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Abstract

In the hard pulse approximation, commonly used in nucleagmegc reso-
nance, one considers potentials for the AKNS system thatuans ofd-functions.
The system of differential equations does not, strictlyagpey make sense for
such potentials. In [8] an analogous discrete forward anerge problem are an-
alyzed. We review these results and show that pulses oltaisiag the inverse
scattering transform for thibard pulseapproximation converge to the expected
continuum potential pointwise and in thet-norm. We also show that the AKNS
system makes sense with potentials that are nonatomic nesasith finite total
variation.

1 Introduction

To solve the problem of RF-pulse synthesis in nuclear magretonance it is conve-
nient to introduce the spin domain formulation of the Blocjuation. This describes
the evolution of aC2-valued functiony, under the influence of a potentigl:

—qgrt) ¢

Here¢ is a frequency variable and we follow the convention in MR ehdting com-
plex conjugation with an asterisk, ezj. This is known in the mathematics literature
as the Zakharov-Sabat system or the 2-AKNS system.
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Scattering theory for an equation like (1) relates the bimaf lim;_, _., ¥ (&; 1)
to that of lim_, o ¥ (; t), or vice versa. Ifj has bounded support, then the functions

5] 12

are a basis of solutions for (1) outside the suppox.df the L1-norm ofq is finite,
then it is shown in [1] that (1) has solutions which are asyatipto these solutions as
t — £oo. The basic result is:

Theorem 1. If ||ql|_ 1 is finite, then, for every red, there areuniquesolutions

V1($), Y2y (O) andyy (&), Y2 (&)
to equation(1) which satisfy

Jim ety (& t) = [(1)} . dim ey, (&) = [_01} (2)
lim €ty (@& t) = | - lim e7<'y, (&5 1) = 0 3)
t—o0 1+1%s - 0|’ t—o0 2415 - 1

The solutiongr; (&), ¥, (£) extend as analytic functions 6to the upper half plane,
Im¢& > Oandy,_(¢), ¥, (&) extend as analytic functions 6to the lower half plane,
Im¢é < 0.

The proof of this theorem can be found in [1]. Among other gjsithey show that
if we set

t
Qu(t) = / q©)lds

then
lp11- (& 1)€Y < 10(2Qa(1)),  [w2o— (&5 e < 10(2Qu(t)). 4

Herelg is the classicalp-Bessel function. The same argument appiirgatis mutan-
dis to obtainy ., andy,, . Indeed, essentially the same arguments show that these
estimates hold for potentials that are nonatomic measurfsite total variation. In
Theorem 2 we show that the eigenfunctions depend contitypionsthe potential in
the total variation norm.

For real values of, the solutions normalized atoco can be expressed in terms of
the solutions normalized atoo by the linear relations

Vi1 (G =a@)Y (G +bOY2 (),
Yo (&) =D ()P (&) —a (P ().

The functions, b are called thescattering coefficientr the potential. The 2x 2-

matrices|¥ 1 ¥,_|, [¥1,¥2, | satisfy

(5)

b*
pive =l 5 0 ©
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It is well known thata extends to the upper half plane as an analytic functiog. If
has an integrable derivative, then, it can be shown that

e¢]

1 1
ae) =1+ 5 / a(s)ds+ 0(). )

as|¢| tends to infinity in ImZ > 0. As the WronskianW (¥ 1_, ¥»_) = —1, it follows
that
[a@)? + Ib@)? =1, 8)

and therefore (7) implies that

1
Mm=0%pa%+iw 9)
Assuming that!q(t) is integrable for allj, it is shown in [1] thata has finitely
many zerosin Ing > 0. Let{&1, ..., ¢N} be alist of the zeros . For eachj there is
anonzeroccomplex numbe€; so that

¥ (&) =Cj¥o. (&), j=1....N (10)

The constant$Cy, ..., Cy} appearing in (10) are calletbrming constants Equa-
tion (1) can be rewritten in the form

o —iq|[y1 w1

[—iQ* —iati| [Wz} =e [WZ} ' (11)
From this formulation it is clear that should be regarded as a spectral parameter. If
¢ has positive imaginary part, thefy _ (¢; t) decays exponentially dstends to—oo
andy,, (¢; t) decays exponentially dgends to+-oco. If a(&j) = 0O, then (10) implies
thaty,_(£j; t) decays exponentially at bothoo and therefore the functiop,_(&j; t)
belongs toL2(R; C?). Thus the operator on the left hand side of (11) basnd states
for these values of.

Definition 1. The pair of functionga(¢), b(¢)), for & € R, and the collection of pairs
{(¢j,Cj) : j =1,..., N} define thescattering datdor equation (1).

We generally assume that the zerosaadre simple and that their imaginary parts
are positive. This is mostly to simplify the exposition,thés no difficulty, in principle,
if a has real zeros or higher order zeros. There is a very usefutRerel relation” or
energy formula relating the2-norm ofq to the scattering data:

[1a0rdt=— [ log+ r@Pds +43 e, (12)

j=1
The scattering data are not quite independent. rEéfectioncoefficient is defined

by
_ b

=26 (13)

r)
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A priori the reflection coefficient is only defined on the real axis. \Ale express in
terms ofr and the locations of its zeros:

(- i [ logd+ Ir ()A)de
a@_,-r_ll(f—ff‘)exp ) R B

—00

Equation (14) has a well defined limit &sapproaches the real axis. Assuming taat
has simple zeros, we let

/
Ci=—2forj=1,...,N. 15
= (o)
Definition 2. The functiorr (£), for & € R and the collection of pairg&j, Cj) : | =
1,..., N} define theeduced scattering datimr equation (1).

Implicitly the reduced scattering data is a function of tlwtemtialq. In inverse
scattering theory, the datg; (¢1, C1), ..., (N, Cn)} are specified, and we seek a po-
tentialg which has this reduced scattering data. The map from thistdaf is often
called thelnverse Scattering Transforor IST.

In applications to NMR, the refelction coefficient is spesifiand one seeks a po-
tential that produces it. This is explained in detail in [#. standard technique for
solving this problem is to find a potential that is a sum of éigusaced-functions or
hard pulses

o0
Gh(t) = D wjdolt — jA). (16)
j=—00

It is easy to see that any solutiof1, to (1), with a potential of this form, would have
to be discontinuous at eagh\ for which 1 # 0. As the wave front sets at= jA
of ¥(&;t) andujdo(t — jA) are nonempty and equal, one cannot make sense, even
as distributions, of the produgt(&; t)gn(t). For this reason, neither the differential
equation nor the equivalent integral equation make anyot®sense for a potential of
this form. Nonetheless, if one considersas a limit of the “softened” potentials:

[e.e]

G= > Lroot-ja), (17)

—

then the corresponding normalized solutios, have limits as« — 0, which are
piecwise smooth functions efhaving jump discontinuities at supp. This is the ap-
proach taken in the physics and NMR literature. In secontaistthesis, a discrete
analogue of the ZS-system is introduced, see [8]. It is shinahthere is a scattering
and inverse scattering theory entirely analogous to thqtifiowith a smooth potential.
Moreover, explicit, non-iterative algorithms are givem fbe solution of the inverse
problem. These algorithms are much more stable than thdatdapproaches to solv-
ing the Marchenko equations, especially when there aredstates.

In this paper we show that, under relatively weak assumstitre potentials found
using the discrete approximation convergeAas-> 0, to the solution of the contin-
uum inverse scattering problem with limiting scatteringadaWe also show that the
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scattering data of the softened potentjalbpproximates that of hard potentig, for
frequencies in the natural ranfie 75, 7x 1.

We close this section with a result showing that the forwasadtering data depends
continuously on the potential in the total variation norm.

Theorem 2. Suppose that 1{s)ds and k(s)ds are non-atomic measures with finite
total variation, and that F'E(f),i = 1, 2 solves the ZS-system with potentiglih=
1,2 Let

H™(t) = [ha(s)ds — h2(s)ds|lTv(—oo,ty Q™ (1) = Ih1(S)dS|ITv (=00t

() = 1y — (18)
H™(t) = [[ha(s)ds — ha(s)ds|Tvt,cop QT (1) = Ih1(S)dS|ITv (t,00)>

: Loy o
t_UTOO IFL (&) —Fr & ll=0.
Then, for¢ € R the differences satisfy the estimates
IFF (& 1) — By (& DI < 2lo(2llhzlltv) HE (1) exp(Q*(t)). (19)

Proof. The proof of this result is a small modification of the prooftioé estimate (4)
given in [1]. Leto denote the Z 2-matrix

o= 1

DEEt) = e (FF — F).

and let

For real¢ andt, the matrice®*''<? are unitary and therefore
IF; — F5 = IID*].

The vector valued function®* satisfy the equations

iteo | O Naf e i 0 (h1—h2)| &
P Di —e itéo |: . :| eltga Di +e itéo [ . . =
! —hi 0 —(h% —h3) 0 2" (20)

H +e. —
Jim D*EEn =0

We now restrict our attention to the case, thet case is handled by an essentially
identical argument.
The differential equation in (20) is equivalent to the imgquation

t
D‘(é;t)=/e_i3@ [_hil)(s) hlcgsq €7D (& )ds+
X (21)

_is¢o 0 (h1 — hz)(S)} -
/ € [_(hﬁi —h3)(s) 0 F, (s)ds.

—00
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This is a Volterra equation that can be solved by the follgxiaration:

t
— (1) — —iséo 0 (h1— hz)(s)} -
Dy (&) __/ e [—(hi —h3)(s) 0 F, (s)ds

(22)

t
Dy (&) =Dg (&5 1) + / eier [_hg(s) hl(gsq €7D (& 9)ds,

—00

forj > 1.
First observe that the operator norm defined by the Euclideam satisfies

- o)
—a* 0
and therefore (4) implies that
IDg (& O)II < 2lo(lIh2llTv)H ™ ().
We make the inductive assumption that

= |al,

(23)
k=0

J - k
ID} (& 0l < 2lo(llhzllTv)H (1) {Z (Q%} .

From these assumptions and (22) it follows that

t J ~ )
ID} 41 & DI < 2lo(Ih2]ITv) (H_(t)+/lh1(s)IH‘(S) {Z@%D

k=0
(24)
If h1(s) is anL1-function, then the definition o~ implies that

Ih1(s)] = 0sQ™ ().

In general, using a simple approximation argument we caw shat

(Q™ ()t

25
k+1 ° (25)

t
/ Ih_(9)dsI(Q~(§) <

and therefore (24) implies that
j+1 _ K
_ _ (Q (s
ID7,1(& DIl < 2lo(Iha ) H™ () (;) %) . (26)
This completes the proof of the induction step. As

lim Dy =D7,

]—>0o0

letting j tend to infinity, completes the proof of the theorem.
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2 Inverse Scattering for the ZS-System

There are several different approaches to solving the $evecattering problem, see
[1], [2], [3] or [6]. In this section we summarize the soluti@f this problem via
the Marchenko equations. We generally suppose thafdfjeare distinct complex
numbers with positive imaginary parts. We assume that tfiecten coefficient is
smooth and rapidly vanishing atoo. Using limiting arguments, the latter restriction
is easily relaxed.

The Marchenko equations are systems of integral equatidfaedholm type. We
follow the slightly non-standard presentation given in [8} both the continuous and
discrete theories are presented with a consistent notaBoppose we are given the
scattering daté& (&), & € R; (&1, C1), ..., (€N, Cn)}. Applying the Fourier transform
to equation (2.3.13) in [8] we obtain the following integegjuation:

kt(s>+/a(s,a>kt(a)g_z _
0

(27)
N
— | F*(=s—2t)+ 2zi D Cre 'kt | forse [0, 00).
j=1
Here the kernel functiol®; is defined by
or N
Ri(s,0) = / f*(z —s— 2t) + 27i Zc;e—ifﬂs—ﬁm} X
j=1
Rl J (28)
N : dr
flir —o — N, Y —idk(r—o—2t) | Z°
(t —o — 2t) — 2xi che o
L =1
for later use we set:
N .
Gt(s) = F*(—s— 2t) + 2zi »_ Cre k(). (29)

j=1
Equation (27), the right Marchenko equation, is of the form
(Id+FFoki(s) = —ai(s).

Under very mild regularity hypotheses onthe operatorf* is easily shown to be
bounded and in fact compact, so thé&t, co)-solvability of these equations is trivial.
In [4], conditions are given to assure the solvability intiég Sobolev spaces as well.

The connection between the inverse scattering problemtentarchenko equa-
tion is summarized in the following theorem:
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Theorem 3. Given a smooth, rapidly decaying reflection coefficiersind a finite set
of pairs{(¢j, Cj) : j =1,..., N}, with the{&j} distinct,Im¢&; > 0and G # O for
j =1,..., N, the equatior(27) has a unique solution for everyd R. If

1
4 = ~k(0). (30)

then the ZS-system, with this potential, has reflectionficosit r. It has exactly N
bound states for frequenci¢s, . . ., &N} and the relationg10) hold at these points.

This theorem is proved in [8],[6] and, in a slightly diffetdarmulation in [2].

Equation (27) involves integration over positive half ralffshere are bound states,
or the reflection coefficient is large, then this system ofatipms become exponen-
tially ill-conditioned ast decreases towardsoo. It is therefore useful to work both
ends against the middle. For that purpose one can deriveftidarchenko equation,
which involves integration over negative half rays. As wendbconsider this equation
in detail, we only explain how the left reduced scatterintada related to the right
scattering data. Recall that= b/a; givenr, we can use (14) to determirseand
thereforeb. The left reflection coefficient is

. b*($)
F(&) =— .
©) @)
The left norming constants are related to the right normongstants by the relations:
~ &t
Ck=—"7"—. 31
AN NIRRT (1

For the left equation, the exponential correction termseaponentially decaying as
tends to—oo. In most circumstances one is given the right reduced saajtdata. In
order to use the left equation one needs to numerically ahéterbotha andb as well
as the left norming constan{téj }. This is very difficult to do stably and with sufficient
accuracy and is a primary motivation for introducting thedhpulse approximation.
The details of this problem and its solution are describd8lin

In the remainder of our analysis we concentrate on the rigatchlenko equa-
tion, (27), with the understanding that everything saidli@gpmutatis mutandisto
the left formulation as well.

The following Paley-Wiener type theorem is useful in apgiicns:

Theorem 4. Suppose that g is a potential for the ZS-system with suppdhd half
line (—oo, t]. Then the kernel function

N
g(s) = (s) — 2zi »_ Cxe %, (32)
j=1

for the right Marchenko equation is supported in the fay2t,, co). A similar state-
ment holds for the kernel function of the left Marchenko ¢igua
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Remark1. The kernel of the operatdf*F; in the right Marchenko equation is ex-
pressible as

0 d
R(s, o) =/_ g*(r —s—2)g(r — o — 2t)é. (33)

Proof of Theoreng4). If g has support i—oo, t], then the scattering coefficiebt
has an analytic extension to the upper half plane. This iaum®y,, = ol
fort > t;, and therefore equation (5) shows that

b(&) = Yo (& ty)e .

Whenr has a meromorphic extension to the upper half plane, theintégrandg,
has a different representation. If the zerosidf the upper half plane have imaginary
parts less thano, then

o0

_ b [ DA esing
90 = 5 [ agrig® 9

—00

see [1]. Using the well known asymptotics f@s,_, we conclude that?<tr satisfies
the hypotheses of the Paley-Wiener Theorem in the half ptade> 7. This function
is therefore the Fourier transform of a function with sugpor(—oo, 0]. Henceg is

supported if—2t,, co)]. This argument appliesiutatis mutandiso the kernel of the

left Marchenko equation. O
Remark2. If a has only simple zeros then (34) implies that the norming tzons are
given by
o _ b
a'(&)

Given that the potential has support in an appropriate maf the formula (34) defines
the kernel functions for the right Marchenko equation, vaketr not the zeros af
are simple.

3 TheHard Pulse Approximation
Consider a potential of the form

Gh®) = D ujdt—jA),

j=—00
such that

o0
Z lujl < oo.

j=—co
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We call such a function discrete potentialFor potentials this singular, the differential
equation (1) does not make sense and is replaced by theimturs
. _ Hi ginl,
eich g cosluj|  fhysin|u;l
Vi) = |: 0 iEA i| i : (<) (35)

&t || —sinfuj]  cos|u|
This describes the jump &it= j A, in a “solution” to the differential equation with the
singular potential. The solution¥; (¢), of the recursion (35), with standard asymp-
totic boundary conditions as — +oo, (see (37)), are periodic ifi of period %. We
therefore use = e?<2 as the spectral parameter for the discrete problem. We seppo
that¥. j (w) are solutions to (35) with

i
AL T2
Yoy = [ A E (36)
B j(w)w?
where
. Arjw) | |1 1
jﬂToo [ Bij(w) |~ | 0 forallw € S (37)
The discrete scattering matrix is defined to be
£ * ES . _ * .
[a_2}=[l%“ T”J}[%ﬂ ?ﬂ}, (38)
b a —WYor i Wit Yo i \Pl—,j
which is easily shown to be independentofhe reflection coefficient is defined to be
b(w)
r = —.
(w) a()

The following basic results are established in [8]:

Proposition 1. Letu : Z — C be a sequence of complex numbers such that
o
Z lujl < oo.
j=—00

Then there are unique solutioNs, ; to equations (35), satisfying (36) and (37). Fur-
thermore, for each integer j, the functions_ A, w=1B_j, Al j and B} ; extend
analytically to the unit disk inw.

1. The functionsa andb are inL?(S") and satisfy
la(w)|? + |b(w)|?> =1 forw e S'anda(0) > 0. (39)
2. The functiona = A} . A_j + B} ;B_ j has an analytic extension to the unit

disk. We assume that has finitely many zerows, . .., wm} in the unit disk,
which are all simple. For each zeng of a, there is a constamf such that

[ A (wk) } _ c(([ BY.j (wi)wy } forall j € Z. (40)

B_.j(wk) Ai,j (wk)wlj<
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Set ,
a’'(wk)

(41)

3. The functionsA+ andB.. are inL2(S!) and satisfy
|As j(w)]? 4 |Bx,j(w)|? = 1 forw e Stand AL (0) > 0. (42)
4. Thedatda, b; w1, ..., wm: ¢}, ..., Cy) is called thediscrete scattering datkor

the potentialy, and the datdr; w1, ..., wm; C1, ..., Cn) is called thereduced
discrete scattering datfor the potentiaby.

5. The functions andb can be determined from the reduced scattering data by the
formulas

m
wk wk - >
a = -exp(—II4+ (1 +|r 43
U(|wk|1 wkw) =TI L+ 1) (43)
b = ra.
Herell, is the projection onto the positive Fourier components and:

o0 o0
- i o1
Iy E ajw! | = E ajw! +§ao, (44)
j=1

—

andII_ is the analogous projection onto the negative Fourier corapts.

wB*
6. The functlonAA+ 0 can be determined from the reduced scattering data. It is
the unique solution to the discrete right Marchenko equatio

u)B_T_J
(14 T4rfT-rjIl4) © = —TI4rf, (45)
Atj
where ,
, D cw;
rj =H_rw1_1—2¥. (46)
k=1 w — Wk

7. The potentiagj(t) = Z‘j”:_oo ujo(t — jA) can be recovered using

i B+ j
pj = - arctanyj| with yj = Jo(iA )(@). (47)
17l A (0
Here% denotes the Fourier transforms as the map ftais') — ¢2(Z) defined

by

2r
F(f)(n) = % / f(0)e """ do. (48)
0
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Theorem 5. Let S= (r; w1, ..., wm; C1, ..., Cm) be arbitrary discrete reduced scat-
tering data, as above, such that r is in'(B%). Then there is a well defined discrete
potential qt) = Zj’i_oo ujo(t—jA)forthe ZS-system such that S is the correspond-
ing discrete scattering data. This potential can be founddlying equatior{45) and
using(47).

There is entirely analogous left scattering data and a leftdlenko equation. The
left reflection coefficiens = —%* and the left norming constants are related to the
right by:

& = Lk_l (49)
ok [& (wi)]?
In their frequency domain formulation, equations (45) afl)(the Marchenko equa-
tions, admit of a recursive solution. It is both extremelfjogént and very stable; for

the details see [8].

4 Convergence of Hard Pulses

LetS= (r;&1,...,¢8n; Ca, ..., Cn) be reduced continuum scattering data witk
H(R). There is a unique potentigl: R — C corresponding t&. However, to prac-
tically computeq(t) for somet € R, one needs to use a finite, discrete approximation
to the Marchenko equation. We describe a method of doingkiag the hard pulse
approximation, and then show the pointwise convergencee$obftened pulse{aqlA}
togasA — 0.

Choose a time stepr. As the reflection coefficient for the discrete inverse peal
we use the periodic function

AGELU IS (50)

n=—o0

As in ordinary signal processing, there is obviously a motbNyquist sampling rate
for discrete approximation in inverse scattering. We assthmtr is smooth enough
and decays rapidly enough so that this sum and its term by denwvative converge
absolutely and uniformly. The bound states are defined bpdirs{(wk, 2Ai wkCx)}
wherewy = e?Ai%,

If we conjugate the discrete Marchenko equation,

(L4 Tyr MIr P )hja = =TT %,
by the Fourier transform then, for eaghwe obtain the equation:
o
Rpum+ Y R (m K= =
n=t (51)

A . . m ; ) sk
- [—f*(—ZA(er J)) + 240 D Cfe A AMmHI ] form > 0.
T
=1
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The discrete kernel function is given by

-1
Ry M= > QA1 -m—j)fad—n- j))% (52)

l=—0c0
This is simply the Riemann sum approximation to equation,(8itht = jA and
sample spacingX. The jth coefficient of the hard pulse is

uj = N arctany;|
175

whereyj = K4, (2).
We define a piecewise constant function[6noo) by setting
KjAA(s)z%KjAA(m)for 2(m—1)A <s < 2mA. (53)

We denote the piecewise constant extension, in both vasalblf IiJ-AA to [0, 0o) x
[0, 00) by RJ-AA (s, 0), and set

N
Gy (9) =F*(—2A(M+ })) + 27i D | Cre 2 AMEDNSG"  for2(m—1)A <s < 2mA
I=1
=0ja(=2A(M+ j)) for2(m—1A <s <2mA,
(54)
whereg; is defined in (29). With these definitions we see that, excepsiply for a
discrete set of points,

o
do
K\ (s) +/ RjAA(S,a)KJAA(o)g = —G})(9), fors>0. (55)
0

For the remainder of this section we assume fhatf andaszf are inL1(R) and
tend to zero a$s| — oo, which is the case if is sufficiently smooth and decays
sufficiently rapidly. We letA; : L2[0, co) — L2[0, co) denote the operator defined by
=X andAjAA : L2[0, 00) — L2[0, o) denote the operator defined Ey\A.

Lenma 1l If jA <t < (j + 1)A, then the I?-operator norm of the difference
A — A?, satisfies the estimate

1A — ARyl < 12(A + [J A — thN(D) (56)

where

x<0

N(t)? = {/ Mg(s+2t)ds:| {/ M12(5+2t)ds:| .

0 0

0
Mo(y) = suplg(x — y)| and My (y) = / 12sg(x — y)[dx
o (57)
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Remark3. The functiong is defined in (32). Our assumptions bimply that Mg and
Mj are uniformly bounded anl (t) is finite for each.

Proof. These estimates follow from the elementary fact thatth@perator norm sat-
isfies the estimate

1A = APl < IR — R Il 2(10,00)2)» (58)

and pointwise estimates foR; — RJ-AA |. To derive the pointwise estimate we see that

IR(s,0) — Ry (5, 0)| <
1 2A(N+1)
Zﬂi/ﬁma—&do—mmm—kﬂnwu—a—mww
2An
2A(N+1)
l9(r —s—2t) —g(2A(h—m— j)IIg(RA(N —k — j))ldr}-
2An
(59)

Herek andm satisfy 2Ak <s < 2A(k+ 1) and 2Am < ¢ < 2A(m+ 1). Assuming
thatjA <t < (j + 1A, then these estimates imply that the sum on the right is
bounded by

6(A + |j A —t])[Mo(o + 20)My(S + 2t) + Mo(S + 2H)M1 (o + 20)].

The estimate in (56), follows from (58), by using this estiento bound thd_2-norm
of the differenceR; — RJ-AA. O

Using the lemma we can obtain uniform bounds on the diffez@q¢s) — KJ-AA )1,
for t in any positive ray[tpg, o), however the constant in these estimates diverges as
t — —oo. In most applications this is not an issue because, usingth&lbarchenko
equation, we can show that bd¢f{0) and KJ-AA (0) tend uniformly and rapidly to zero

ast or j A go to—oo. To prove the bounds ofk;(s) — KJ-AA (s)| we need to estimate
llge — GfpllL2.

Lemma2 If jA <t < (j +1)A, then
gt — GfallL20.00)) < (A + [t = JAD M 3G L2(( 0o, 21 (60)
here

MAh(s) = sup |h(o)l.
|o—s|<4A

If 2nA <s<2(n+ 1)A, then

19t(S) — GfA ()] < (A + [t — j ADMAsGe(S) (61)
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Proof. The second estimate is an immediate consequence of thetidefofi G, and
the mean value theorem. The first estimate follows from therse by integration. Our
assumptions of imply that the right hand side of (60) is finite and tends tocozas
t — oo. O

Using the lemmas we can prove our convergence results.

Theorem 6. If 7, 57, ando2f are in LY(R) and tend to zero afs| — oo, and jA <
t<(j+1A,then

ke — K5 llL20,00)) < (A1t = ADIIMA8Gt ]l 210,00y + 121G o Il 210,000y ] (62)

Proof. Throughout this argument,? meansL2([0, 0o)). Because?; is a positive self
adjoint operator, it follows that

ke = KallLz < 10d +A) (ke — Kl 2. (63)
This estimate implies that
ke = K& ez < llge — GRalliz + I1(A — AR OK Il 2. (64)

Because the operator in the discrete Marchenko equatidsoipasitive, it follows that
I KJ-AA L2 < IIGJ-AA [|_2. Combining these estimates with (56), and (60) gives (62}

The uniform pointwise convergence is an immediate congazpiéNe express the
pointwise differencé; (s) — KJ-AA (s) as

ki(S) — K4 (8) = —0t(S) + G A (9) — Atk — KfL)(S) + (Ay — ADK {4 (9). (65)

From this identity we obtain the estimate

(S~ KO =10 ~ G @1+ | [ 1RG5 0)2do ke — Ky oo+
0

(66)

I2N®(A + |t = JADIGll 2.

Putting this together with the estimates above gives thiBormiconvergence oK jAA
toki, asA — 0.

Corollary 1. If 7, ésf, and d2f are in L1(R) and tend to zero ass| — oo, and
jA <t < (j+1A, then for s> 0 we have

ki (s) — K{4 (9) < (A + [t — jA])x

(67)
M2 OsQt Il 2 + 12 BsGt ]l 2

o0
[ 1R(s.)do + 12N 16 1.2
0
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Let j denote the th coefficient in the hard pulsg (t) with scattering data
SA ={ra(w); w1, ..., wN; 2wiC1A, ..., 2lwNCN A}, (68)

andq(t) the smooth potential with scattering d&a= {r (¢); &1,...,8N,C1; ..., Cn )
In light of the formulaeg(t) = 2k (0) and

K2, (0) A KA, (0)
— jA A _ A 21 A
Hj = AKA O arctan[;IK,-A(O)l} = ———[1+O(A%IK ON]  (69)
with
00 1] -
wO= > S Aot —JA),
j=—00
we have that
la®) — af' ()] < CiA. (70)

HereC; is finite and tends to zero as— oco. To summarize we have:

Theorem 7. If £, 6sf, ando2f are in L1(R) and tend to zero afs| — oo, and q is the
continuum potential with scattering data S anﬁl & the softening of the hard pulse
with scattering data B, then|q(t) — qlA(t)l < C{A,where G — Oast — oo.
Both q(t) and ¢f* (t) tend to zero as t> —oo, at a rate that is uniform inA.. Indeed
g — g [l.1 tends to zero ad — O.

Proof. From (67) and (69) it follows that

o0
/C&s<m (71)
t

for anyt > —oo. All the statements have been proved but the last two. Thelssvfo
from estimates given in Theorem 4 of [5], which we recall:gif (¢') is the kernel
function for the right (left) Marchenko equation, then wé se

Mgr(S)zsgglgr(a)landlgr(S)z/Igr(a)lda
- S

S (72)
(Mgl (s) = sggg' (o)l andly (s) = / I} (a)lda).
If g (2t) < 1 (Ig(2) < 1), then
Mg (2t) Mg (21)
A= 2 on 2 @) (Iq(t)l T 200 |§(2t)) (73)

These estimates are easily extended to the discrete apmtian to the Marchenko
equations. The estimates for the left Marchenko equatiorese establish the last two
claims in the theorem. O
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Beginning with the continuum left scattering data and ughmg left Marchenko
equations, a similar result can be obtained ass —oo. However, the left discrete
potential is not exactly the same as the discrete poterti@imed above: Discretiz-
ing the left and right continuum Marchenko equations, sajgdy, in the above sense,
does not produce consistetliscretescattering data. Such a discretization has been
discussed in the literature, for example see [7]. In gendéralt-periodization of the
left continuum scattering coefficient does not give themdigeleft scattering coefficient
that corresponds 10” (w). In order to get consistent left and right discrete Marchenko
equations, one must first replace the scattering data byetisscattering data, in the
above manner, and then derive the data for the discreteqeétion from the data for
the discrete right equation. The theorem implies that tftealed right discrete poten-
tials differ from the continuum potential, and hence onethag byO(A).

Empirically one finds that small errors in the approximatmpatation of the left
scattering data can lead to large errors in the reconsttynitential. Moreover, as it
entails locating the zerdg; }, of a and evaluating'(¢), itis very difficult to compute
the left continuum scattering data with sufficient accura®n the other hand, the
determination of the left discrete scattering data fromritjlet discrete scattering data
can often be done with sufficient accuracy and guaranteéththaesulting hard pulse
has the correct scattering data. In particular, onds small enough for the aliasing
error: n

D+ (74)
n#0
to be small, then the reflection coefficient correspondintheodiscrete potential is
a very good approximation to the original reflection coedfitiin a neighborhood of
Zero.

The theorem states thmf —g||.1 tends to zero aa — 0O; one can easily show
that theL2-norms of the functions11A are uniformly bounded aa — 0. Hence, if
Z* are the locations of the bound states of the poteqﬁalthen the energy formula
implies that the sum

Z Im¢&

fezh
is uniformly bounded. We can therefore use Theorem 2 to coledhat the bound state
data for the potentiaif, at least for R& in a fixed interval converges, & — 0, to
the bound state data qgft).

The behavior oflA (&) for large|&| is governed by the asymptotics for a piecewise
constant potential. These are spelled out in Appendix A. @é&ethe decaying side
lobes, with periodicity’ in Figure 1(c), which shows the magnituder«ff, for an
approximation to a 90sinc-pulse with a bandwidth of 1000 Hz. Note tInétin Fig-

ure 1(b) has considerable support outside the fundameatiadi —500, 506]. These
side lobes appear whenever the soft pulse approximaticseis. u
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Figure 1. Plots of the absolute reflection coefficients for variousragimations to a
90°-sinc pulse showing several fundamental periods.

5 Softening Hard Pulses

A hard pulse is a sum af-function which is nonphysical. The RF-envelope which is
actually used, e.g. in an NMR experiment, ifirdte sum of “softened” pulses. For
example one could replace eaghd(t — j A) by a characteristic function of width
with the same integral, leading to the softened pulse:

Py

Ui .
a = > XJX[O,A)(I—JA);
j=—P_

see [10]. The reflection coefficienf corresponding taqlA tends to zero at infinity.
The differenceqhA — qlA is only “small” in the weak distributional sense. Nonetlssle
under certain conditions, the differericé & — rf(é)l can be made small f@rin any
fixed disk in the complex plane. The relationship betw@mmdrlA is studied below.

For our analysis of this approximation, we consider pulsgmdd by the scattering
dataS,, given in (68). We assume that the corresponding continuatiesing data
satsifies the hypotheses of the previous section. For égclve consider the one
parameter family of pulses

Py

0= > Eioent—ja). celo.1l (75)
j=—P_

with the understanding thq€ is the sum ob-pulses given above. While we do not
make the dependence explicit, the limits of summakon Py depend om . In general
they would be chosen to ensure that the scattering data t¢futheated softened pulse

differs very little from that of the hard pulse faf| < 5. If we fix an error then this
would imply thatA (P4 + P_) =~ L, for some fixedL.
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Letr2 denote the reflection coefficient defined §9. The potentialg® is sup-
ported in the interval—P_ A, P, A]. In order to studyeA we need to find a formula
for ¢.1_(&; PLA). To simplify the exposition, we translate in time to replaewith
1 andP; by

P=P_+P;.

This just has the effect of multiplying the reflection coeéitt by a linear phase?iP-<.

As is well known,y.,_(¢; PA) can be conveniently expressed in terms of a prod-
uct of 2 x 2-matrices. The solution operator at tirfge+ A to the ZS-system with
potential given by

e uxi0.ea)(t — to)

e-il-e¢A (w) ei(1-0¢A ((usin@)
o o
U,[[,E,A(é) = _ei(l—e)fA (ﬂ* sin(a)) ei(l_g)gA (a coga)+ielA Sin(oc)) ’
o o
(76)

@ =/ (€A) + 2. (77)

The solution operator for the ZS-system, at tia with the potential given by (75)
is therefore the product of thex2 2-matrices:

Ue,A(é) = Uﬂp,e,A(f) e Uﬂl,e,A(f)

_[Af@ —Bf*(é)} (78)
T BAE) AN |

where

From the definition we see that
BA(f)e_Zi PEA
e &JF

AD (79)

r2) =

The entries of (76), and (78) are continuous &t 0. The functiong A%, B2) are none
other than the scattering coefficients for the ZS-systern patentiaig® . If ¢ = 0 then
Ay andB{ can be expressed as

AG(©) = @MEBPEh), B () =M QEeh),

WhereP andQ are polynomials of degrele — 1. As expected&é and BoA areA~1z-
periodic functions.
The questions of principal interest are:

1. How well doesf(é) approximateOA(f) over the interval — 5%, 7x1?
2. How rapidly doesrslA decay outside of—7x, 751?

3. How are the zeros o@lA in the upper half plane related to thosekg?
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(a) AplotofDj. (b) A plot of Dy.

Figure2. Plots of the error function®1 and D> for i € [0, 25].

The first question admits of a fairly simple analysis. We foehsider a sin-
gle term in the product expansion (78), examining the depecel of the difference
lUp1,4() —Up0,a@)ll on(u, A), for small A|é|. By settingg = A this reduces
to consideration of the differences

- [T o igsiny|ul?+¢2
— |@l¢ 2 2 _ _
Di(u,0) =€ (CO lule+¢ TN cos|u|
. . (80)
D2(u,¢) = e #SINVIpl2+ 2 pesinju]
’ Vil +¢2 lul |7

for ¢ € [—=x, x]. As the plots in Figures 2 and 3 show, the only way to make both
differences small is to takig«| small.

In terms of pulse design, this means tidashould be taken to be small, which in
turn generally force® to be large. A computation with Taylor series shows thaty nea
0,0),

D1(u, &) = lulPFlul, 0,
Da(u, &) = lugIGul, ¢),

whereF andG are entire functions. For a fixad Theorem 7 shows that thg: |}
appearing in (78) satisfy

(81)

lujl = O(A).

For¢ restricted to dixeddisk in the complex plang, also behaves lik®(A). Provided
A lm¢ is bounded, both error functions aBg(1 + |¢])A2) asA tends to zero.
We expres$)i A as

U,a =Uup.0,a(d2+Ep)Uup_.0a(d2+Ep_1)---Uyy0a(ld2+E1),
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(a) Aplotof Dg. (b) A plot of D».

Figure 3. Plots of the error function®; and D> for x € [0, 0.1].

where
-1
ld2 +Ej = U, 0.aYui.1a.

The estimates shows thgEj| < C(1+ I]) A2. Using this expression, the estimates
above and Theorem 7, one can show that, the difference satisfi

[U1,4($) —Uoa@Ill < Z IE1l... IEPIIP
(€1,...,€p)€2p (82)

<(1+C@+E)A%P -1

Here 2, are the binary sequences of leng#h excluding (0, ..., 0). Provided that
(1+ |£])P, is o(A~?) this estimate implies that implies that the differences

AR — AL, IBRE) — BE ()

can be made uniformi®(P(1 + |£])A?). In particular, the zeros QAlA in the upper
half plane converge to those Aﬁ

A Asymptoticswith smplejumps

Suppose thap is a function with two continuous derivatives ardo < a < f < co.
We establish asymptotic formulee and estimates for theesoajtdata(ac, be) for the
ZS-system with a potentigd, s¢ having simple jumps:

1211F 21041 1
:1 " . O E)
() =Lt —5r ((1+ |¢|)2)

?Pbe(&) =€ 10 pige ()07 (28) + O (

(83)

1+ Ifl)z)’
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HereT,. .. A B is the piecewise, linear function

B(t — u) + A(v —1t)
Tiuw:ABI®) = X1uv1 () = )

(84)
v — i
For large reat this implies that
G o1z, gy 3
re(@) = 2@ T pio@.07(pn(2) (L = —7==) + O™ (89)

Using the composition rules for the scattering data of padénwith dijoint support,
it is easy to use this formula to work out asymptotics for thigection coefficient of a
potential on the formin (17). Figures 1(b,c) show the pretisidelobes quite clearly.

We use the standard integral equations, defining the conmt®oéy ;_, see [5].
Let

f1(&5t) = p1a (& e,
It follows from (3), and (5) that

B
() = 1+ / M1(&: 00, §) F1(&; S)ds

p (86)

be(&) = — / e 755" (9) f1.(: 9)ds

a

Where, in light of the simple form assumed by the potentiahaee that

p
M1 (¢&; 00,8) = —¢*(5)X[a,ﬁ](5)/EZif(X_S)CD(X)dX
S

V99 (8) — 0(9) _/ﬂ A9 0)
2i¢ 2¢

= —0" () x[a.p1(S) [
(87)

Since(x — s) > 0 in the integral, this expression remains uniformly bowuhfie ¢ in
the upper half plane, and implies that

. <=9 (B) — p(s) 1
Ml(f; oo, S) =0 (S)X[a,ﬁ](s) |: + o (1+ |5|2) . (88)

2i¢

This formula holds fog with nonnegative real part, with the implied constant in the
O-term only depending on th€?[«, #]-norm of .
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Using this formula foM1(&; oo, S) in (86) gives

o X1 p 117 1
ac(5)=1+¢+0( )

2i¢ 1+ (¢1?
B L (89)
be(&) = — e‘ZifS*sderO( )
(@) =~ [ 2% =
This completes the analysis af; for b we integrate by parts again to get:
e Py (p) — e ¥ (@) 1
b = _ O . 90
() 2 (1+ |5|2) (%0)
The proof is completed by observing that
R Be "¢ — Aei¢ B AeI¢ — gl
Tiuv:aBl = — :

i Tha @

If ¢ hask + 1 derivatives, then we can integrate by parts in (8f)mes to get an
asymptotic expansion favl; with an error term of orde©(|¢|~*+D). This can, in
turn, be used in (86) to obtain higher order asymptotic egjwens forac andbc. For
smooth potentials, vanishing at infinity, expansions of thipe are well known in the
inverse scattering literature.
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