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Abstract

We show that the answer to the question in the title is “very well indeed.” In

particular, we prove that, throughout the maximum possible range, the finite

Fourier coefficients provide a good approximation to the Fourier coefficients of

a piecewise continuous function. For a continuous periodic function, the size

of the error is estimated in terms of the modulus of continuity of the function.

The estimates improve commensurately as the functions become smoother. We

also show that the partial sums of the finite Fourier transform provide essen-

tially as good an approximation to the function and its derivatives as the partial

sums of the ordinary Fourier series. Along the way we establish analogues of

the Riemann-Lebesgue lemma and the localization principle. c© 2004 Wiley

Periodicals, Inc.

1 Introduction

Let SN denote the set of complex sequences of length N + 1,

(1.1) SN = {〈a0, a1, . . . , aN 〉 : aj ∈ C, j = 0, . . . , N }.

For each N ∈ N, the finite Fourier transform (FFT) is the map from SN to itself

defined by

(1.2) FN (〈aj 〉)k =
1

N + 1

N∑
j=0

aj e
−

2π i jk
N+1 .

Using formula (1.2), this sequence can be extended to all k ∈ Z and is periodic of

period N + 1. For our purposes, it is more natural to think of k as going from

kmin = −

⌊
N − 1

2

⌋
to kmax =

⌊
N

2

⌋
.
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The inverse of FN is given by

(1.3) F
−1
N (〈aj 〉) =

kmax∑
k=kmin

aj e
2π i jk
N+1 .

A principal application of the FFT is to approximately compute samples of the

Fourier transform of a function. If f is a function defined on [0, 1], then we define

(1.4) f̃N ,k =
1

N + 1

N∑
j=1

f

(
j

N + 1

)
e−

2π i jk
N+1 .

It is apparent that the sum on the right-hand side of equation (1.4) is a Riemann

sum for the integral defining the k th Fourier coefficient

(1.5) f̂ (k) =

∫ 1

0

f (x)e−2π ikx dx .

In the signal processing literature, it is often asserted that

(1.6) f̂ (k) ≈ f̃N ,k,

at least for |k| � N , though there is evident trepidation in asserting this for values

of k comparable to N
2

. This is because the integrand becomes highly oscillatory

and therefore the standard estimates indicate that, for |k| near to N
2

, this Riemann

sum may not provide an accurate approximation to the integral.

In this note we show that this concern is entirely unfounded and that, in fact,

f̃N ,k provides a uniformly good estimate for f̂ (k) for k ∈ [kmin, kmax]. We consider

functions that are either continuous or piecewise continuous with finitely many

points of discontinuity (as 1-periodic functions) on [0, 1]. This is a natural restric-

tion in a context where one is sampling. To simplify the notation, we restrict our

attention to N = 2M + 1, so that

kmin = −M and kmax = M.

Similar results are true for N = 2M. The asymptotic properties of the Fourier

coefficients, as |k| tends to infinity, are due to cancellations that occur in the integral

in (1.5). Our results show that essentially the same cancellations occur in the finite

sum in (1.4). In examples we show that, if the samples are not uniformly spaced,

then these cancellations may fail to occur.

If, as a 1-periodic function, f has continuous derivatives, then the approxima-

tion in equation (1.6) is commensurately better. Moreover, we show that the FFT

partial sum

(1.7) f̃N (x) =

kmax∑
k=kmin

f̃N ,ke2π ikx
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is almost as good an approximation to f as the usual partial sum

(1.8) fN (x) =

kmax∑
k=kmin

f̂ (k)e2π ikx .

We also show that the one-dimensional FFT has the same localization properties

as the Fourier transform.

Some of the results in this paper are part of the folklore in the world of numeri-

cal analysis. One should consult the work of Henrici [4] or of Gottlieb and Shu [3]

and the references contained therein. In most of the published work, it is assumed

that the functions under consideration are piecewise analytic, whereas no such as-

sumption is needed for our methods to apply. I am not aware of results as sharp

or proofs that are as simple and direct as those provided here. The focus in the

work of Gottlieb et al. is on how to use the exact knowledge of a finite number of

Fourier coefficients to obtain a very accurate approximation to a piecewise analytic

function, even when it has jump discontinuities. In [8] methods are described for

approximating Fourier coefficients outside of the range [kmin, kmax]. These tech-

niques involve using higher-order interpolants to approximate the function from

the sampled data.

In [1] Auslander and Grünbaum consider the problem of estimating the error in

using the discrete Fourier transform to compute the Fourier transform of a square-

integrable function. Because an L2-function does not have well-defined values

at points, this analysis also includes a model for sampling both the function and

its Fourier transform. Using the Cauchy-Schwarz inequality, the authors derive

relative bounds for the errors in the Fourier coefficients that depend on the sampling

models and the frequency but are independent of the function.

2 Some Background Material

Our analysis is based on classical results in approximation theory related to

Jackson’s theorem. A good reference for this material is [7]. The facts we use

from Fourier theory can be found in [2, 5].

To state the result, we need to define the modulus of continuity of a function.

Let f be a function defined on a domain D; then the modulus of continuity of f is

defined by

(2.1) ω f (δ) = sup
x1,x2∈D

|x1−x2|≤δ

| f (x1) − f (x2)|.

An exponential polynomial of order M is a function of the form

(2.2) p(x) =

M∑
k=−M

αke2π ikx , αk ∈ C.
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We denote the set of such functions by TM . If f is a continuous, 1-periodic function

defined on [0, 1], then, for each M ∈ N, there is a function p∗ ∈ TM that is a best

uniform approximation to f ; that is,

(2.3) ‖ f − p∗‖∞ = inf
p∈TM

‖ f − p‖∞.

Theorem 1.3 in [7] reads as follows:

THEOREM 2.1 [7, theorem 1.3] If f (x) is a continuous 1-periodic function on

[0, 1], then the best uniform approximation p∗ to f from TM satisfies

(2.4) ‖ f − p∗‖∞ ≤ 6ω f

(
1

2π M

)
.

Arguing as in the case of Jackson’s theorem, we easily derive the following

corollary:

COROLLARY 2.2 If f is a continuous 1-periodic function on [0, 1] with l contin-

uous 1-periodic derivatives, then the best uniform approximation p∗ to f from TM

satisfies

(2.5) ‖ f − p∗‖∞ ≤ 6l+1
ωl

f

(
1

2π M

)
(2π M)l

.

Here and in what follows, ωl
f is the modulus of continuity of f [l].

For completeness we include the case that f is analytic:

COROLLARY 2.3 If f is a continuous 1-periodic function on [0, 1] with a bounded

analytic extension to a strip of the form

Sa = {z : |�z| < a},

then the best uniform approximation p∗ to f from TM satisfies

(2.6) ‖ f − p∗‖∞ ≤
2K e−2πaM

e2πa − 1
.

Here K = sup{| f (z)| : z ∈ Sa} = ‖ f ‖L∞(Sa).

Sharp results for the Fourier transform are often proven using these results.

The following lemma indicates how they can be applied to study the finite Fourier

transform:

LEMMA 2.4 If p ∈ TM, then

(2.7) p̃2M,k = p̂(k) for − M ≤ k ≤ M.

The proof is an elementary computation. The relation in equation (2.7) does

not hold for |k| > M . For |k| > M the Fourier coefficient p̂(k) vanishes, whereas

〈 p̃2M,k〉 is a (2M + 1)–periodic sequence.



FINITE FOURIER TRANSFORM VS. FOURIER TRANSFORM 5

3 The Continuous Case

In this section we state and prove our results for continuous 1-periodic func-

tions. The case of piecewise continuous functions is treated in the next section.

THEOREM 3.1 For M ∈ N and f, a continuous 1-periodic function defined on

[0, 1], we have the estimates

(3.1) | f̃2M,k − f̂ (k)| ≤ 2‖p∗ − f ‖∞ for |k| ≤ M,

where p∗ ∈ TM is defined by equation (2.3).

PROOF: Since p∗ ∈ TM , a simple calculation shows that, for |k| ≤ M, we have

| f̃2M,k − p̃∗
2M,k |

=

∣∣∣∣ 1

2M + 1

2M∑
j=0

[
f

(
j

2M + 1

)
− p∗

(
j

2M + 1

) ]
e−

2π i jk
2M+1

∣∣∣∣
≤ ‖ f − p∗‖∞.

(3.2)

In the second line we use the triangle inequality. On the other hand, Lemma 2.4

implies that

| f̂ (k) − p̃∗
2M,k | = | f̂ (k) − p̂∗(k)|

=

∣∣∣∣
∫ 1

0

[ f (x) − p∗(x)]e−2π ikx dx

∣∣∣∣
≤ ‖ f − p∗‖∞,

(3.3)

where again we use the triangle inequality to go from the second to the third line.

Combining equations (3.2) and (3.3) with one further application of the triangle

inequality gives the result. �

As a corollary of this theorem and Corollaries 2.2 and 2.3, we have the follow-

ing:

COROLLARY 3.2 Suppose that f is a continuous, 1-periodic function with l ≥ 0

continuous 1-periodic derivatives; then

(3.4) | f̃2M,k − f̂ (k)| ≤ 12
6lωl

f

(
1

2π M

)
(2π M)l

,

for |k| ≤ M. If f has a bounded analytic extension to Sa, then, for |k| ≤ M,

(3.5) | f̃2M,k − f̂ (k)| ≤
4K e−2πaM

e2πa − 1
, where K = ‖ f ‖L∞(Sa).

If f satisfies the hypotheses of Corollary 3.2 then, for m ≤ l, we can express

the Fourier coefficients of f [m] in terms of those of f :

(3.6) f̂ [m](k) = (2π ik)m f̂ (k).
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Using these relations in the estimate, (3.4) gives

(3.7) |(2π ik)m f̃2M,k − f̂ [m](k)| ≤ 12
6lωl

f

(
1

2π M

)
(2π M)l−m

for |k| ≤ M, m ≤ l.

Thus, for |k| ≤ M, (2π ik)m f̃2M,k is a good approximation to f̂ [m](k).

So far we have only considered the absolute errors entailed in replacing { f̂ (k)}

by { f̃2M,k}. We now turn briefly to a consideration of the relative errors. Using the

fact that

(3.8)

∫ 1

0

f (x)e−2π ikx dx =

k−1∑
j=0

∫ j+1
k

j
k

[
f (x) − f

(
j

k

)]
e−2π ikx dx,

we easily establish that, if f has l periodic derivatives, then

(3.9) | f̂ (k)| ≤
ωl

f

(
1
k

)
(2π |k|)l

if k = 0.

Comparing this to the estimate in (2.5), we see that the sequences { f̃2M,k} have the

correct rate of decay. Using the right-hand side of equation (3.9) as a proxy for the

rate of decay of { f̂ (k)}, we estimate the relative error:

(3.10)
| f̃2M,k − f̂ (k)|

| f̂ (k)|
≈

12ωl
f

(
1

2π M

)
ωl

f

(
1
|k|

) (
6|k|

M

)l

.

While the relative error remains bounded for |k| ≤ M , it is only small for indices

that satisfy 6|k| � M .

A corollary of Theorems 2.1 and 3.1 is a uniform Riemann-Lebesgue lemma

for finite Fourier coefficients:

COROLLARY 3.3 Suppose that f is a continuous 1-periodic function; then

(3.11) | f̃2M,k | ≤ | f̂ (k)| + 6ω f

(
1

2π M

)
,

which implies that there is a decreasing sequence 〈ak〉, tending to 0, so that, for

every M, we have

(3.12) | f̃2M,k | ≤ ak for |k| ≤ M.

We now turn to the comparison between f̃2M(x) and f2M(x).

THEOREM 3.4 There is a universal constant C so that, if f is a continuous 1-

periodic function, then

(3.13) | f̃2M(x) − f2M(x)| ≤ C log M‖ f − p∗‖∞,

where p∗ ∈ TM is a best uniform approximation.
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PROOF: For this argument we use the Dirichlet kernel

DM(x) =
sin[π(2M + 1)x]

sin(πx)
.

It is well-known that

(3.14) f2M(x) =

∫ 1

0

DM(x − y) f (y)dy.

A simple calculation shows that f̃2M is given by a Riemann sum for this integral:

(3.15) f̃2M(x) =
1

2M + 1

2M∑
j=0

DM

(
x −

j

2M + 1

)
f

(
j

2M + 1

)
.

To prove the theorem, we observe that

| f̃2M(x) − f2M(x)|

≤ | f̃2M(x) − p∗(x)| + |p∗(x) − f2M(x)|

≤
1

2M + 1

·

2M∑
j=0

∣∣∣∣DM

(
x −

j

2M + 1

) [
f

(
j

2M + 1

)
− p∗

(
j

2M + 1

) ]∣∣∣∣
+

∫ 1

0

∣∣DM(x − y)[p∗(y) − f (y)]
∣∣ dy

≤ ‖ f − p∗‖∞

·

[
1

2M + 1

2M∑
j=0

∣∣∣∣DM

(
x −

j

2M + 1

)∣∣∣∣ +

∫ 1

0

|DM(x − y)|dy

]
.

(3.16)

It is a classical result that both the sum and the integral in the last line are bounded

by a constant times log M ; see [7]. �

As a corollary of the proof, we have the following criterion for 〈 f̃2M〉 to con-

verge uniformly to f :

COROLLARY 3.5 If f is a continuous, 1-periodic function whose modulus of con-

tinuity satisfies

(3.17) ω f (δ) = o(| log δ|−1),

then the FFT partial sums 〈 f̃2M〉 converge uniformly to f on [0, 1]. If f has l

continuous periodic derivatives and ωl
f satisfies the estimate in (3.17), then, for

each 1 ≤ j ≤ l, the sequence 〈∂
j

x f̃2M〉 converges uniformly to ∂
j

x f .
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PROOF: Let p∗ ∈ TM be a best uniform approximation to f. We use the triangle

inequality to conclude that

(3.18) | f̃2M(x) − f (x)| ≤ | f̃2M(x) − p∗(x)| + |p∗(x) − f (x)|.

Arguing as above and applying Theorem 2.1, we see that

(3.19) | f̃2M(x) − f (x)| ≤ (C log M + 6)ω f

(
1

2π M

)
.

The estimate in equation (3.17) implies that the right-hand side of equation (3.19)

tends to zero as M tends to infinity. If f has l derivatives, then the same argument

applies to 〈∂
j

x f̃2M〉 for 1 ≤ j ≤ l. �

The last two results show that, among trigonometric polynomials, the approxi-

mation to f (and its derivatives) afforded by 〈 f̃2M〉 is very close to optimal.

4 Piecewise Continuous Functions

If f is a piecewise continuous function with jump discontinuities at {x0, . . . ,

xp}, then we can express f as a sum f c + f j where f c is a continuous 1-periodic

function and f j is a function of the form

(4.1) f j(x) =

p∑
j=1

(αj x + βj )χ[xp−1,xp)(x).

The continuous part can be treated by using results from the previous section, leav-

ing only the jump terms. Since the sum in (4.1) is finite, for the purposes of obtain-

ing estimates it suffices to consider a single term

g = (αx + β)χ[x0,x1](x).

Both ĝ(k) and g̃2M,k can be computed explicitly:

ĝ(k) = α

[
x0e−2π i x0 − x1e−2π i x1

2π ik
−

e−2π i x0 − e−2π i x1

4π2k2

]
(4.2)

+ β

[
e−2π i x0 − e−2π i x1

2π ik

]
,

g̃2M,k = α

[
h

(
2πk

2M + 1

) j0
2M+1

e−
2π i j0k

2M+1 − j1
2M+1

e−
2π i( j1+1)k

2M+1

2π ik
(4.3)

− h

(
2πk

2M + 1

)2
e−

2π i( j0+1)k

2M+1 − e−
2π i( j1+1)k

2M+1

4π2k2

]

+ β

[
h

(
2πk

2M + 1

)
e−

2π i j0k

2M+1 − e−
2π i( j1+1)k

2M+1

2π ik

]
.(4.4)
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Here h is defined by

(4.5) h(x) =
i x

1 − e−i x
.

An elementary calculation shows that

(4.6) h(x) = 1 +
i x

2
−

x2

12
+ O(x3).

By using these explicit formulae, it is elementary to prove that there is a con-

stant Cj ≈ 10 so that the following estimates hold:

(4.7) |g̃2M,k − ĝ(k)| ≤
Cj (|α| + |β|)

2M + 1
for |k| ≤ M.

Combining these estimates with those in Corollary 3.2, we obtain the following:

THEOREM 4.1 If f is a piecewise continuous function on [0, 1] with jump part

given by equation (4.1), then

(4.8) | f̃2M,k − f̂ (k)| ≤ 6ω f c

(
1

2π M

)
+

Cj

∑p

j=1(|αj | + |βj |)

2M + 1
for |k| ≤ M.

If f c is a Lipschitz-continuous, 1-periodic function, then

f̃ c
2M,k = o(|k|−1)

uniformly in M , whereas

f̃
j

2M,k =
γM,k

k
+ O(|k|−2).

The absolute values of the coefficients {γM,k} are generally bounded from below

along sequences (Mj , kj ) tending to (∞,∞). This shows that the finite Fourier

coefficients of a piecewise smooth function with jump discontinuities display the

characteristic 1
k
-rate of decay.

If the function has a jump discontinuity, then the difference | f̃2M,k − f̂ (k)| is, in

fact, comparable to | f̃2M,k | (or | f̂ (k)|) for |k| close to M. With uniformly sampled

data it is not possible to do better. Suppose that the sample spacing is (2M + 1)−1

and f (0) = 0 but f ((2M + 1)−1) = 1. From this data, a jump could occur at any

point in the interval [0, (2M + 1)−1]. The difference | f̃2M,k − f̂ (k)| can therefore

be as large as

	 f̃k =

∣∣∣∣
∫ 1

2M+1

0

e−2π ikx

∣∣∣∣ =

∣∣∣∣e− 2π ik
2M+1 − 1

2π ik

∣∣∣∣
≈

1

2M + 1
for |k| ≤ M.

(4.9)

The same line of reasoning shows that one cannot use the finite Fourier coefficients

{ f̃2M,k} to locate the jumps in f to an accuracy better than (2M+1)−1. On the other

hand, in the work of Gottlieb et al., it is shown that, if f is piecewise real analytic,
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then an exact knowledge of the Fourier coefficients { f̂ (−M), . . . , f̂ (M)} allows a

reconstruction of f, away from its jump locus, with an exponentially small error,

i.e., O(e−aM).

In the case of a function that is piecewise finitely differentiable with jump dis-

continuities, there are more sophisticated ways to use the sampled data and obtain

more accurate approximations to the Fourier coefficients. Several such methods

are described in [6, sec. 13.9] and [8, sec. 2.3.4]. Without going into excessive

detail, these methods used the sampled data to approximate the function as a sum

of higher-order interpolants. To approximate the Fourier coefficients, one need

only compute the Fourier coefficients of the basic kernel functions used in the in-

terpolation scheme. The approximation to f̂ (k) is then expressed as a coefficient,

depending on M and k, times f̃2M,k plus a finite sum of endpoint correction terms.

These methods again presuppose an exact knowledge of the locations and sizes of

the jumps.

As before, a uniform Riemann-Lebesgue lemma follows from these estimates.

COROLLARY 4.2 If f is a piecewise continuous function on [0, 1], then there is a

decreasing sequence 〈ak〉 tending to 0 so that

(4.10) | f̃2M,k | ≤ ak for |k| ≤ M.

As a final result, we prove an analogue of the localization principle for the FFT

partial sums.

THEOREM 4.3 (Localization Principle) Suppose that f and g are piecewise con-

tinuous functions defined on [0, 1], and suppose that g̃2M(x) converges to g(x).

If

y �→
f (y) − g(y)

x − y

is continuous at y = x, then f̃2M(x) converges to f (x).

PROOF: The proof is very much like the continuous case. Because f (x) =

g(x), it suffices to show that

(4.11) lim
M→∞

( f̃2M(x) − g̃2M(x)) = 0.

Using formula (3.15) we obtain that

f̃2M(x) − g̃2M(x)(4.12)

=
1

2M + 1

2M∑
j=0

DM

(
x −

j

2M + 1

)[
f

(
j

2M + 1

)
− g

(
j

2M + 1

)]

=
1

2M + 1

2M∑
j=0

sin

[
(2M + 1)π

(
x −

j

2M + 1

)]
[ f (

j

2M+1
) − g(

j

2M+1
)]

sin π(x − j

2M+1
)
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= �

[
e(2M+1)π i x

2M + 1

2M∑
j=0

e−
2π i M j
2M+1

[
e−

π i j
2M+1 [ f (

j

2M+1
) − g(

j

2M+1
)]

sin π(x − j

2M+1
)

]]
.

The function defined by

(4.13) h(y) =
e−π iy[ f (y) − g(y)]

sin π(x − y)

is piecewise continuous on [0, 1]. The last line of equation (4.12) can be reex-

pressed as

(4.14) f̃2M(x) − g̃2M(x) = �
[
e(2M+1)π i x h̃2M,M

]
,

which, by virtue of Corollary 4.2, tends to zero as M tends to infinity. This proves

the theorem. �

5 Nonuniformly Spaced Samples

In this “experimental” section we show, via numerical experiments, that nonuni-

form sample spacing may lead to very different sorts of errors in the approximation

of functions via Riemann sums for Fourier integrals. We consider the function f

with bounded support shown in Figure 5.1(a). Suppose that 
 = {ξj : j =

−J, . . . , J } is an increasing list of frequencies lying in the interval [−ξmax, ξmax].

We let

|
| = max
j

{ξj+1 − ξj }

denote the maximum sample spacing. Suppose that we can “measure” { f̂ (ξj )};

then the finite sum

(5.1) f
(t) =
1

2π

J∑
j=−J

f̂ (ξj )e
itξj wj

is a Riemann sum for the inverse Fourier transform applied to f̂ . Here {wj } are

positive weights reflecting the sample spacing. If |
| is small enough to avoid

aliasing, then f
 provides an approximation to f over a sufficiently small interval.

It seems quite interesting to understand how the properties of 
 affect the error

e
 = f
 − f. For the present we consider several examples.

Our first examples are defined by choosing an even C1-function, G(s), which

is quadratic in an interval [−s0, s0], satisfies G(0) = 0, and is linear outside this

interval. We set

ξj = sign( j)G(| j |).

One such function is shown in Figure 5.1(b). In these examples, the error, e
, is

larger than for the partial sum of the Fourier series defined by the uniformly spaced

samples, with spacing |
|, lying in [−ξmax, ξmax].
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(a) Graph of the function f (x).
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(b) An example of a frequency selection

function, G.

FIGURE 5.1. Functions used in the construction of the examples.

Example 5.1. The function f is a smoothed version of a function with a jump dis-

continuity, so, near to the jump in f , the error in the partial sum approximation is

dominated by a Gibbs artifact; see Figure 5.2(a). Away from the jump, the error is

proportional to the size of f . This is a reflection of the localization properties of

the Fourier transform. If the transition from quadratic to linear growth occurs at a

low frequency, then the error e
 is fairly evenly distributed. This is clearly shown

in Figure 5.2(b). The maximum error in Figure 5.2(b) is about twice the maximum

error in Figure 5.2(a). As the crossover frequency increases, the error more resem-

bles the error in the partial sum; see Figure 5.2(c). Nonetheless, there remains a

nonlocalized error that is considerably larger than for the partial sum. Note that the

nonuniformly spaced sums have more terms than the uniformly spaced sums.

Example 5.2. For our second set of examples we slightly modify the definition

of the frequencies. In the cases considered above, the uniform sample spacing,

at high frequencies, is 1. We modify the preceding examples by following the

linearly spaced samples with one sample spaced by 1.1, followed by one spaced by

0.9, before going onto the uniformly spaced samples with spacing 1. As shown in

Figure 5.3, this slight irregularity in the sample spacing creates a much larger error,

which grows rapidly as one moves away from the origin. The maximum error in

Figure 5.3(a) is about 12 times that in Figure 5.2(b), and the maximum error in

Figure 5.3(b) is about 4 times that in Figure 5.2(c). These examples indicate that

minor changes in the sample spacing can have a profound effect on the quality

of the approximation to a Fourier integral provided by a Riemann sum like that

in (5.1).
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(a) The error in the partial sum with uni-

formly spaced samples, maxerr ≈ 7 ×

10−4.
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(b) The error with nonuniformly spaced

samples, crossing over at 20, maxerr ≈

1.1 × 10−3.
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(c) The error with nonuniformly spaced

samples, crossing over at 40, maxerr ≈

6 × 10−4.

FIGURE 5.2. Comparison of the errors in the reconstructions obtained

with uniformly and nonuniformly spaced samples. In these examples

ξmax = 512.

6 Conclusion

In this note we have established many basic properties of the finite Fourier

transform in its role as an approximation to the Fourier transform. We have shown,

in essence, that it behaves as well as it possibly could. The finite Fourier coef-

ficients satisfy a uniform Riemann-Lebesgue lemma, and the FFT partial sums

satisfy Riemann’s celebrated localization principle. In examples we have seen that
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FIGURE 5.3. Illustration of the effects on the error in approximation

caused by a lack of monotonicity in the sample spacing.

nonuniformly spaced samples may lead to larger and qualitatively different errors.

This seems a very interesting direction for further study. The trick used throughout

the paper, which is embodied in Lemma 2.4, does not apply if the sample spacing

is nonuniform.
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