, e^{\mu_{+} \rho}\right) \rightarrow L_{0,1}^{2}\left(W_{+}, e^{\mu_{+} \rho}\right)
$$

such that for any $b_{+} \in L_{0,2}^{\perp 2}\left(W_{+}, e^{\mu+\rho}\right)$ we have

$$
\begin{align*}
& \left\|T_{+} b_{+}\right\|_{L^{2}\left(W_{+}, e^{\mu_{+} \rho}\right)} \leq \text { const }\left\|b_{+}\right\|_{L^{2}\left(W_{+}, e^{\mu+\rho}\right)} \tag{24}\\
& \left.T_{+} b_{+}\right|_{b W_{+}}=0 \text { in the } L^{2} \text { distribution sense }, \tag{25}\\
& \bar{\partial} T_{+} b_{+}=b_{+} \text {on } W_{+} \tag{26}
\end{align*}
$$

We also need the following version of L^{2}-solvability for the $\bar{\partial}$-equation on a Stein space with isolated singularities.

Lemma 7. For any $\mu \geq 0$ there exists a continuous operator

$$
T: L_{0,1}^{2}\left(W, e^{\mu \rho}\right) \rightarrow L^{2}\left(W, e^{\mu \rho}\right)
$$

such that $f=\bar{\partial} T f$ on Reg W for any f from a finite codimensional subspace in the space

$$
\begin{equation*}
\left\{f \in L_{0,1}^{2}\left(W, e^{\mu \rho}\right): \bar{\partial} f=0 \quad \text { on } \quad \operatorname{Reg} W\right\} \tag{27}
\end{equation*}
$$

Proof. From Proposition 1 it follows that the space $H_{(2) \circ}^{0,1}\left(W, e^{\mu \rho}\right)=0$. To prove the lemma it is sufficient to check the following statement:
(28) For the elements f of a finite-codimensional subspace of the space (27),

$$
\text { the restrictions }\left.f\right|_{b W} \text { are } \bar{\partial}_{\tau}-\text { exact on } b W
$$

By Theorem 10.3 from [18], the form $\left.f\right|_{b W}$ is $\bar{\partial}_{\tau}$-exact if and only if

$$
\int_{b W} f \wedge h=0 \forall h \in H^{2,0}(b W) \cap \mathscr{C}_{2,0}^{\infty}(b W) .
$$

From the generalized Hartogs-Levi theorem [2] it follows that the space

$$
H_{(2)}^{2,0}\left(W, e^{-\mu \rho}\right) \cap \mathscr{C}_{2,0}^{\infty}(\bar{W})
$$

can be considered as a finite co-dimensional subspace of the space $H^{2,0}(b W) \cap \mathscr{C}_{2,0}^{\infty}(b W)$. For any $h \in H_{(2)}^{2,0}\left(W, e^{-\mu \rho}\right) \cap \mathscr{C}_{2,0}^{\infty}(\bar{W})$ the equality $\int_{b W} f \wedge h=0$ follows from Stokes formula. The statement mentioned above is verified and Lemma 7 is proved.

Proof. Now we complete the proof of Proposition 8. Let $\tilde{f} \in C_{0,1}^{\perp \alpha}(\bar{X}$, Sing $\bar{X})$. Lemma 4 implies that $g_{-}=\varphi_{*} \tilde{f} \in \Lambda_{0,1}^{1, \nu_{-}}\left(\bar{W}_{-}\right)$. Applying Lemma 5 for $g_{-} \in \Lambda_{0,1}^{1, \nu_{-}}\left(W_{-}\right)$we obtain that form $\bar{\partial}_{\mathscr{E}}^{+}, g_{-}$belongs to $L_{0,2}^{\perp 2}\left(W_{+}, e^{\mu+\rho}\right)$, where operator \mathscr{E}_{+}is defined by (21).

Let T_{+}be an operator defined in Lemma 6. Then the following operator $g_{-} \mapsto E_{+} g_{-}=$ $\mathscr{E}_{+} g_{-}-T_{+}\left(\bar{\partial}_{\mathscr{E}}^{+} g_{-}\right)$has the properties

$$
E_{+} g_{-} \in L_{0,1}^{2}\left(W_{+}, e^{\mu_{+} \rho}\right),\left.\quad E_{+} g_{-}\right|_{b W_{-}}=\left.g_{-}\right|_{b W_{-}}
$$

and $\bar{\partial} E_{+} g_{-}=0$ on W_{+}. Let us set

$$
g=\left\{\begin{array}{l}
E_{+} g_{-} \text {for } z \in W_{+} \\
g_{-} \text {for } z \in W_{-}
\end{array} .\right.
$$

Then $g \in L_{0,1}^{2}\left(W, e^{\mu \rho}\right)$, where $\mu=\max \left(\mu_{+}, \mu_{-}\right)$and $\bar{\partial} g=0$ on Reg W.
By Lemma 7 for any g from the finite-codimensional subspace $B_{0,1}^{2}\left(W, e^{\mu \rho}\right)$ of the space

$$
\left\{g \in L_{0,1}^{2}\left(W, e^{\mu \rho}\right): \bar{\partial} g=0 \text { on Reg } W\right\}
$$

we have $g=\bar{\partial} T g$, where $T: L_{0,1}^{2}\left(W, e^{\mu \rho}\right) \rightarrow L^{2}\left(W, e^{\mu \rho}\right)$ is continuous linear operator. Hence for \tilde{f} from the finite-codimensional subspace

$$
\varphi^{*} B_{0,1}^{2}\left(W, e^{\mu \rho}\right) \cap C_{0,1}^{\perp 1}(\bar{X}, \operatorname{Sing} \bar{X}) \subset C_{0,1}^{\perp 1}(\bar{X}, \operatorname{Sing} \bar{X})
$$

we have

$$
\tilde{f}=\varphi^{*} g=\bar{\partial} T \varphi^{*} g=\bar{\partial} R \tilde{f}
$$

where the function $R \tilde{f}(x)=T g(\varphi(x))$ is continuous on $X \backslash G$ and has at most polynomial growth near $M_{0} \cup G$.

From the concavity of the variety X in a neighborhood U_{0} of $M_{0} \cup G$ it follows that there exists a smooth family of holomorphic Levi-discs $S_{b} \subset X \backslash G, S_{b} \ni b$, parametrized by the points $b \in \overline{थ_{0} \cap X}$ such that there exists a compact set $K \subset X \backslash G$, containing all the closed curves $b S_{b}$.

Applying Proposition 2 to the restrictions $\left.\tilde{f}\right|_{S_{b}}, b \in U_{0} \cap X \backslash G$, we can find for large enough α a family of functions $R_{b} \tilde{f} \in \mathscr{C}\left(\bar{S}_{b}\right)$ depending continuously on the parameter b such that

$$
\left.\bar{\partial} R_{b} \tilde{f}\right|_{S_{b}}=\left.\tilde{f}\right|_{S_{b}} \text { and }\left\|R_{b} \tilde{f}\right\|_{\mathscr{C}\left(\bar{S}_{b}\right)} \leq \gamma\|\tilde{f}\|_{\mathscr{C}^{\alpha}(\bar{X})}
$$

where γ does not depend on b. Hence, for the restrictions $\left.R \tilde{f}\right|_{S_{b}}$ we have a representation

$$
\left.R \tilde{f}\right|_{S_{b}}=R_{b} \tilde{f}+K_{b} \tilde{f}, \quad \text { where } \quad K_{b} \tilde{f} \in \mathcal{O}\left(S_{b}\right)
$$

Now allowing b to tend to $M_{0} \cup G$ we obtain from this representation and the maximum principle for $K_{b} \tilde{f}$ on S_{b} the inequality

$$
\sup _{x \in \mathscr{Q}_{0} \cap X \backslash G}|R \tilde{f}(x)| \leq \tilde{\gamma}\left(\|f\|_{C^{(\alpha)}(\bar{X})}+\sup _{x \in K}|R \tilde{f}(x)|\right) .
$$

This implies that $R \tilde{f} \in \mathscr{C}\left(X \cup M_{0}\right)$.
From Proposition 5 it follows that for every α^{\prime} there exists $\alpha \geq \alpha^{\prime}$ such that $R \tilde{f} \in$ $\mathscr{C}^{\alpha^{\prime}}\left(X \cup M_{0}\right)$ if $\tilde{f} \in \mathscr{C}_{0,1}^{\alpha}(\bar{X}$, Sing $\bar{X})$ and $R \tilde{f} \in \mathscr{C}\left(X \cup M_{0}\right)$. We have therefore constructed a continuous linear operator $R: C_{0,1}^{\perp \alpha}(\bar{X}$, Sing $\bar{X}) \rightarrow C^{\alpha^{\prime}}(\bar{X})$ such that $\bar{\partial} R f=f$ on Reg X for a finite co-dimensional subspace of $f \in C_{0,1}^{\perp \alpha}(\bar{X}$, Sing $\bar{X})$.

Because, in the argument above, one can take X_{θ} instead of X, Proposition 7 implies the embeddability of M_{0} in affine space.

Proof of Theorem 2. Let $X_{\theta}^{-}=\{x \in X: \rho(x)>\theta\}$ and $M_{\theta}=\{x \in M: \rho(x)=\theta\}$. Let $\varphi_{1}: M_{1} \rightarrow \mathbb{C}^{N}$ be a CR-embedding. By Proposition 6 the mapping φ_{1} admits an holomorphic extension as a holomorphic embedding $\psi_{\theta}: X_{\theta}^{-} \rightarrow \mathbb{C}^{N}$ for some $\theta<1$. Let θ_{1} be the infimum of numbers θ such that there exists an embedding $\psi_{\theta}: X_{\theta}^{-} \rightarrow \mathbb{C}^{N}$.

Using Rossi's "filling of holes" result, [30] we deduce the existence of a holomorphic embedding of $X_{\theta_{1}}^{-}$in a normal Stein space. Applying the Remmert embedding theorem to this Stein space we obtain an embedding $\psi_{\theta_{1}}: X_{\theta_{1}}^{-} \rightarrow \mathbb{C}^{N}$. From the Hartogs type extension theorem on complex spaces [2] it follows that the holomorphic mapping $\psi_{\theta_{1}}$ admits holomorphic extension to X.

From Proposition 8 we obtain the existence of a CR-embedding $\varphi_{\theta_{1}}: M_{\theta_{1}} \rightarrow \mathbb{C}^{N}$. To finish the proof it is sufficient to show that $\theta_{1}=0$. Suppose that $\theta_{1}>0$. From Proposition 6 it follows that the mapping $\varphi_{\theta_{1}}$ admits a holomorphic extension as a holomorphic embedding

$$
\tilde{\psi}_{\theta_{2}}:\left(X_{\theta_{2}}^{-} \backslash X_{\theta_{1}}^{-}\right) \rightarrow \mathbb{C}^{N} \text { for some } \theta_{2}<\theta_{1}
$$

From Hartogs-Levi extension theorem and Oka-Weil approximation theorem on complex spaces [2] it follows that the holomorphic embedding $\tilde{\psi}_{\theta_{2}}$ can be chosen to be holomorphic on X.

Hence holomorphic functions on $X_{\theta_{2}}^{-}$separate all points of $X_{\theta_{2}}^{-}$and we can again apply Rossi's and Remmert's results to obtain the existence of an embedding $\psi_{\theta_{2}}: X_{\theta_{2}}^{-} \rightarrow \mathbb{C}^{N}$ with $\theta_{2}<\theta_{1}$. This contradicts the minimality of θ_{1} and proves Theorem 2.

5. Appendix: Embeddability is not a complex cobordism invariant

by Bruno De Oliveira
 University of Pennsylvania and Harvard University

In this Appendix we state some results on embeddability and complex-cobordisms of strictly pseudoconvex 3-manifolds that will appear in full detail in [10]. In that paper we
also study the non-extendibility of CR-functions from the pseudoconvex component of the boundary of a complex manifold X.

Theorem 3. Fillability of strictly pseudoconvex 3-manifolds is not a complex cobordism invariant.

Theorem 4. Let M_{0} be an embeddable strictly pseudoconvex 3-manifold. The embeddability of strictly pseudoconvex 3-manifolds complex cobordant to M_{0} is not stable, for small deformations of the CR-structure preserving the property of being complex cobordant to M_{0}.

These results follow from the construction sketched below. In the paper [10] more general examples of this type are described.

Let C_{1} and C_{2} be two distinct linear \mathbb{P}^{1} 's in \mathbb{P}^{2} and $x_{0}=C_{1} \cap C_{2}$. Construct an open covering of a neighborhood U of $C=C_{1} \cup C_{2}$, consisting of U_{0}, U_{1} and U_{2} such that $x_{0} \in U_{0}, C_{1} \subset U_{0} \cup U_{1}, C_{2} \subset U_{0} \cup U_{2}$, and $U_{1} \cap U_{2}=\emptyset$. By [26] one has a smooth family of gluings of U_{0} and U_{2}, such that the initial gluing is the given one and all other gluings give rise to open surfaces containing C_{2} with the same normal bundle but non-equivalent embeddings. In the cited paper it is shown that the only surface germ containing \mathbb{P}^{1} with the standard normal bundle, which is fillable is that of the linear embedding of \mathbb{P}^{1} into \mathbb{P}^{2}.

Let $\omega: \mathscr{V} \rightarrow \Delta$ be a family of surfaces, with $=V_{t}=\omega^{-1}(t)$ and $V_{0}=U$, obtained by fixing the gluing of U_{0} to U_{1} but changing the gluing of U_{0} with U_{2}, using a family gluings dependent on t as described in the previous paragraph. Each member, V_{t} of the family contains the curve C embedded with the same normal bundle. Hence the tubular neighborhoods of C in all the V_{t} are diffeomorphic to the tubular neighborhood W of C in V_{0}. There is a smooth map $\phi: W \times \Delta \rightarrow \mathscr{V}$, with each $\phi_{t}: W \rightarrow W_{t}=\phi(W \times t) \subset V_{t}$ a diffeomorphism from W to a tubular neighborhood of C in V_{t}. The family of surfaces $\left\{W_{t}: t \in \Delta\right\}$ can be therefore described as the deformation of the complex structure on W, induced by the diffeomorphisms ϕ_{t}.

One can construct a strictly plurisubharmonic exhaustion function $f: V_{0} \backslash C \rightarrow \mathbb{R}$. For large enough c

$$
S_{c}=\left\{x \in V_{0}: f(x) \geq c\right\} \subset \subset W
$$

Fix some $c \gg 0$, after possibly shrinking Δ, one can assume that for all $t \in \Delta, f:$ $W \backslash C \rightarrow \mathbb{R}$ is strictly plurisubharmonic on a neighborhood of S_{c} for the complex structures on W induced by ϕ_{t}.

As a consequence, for each sufficiently small $t \neq 0$ the surface W_{t} contains a pseudoconcave neighborhood, Y_{t-} of C. We denote its boundary by $M_{1 t}=\phi_{t}\left(S_{c}\right)$. The strictly pseudoconcave manifold Y_{t-} contains both the neighborhood germ of a linear $\mathbb{P}^{1} \subset \mathbb{P}^{2}$ and the neighborhood germ of a nontrivial deformation of the linear embedding of \mathbb{P}^{1}. Any nontrivial deformation of the neighborhood germ of a linear \mathbb{P}^{1} in \mathbb{P}^{2} cannot be contained in a embeddable pseudoconcave surface. This implies that the pseudoconcave surfaces $Y_{t-} \subset W_{t}, t \neq 0$ are not embeddable and hence the strictly pseudoconvex 3-manifolds, $M_{1 t}$ are not embeddable. On the other hand each $M_{1 t}$ is complex-cobordant to an embeddable strictly pseudoconvex 3-manifold M_{0} contained in the neighborhood germ of the linear \mathbb{P}^{1}. Because this neighborhood contains a subset biholomorphic to a neighborhood of infinity in \mathbb{C}^{2}, each of the CR-manifolds $M_{1 t}$ is, in fact complex-cobordant to a round S^{3}.

REFERENCES

[1] R.A. Airapetyan and G.M. Henkin, Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys, 39:3 (1984), 41-118.
[2] A. Andreotti and H. Grauert, Théoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90, (1962), 193-259.
[3] A.Andreotti and Yum-Tong Siu, Projective embedding of pseudoconcave spaces, Ann.Scuola Norm. Sup. Pisa, 24(1970), 231-278
[4] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. I.H.E.S. 25(1965), 81-150.
[5] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites, Seminar Goulaouic-Schwartz, exposé IX, 1974-75.
[6] D.M. Burns, Global behavior of some tangential Cauchy-Riemann equations, Partial Differential Equations and Geometry (Proc. Conf., Park City, Utah), Marcel Dekker, New York, 1979.
[7] H.Cartan, Quotient d'un espace analytique par un groupe d'automorphisms, in Algebraic, Geometry and Topology, Symposium in honor of S.Lefschetz, Princeton University Press (1957), 90-102.
[8] E.M. Chirka, An analytic representation of CR-functions, Math. USSR Sb. 27(1975), 526-553.
[9] J.-P. Demailly, Estimations L^{2} pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au dessus d'une variété Kählérienne compléte, Ann. Sci. Ec. Norm. Sup. 15(1982), 457-511.
[10] Bruno De Oliveira, Complex cobordism and embeddability of CR-manifolds, To appear.
[11] C.L. Epstein, A relative index on the space of embeddable CR-structures, I and II, Ann. of Math. 147(1998), 1-59, 61-91.
[12] C.L. Epstein and G.M. Henkin, Two lemmas in local analytic geometry, in "Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis", Contemporary Math. v. 251 (2000), 189-195.
[13] C.L. Epstein and G.M. Henkin, Embeddings for 3-dimensional CR-manifolds, Proceeding of a Conference in honor of Pierre Lelong, Progress in Mathematics, v.188, Birkhäuser (2000), 223-236.
[14] C.L. Epstein and G.M. Henkin, Stability of embeddings for pseudoconcave surfaces and their boundaries, Acta Math. (to appear).
[15] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146(1962), 331-368.
[16] H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Annals of Math. 68 (1958), 460-472.
[17] R. Harvey and H.B. Lawson, On the boundaries of complex analytic varieties, I, Ann. of Math. 102(1975), 223-290.
[18] G.M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds I, Russian Math. Surveys 32(1977), 59-130.
[19] G.M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Monographs in Math. 79, Birkhäuser-Verlag, 1984, 226 pp.
[20] G.M. Henkin and J. Leiterer, Andreotti-Grauert theory by integral formulas, Birkhäuser, Progress in Mathematics, v.74, (1988), 270 pp.
[21] K. Kodaira, On compact complex analytic surfaces, I, Ann.of Math. 71 (1960), 111-152.
[22] J.J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis, Minneapolis 1964 (Aeppli, Calabi and Röhrl eds), Springer- Verlag, 1965, 81-94
[23] J.J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81(1965), 451-472.
[24] L. Lempert, On algebraic approximations in analytic geometry, Inv. Math. 121(1995), 335-354
[25] E.J. McShane, Extension of the range of functions, Bull.Am.Math.Soc., 40 (1934), 837-842.
[26] J. Morrow and H. Rossi, Some general results on equivalence of embeddings, Princeton Annals, Proceedings of 1979 Princeton Conference on Complex Analysis (1981), 299-325.
[27] R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146(1962), 195-216
[28] W. Pardon and M. Stern, $L^{2}-\bar{\partial}$-cohomology for complex projective varieties, Jour. Amer. Math. Soc. 4(1991), 603-621.
[29] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. Journal, 34(1967), 375-386.
[30] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. on Complex Analysis, Minneapolis 1964, (Aeppli, Calabi and Röhrl eds.), Springer-Verlag, (1965), 242-256.
[31] J.C. Tougeron, Ideaux de fonctions differentielles, Springer-Verlag (1972).
[32] H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(1934), 63-89.

Department of Mathematics, University of Pennsylvania
E-mail address: cle@math. upenn.edu
Department of Mathematics, University of Paris, Vi
E-mail address: henkin@math.jussieu.fr

