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Abstract

In the hard pulse approximation, commonly used in nuclear magnetic reso-
nance, one considers potentials for the AKNS system that aresums ofδ-functions.
The system of differential equations does not, strictly speaking make sense for
such potentials. In [8] an analogous discrete forward and inverse problem are an-
alyzed. We review these results and show that pulses obtained using the inverse
scattering transform for thishard pulseapproximation converge to the expected
continuum potential pointwise and in theL1-norm. We also show that the AKNS
system makes sense with potentials that are nonatomic measures with finite total
variation.

1 Introduction

To solve the problem of RF-pulse synthesis in nuclear magnetic resonance it is conve-
nient to introduce the spin domain formulation of the Bloch equation. This describes
the evolution of aC2-valued functionψ, under the influence of a potentialq :

dψ

dt
(ξ; t) =

[
−i ξ q(t)

−q∗(t) i ξ

]
ψ(ξ; t). (1)

Hereξ is a frequency variable and we follow the convention in MR of denoting com-
plex conjugation with an asterisk, e.g.z∗. This is known in the mathematics literature
as the Zakharov-Sabat system or the 2× 2-AKNS system.
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jeremy.magland@uphs.upenn.edu
Keywords: nuclear magnetic resonance, hard pulse approximation, convergence, AKNS-system, Marchenko
equation, discrete inverse scattering.
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Scattering theory for an equation like (1) relates the behavior of limt→−∞ ψ(ξ; t)
to that of limt→∞ ψ(ξ; t), or vice versa. Ifq has bounded support, then the functions

[
e−iξ t

0

]
,

[
0

eiξ t

]

are a basis of solutions for (1) outside the support ofq. If the L1-norm ofq is finite,
then it is shown in [1] that (1) has solutions which are asymptotic to these solutions as
t → ±∞. The basic result is:

Theorem 1. If ‖q‖L1 is finite, then, for every realξ, there areuniquesolutions

ψ1+(ξ),ψ2+(ξ) andψ1−(ξ),ψ2−(ξ)

to equation(1) which satisfy

lim
t→−∞

eiξ tψ1−(ξ; t) =

[
1
0

]
, lim

t→−∞
e−iξ tψ2−(ξ; t) =

[
0

−1

]
(2)

lim
t→∞

eiξ tψ1+(ξ; t) =

[
1
0

]
, lim

t→∞
e−iξ tψ2+(ξ; t) =

[
0
1

]
(3)

The solutionsψ1−(ξ),ψ2+(ξ) extend as analytic functions ofξ to the upper half plane,
Im ξ > 0 andψ2−(ξ),ψ1+(ξ) extend as analytic functions ofξ to the lower half plane,
Im ξ < 0.

The proof of this theorem can be found in [1]. Among other things they show that
if we set

Q1(t) =

t∫

−∞

|q(s)|ds,

then
|ψ11−(ξ; t)eiξ t | ≤ I0(2Q1(t)), |ψ22−(ξ; t)e−iξ t | ≤ I0(2Q1(t)). (4)

Here I0 is the classicalI0-Bessel function. The same argument appliesmutatis mutan-
dis to obtainψ1+ andψ2+. Indeed, essentially the same arguments show that these
estimates hold for potentials that are nonatomic measures of finite total variation. In
Theorem 2 we show that the eigenfunctions depend continuously on the potential in
the total variation norm.

For real values ofξ, the solutions normalized at−∞ can be expressed in terms of
the solutions normalized at+∞ by the linear relations

ψ1−(ξ; t) = a(ξ)ψ1+(ξ; t)+ b(ξ)ψ2+(ξ; t),

ψ2−(ξ; t) = b∗(ξ)ψ1+(ξ; t)− a∗(ξ)ψ2+(ξ; t).
(5)

The functionsa,b are called thescattering coefficientsfor the potentialq. The 2× 2-
matrices

[
ψ1−ψ2−

]
,
[
ψ1+ψ2+

]
satisfy

[
ψ1−ψ2−

]
=
[
ψ1+ψ2+

] [a(ξ) b∗(ξ)

b(ξ) −a∗(ξ)

]
. (6)
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It is well known thata extends to the upper half plane as an analytic function. Ifq
has an integrable derivative, then, it can be shown that

a(ξ) = 1 +
1

2i ξ

∞∫

−∞

|q(s)|2ds+ O(
1

ξ2
), (7)

as|ξ | tends to infinity in Imξ ≥ 0. As the Wronskian,W(ψ1−,ψ2−) = −1, it follows
that

|a(ξ)|2 + |b(ξ)|2 = 1, (8)

and therefore (7) implies that

|b(ξ)| = O(
1

|ξ |
) asξ → ±∞. (9)

Assuming thatt j q(t) is integrable for allj , it is shown in [1] thata has finitely
many zeros in Imξ ≥ 0. Let {ξ1, . . . , ξN } be a list of the zeros ofa. For eachj there is
anonzerocomplex numberC′

j so that

ψ1−(ξ j ) = C′
jψ2+(ξ j ), j = 1, . . . , N. (10)

The constants{C′
1, . . . ,C

′
N } appearing in (10) are callednorming constants. Equa-

tion (1) can be rewritten in the form
[

i ∂t −iq
−iq∗ −i ∂t

] [
ψ1
ψ2

]
= ξ

[
ψ1
ψ2

]
. (11)

From this formulation it is clear thatξ should be regarded as a spectral parameter. If
ξ has positive imaginary part, thenψ1−(ξ; t) decays exponentially ast tends to−∞

andψ2+(ξ; t) decays exponentially ast tends to+∞. If a(ξ j ) = 0, then (10) implies
thatψ1−(ξ j ; t) decays exponentially at both±∞ and therefore the functionψ1−(ξ j ; t)
belongs toL2(R; C

2). Thus the operator on the left hand side of (11) hasbound states
for these values ofξ.

Definition 1. The pair of functions(a(ξ),b(ξ)), for ξ ∈ R, and the collection of pairs
{(ξ j ,C j ) : j = 1, . . . , N} define thescattering datafor equation (1).

We generally assume that the zeros ofa are simple and that their imaginary parts
are positive. This is mostly to simplify the exposition, there is no difficulty, in principle,
if a has real zeros or higher order zeros. There is a very useful “Plancherel relation” or
energy formula relating theL2-norm ofq to the scattering data:

∞∫

−∞

|q(t)|2dt =
1

π

∞∫

−∞

log(1 + |r (ξ)|2)dξ + 4
N∑

j =1

Im ξ j . (12)

The scattering data are not quite independent. Thereflectioncoefficient is defined
by

r (ξ) =
b(ξ)

a(ξ)
. (13)
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A priori the reflection coefficient is only defined on the real axis. We can expressa in
terms ofr and the locations of its zeros:

a(ξ) =

n∏

j =1

(
ξ − ξ j

ξ − ξ∗
j

)
exp


 i

2π

∞∫

−∞

log(1 + |r (ζ )|2)dζ

ζ − ξ


 . (14)

Equation (14) has a well defined limit asξ approaches the real axis. Assuming thata
has simple zeros, we let

C j =
C′

j

a′(ξ j )
for j = 1, . . . , N. (15)

Definition 2. The functionr (ξ), for ξ ∈ R and the collection of pairs{(ξ j ,C j ) : j =

1, . . . , N} define thereduced scattering datafor equation (1).

Implicitly the reduced scattering data is a function of the potentialq. In inverse
scattering theory, the data{r ; (ξ1,C1), . . . , (ξN ,CN)} are specified, and we seek a po-
tentialq which has this reduced scattering data. The map from this data toq is often
called theInverse Scattering Transformor IST.

In applications to NMR, the refelction coefficient is specified and one seeks a po-
tential that produces it. This is explained in detail in [5].A standard technique for
solving this problem is to find a potential that is a sum of equally spacedδ-functions or
hard pulses:

qh(t) =

∞∑

j =−∞

µ j δ0(t − j1). (16)

It is easy to see that any solution,ψ, to (1), with a potential of this form, would have
to be discontinuous at eachj1 for whichµ j 6= 0. As the wave front sets att = j1
of ψ(ξ; t) andµ j δ0(t − j1) are nonempty and equal, one cannot make sense, even
as distributions, of the productψ(ξ; t)qh(t). For this reason, neither the differential
equation nor the equivalent integral equation make any obvious sense for a potential of
this form. Nonetheless, if one considersqh as a limit of the “softened” potentials:

qǫ =

∞∑

j =−∞

µ j

ǫ
χ[0,ǫ)(t − j1), (17)

then the corresponding normalized solutions,ψǫ have limits asǫ → 0+, which are
piecwise smooth functions oft having jump discontinuities at suppqh. This is the ap-
proach taken in the physics and NMR literature. In second author’s thesis, a discrete
analogue of the ZS-system is introduced, see [8]. It is shownthat there is a scattering
and inverse scattering theory entirely analogous to that for (1) with a smooth potential.
Moreover, explicit, non-iterative algorithms are given for the solution of the inverse
problem. These algorithms are much more stable than the standard approaches to solv-
ing the Marchenko equations, especially when there are bound states.

In this paper we show that, under relatively weak assumptions, the potentials found
using the discrete approximation converge, as1 → 0, to the solution of the contin-
uum inverse scattering problem with limiting scattering data. We also show that the
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scattering data of the softened potentialq1 approximates that of hard potentialqh, for
frequencies in the natural range[− π

21 ,
π

21 ].

We close this section with a result showing that the forward scattering data depends
continuously on the potential in the total variation norm.

Theorem 2. Suppose that h1(s)ds and h2(s)ds are non-atomic measures with finite
total variation, and that F±i (ξ), i = 1,2 solves the ZS-system with potential hi , i =

1,2. Let

H −(t) = ‖h1(s)ds− h2(s)ds‖TV(−∞,t) Q−(t) = ‖h1(s)ds‖TV(−∞,t)

H +(t) = ‖h1(s)ds− h2(s)ds‖TV(t,∞) Q+(t) = ‖h1(s)ds‖TV(t,∞),
(18)

If
lim

t→±∞
‖F±

1 (ξ; t)− F±
2 (ξ; t)‖ = 0.

Then, forξ ∈ R the differences satisfy the estimates

‖F±
1 (ξ; t)− F±

2 (ξ; t)‖ ≤ 2I0(2‖h2‖TV)H
±(t) exp(Q±(t)). (19)

Proof. The proof of this result is a small modification of the proof ofthe estimate (4)
given in [1]. Letσ denote the 2× 2-matrix

σ =

[
−1 0
0 1

]

and let
D±(ξ; t) = e−it ξσ (F±

1 − F±
2 ).

For realξ andt, the matricese±it ξσ are unitary and therefore

‖F±
1 − F±

2 ‖ = ‖D±‖.

The vector valued functionsD± satisfy the equations

∂t D
± = e−it ξσ

[
0 h1

−h∗
1 0

]
eit ξσ D± + e−it ξσ

[
0 (h1 − h2)

−(h∗
1 − h∗

2) 0

]
F±

2 .

lim
t→±∞

D±(ξ; t) = 0.
(20)

We now restrict our attention to the− case, the+ case is handled by an essentially
identical argument.

The differential equation in (20) is equivalent to the integral equation

D−(ξ; t) =

t∫

−∞

e−isξσ
[

0 h1(s)
−h∗

1(s) 0

]
eisξσ D−(ξ; s)ds+

t∫

−∞

e−isξσ
[

0 (h1 − h2)(s)
−(h∗

1 − h∗
2)(s) 0

]
F−

2 (s)ds.

(21)
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This is a Volterra equation that can be solved by the following iteration:

D−
0 (ξ; t) =

t∫

−∞

e−isξσ
[

0 (h1 − h2)(s)
−(h∗

1 − h∗
2)(s) 0

]
F−

2 (s)ds

D−
j (ξ; t) = D−

0 (ξ; t)+

t∫

−∞

e−isξσ
[

0 h1(s)
−h∗

1(s) 0

]
eisξσ D−

j −1(ξ; s)ds,

(22)

for j ≥ 1.
First observe that the operator norm defined by the Euclideannorm satisfies

∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 α

−α∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣ = |α|,

and therefore (4) implies that

‖D−
0 (ξ; t)‖ ≤ 2I0(‖h2‖TV)H

−(t).

We make the inductive assumption that

‖D−
j (ξ; t)‖ ≤ 2I0(‖h2‖TV)H

−(t)




j∑

k=0

(Q−(t))k

k!


 . (23)

From these assumptions and (22) it follows that

‖D−
j +1(ξ; t)‖ ≤ 2I0(‖h2‖TV)


H −(t)+

t∫

−∞

|h1(s)|H
−(s)




j∑

k=0

(Q−(s))k

k!




 .

(24)
If h1(s) is anL1-function, then the definition ofQ− implies that

|h1(s)| = ∂sQ−(s).

In general, using a simple approximation argument we can show that

t∫

−∞

|h−(s)ds|(Q−(s))k ≤
(Q−(t))k+1

k + 1
, (25)

and therefore (24) implies that

‖D−
j +1(ξ; t)‖ ≤ 2I0(‖h2‖TV)H

−(t)




j +1∑

k=0

(Q−(s))k

k!


 . (26)

This completes the proof of the induction step. As

lim
j →∞

D−
j = D−,

letting j tend to infinity, completes the proof of the theorem.
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2 Inverse Scattering for the ZS-System

There are several different approaches to solving the inverse scattering problem, see
[1], [2], [3] or [6]. In this section we summarize the solution of this problem via
the Marchenko equations. We generally suppose that the{ξ j } are distinct complex
numbers with positive imaginary parts. We assume that the reflection coefficient is
smooth and rapidly vanishing at±∞. Using limiting arguments, the latter restriction
is easily relaxed.

The Marchenko equations are systems of integral equations of Fredholm type. We
follow the slightly non-standard presentation given in [8], as both the continuous and
discrete theories are presented with a consistent notation. Suppose we are given the
scattering data{r (ξ), ξ ∈ R; (ξ1,C1), . . . , (ξN ,CN)}. Applying the Fourier transform
to equation (2.3.13) in [8] we obtain the following integralequation:

kt (s)+

∞∫

0

Rt (s, σ )kt (σ )
dσ

2π
=

−


r̂ ∗(−s − 2t)+ 2π i

N∑

j =1

C∗
k e−iξ∗

k (s+2t)


 , for s ∈ [0,∞).

(27)

Here the kernel functionRt is defined by

Rt (s, σ ) =

0∫

−∞


r̂ ∗(τ − s − 2t)+ 2π i

N∑

j =1

C∗
k e−iξ∗

k (s−τ+2t)


×


r̂ (τ − σ − 2t)− 2π i

N∑

j =1

Cke−iξk(τ−σ−2t)


 dτ

2π
,

(28)

for later use we set:

gt (s) = r̂ ∗(−s − 2t)+ 2π i
N∑

j =1

C∗
k e−iξ∗

k (s+2t). (29)

Equation (27), the right Marchenko equation, is of the form

(Id +F∗
t Ft )kt(s) = −gt(s).

Under very mild regularity hypotheses onr the operatorF∗
t is easily shown to be

bounded and in fact compact, so theL2[t,∞)-solvability of these equations is trivial.
In [4], conditions are given to assure the solvability in higher Sobolev spaces as well.

The connection between the inverse scattering problem and the Marchenko equa-
tion is summarized in the following theorem:
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Theorem 3. Given a smooth, rapidly decaying reflection coefficient r, and a finite set
of pairs{(ξ j ,C j ) : j = 1, . . . , N}, with the{ξ j } distinct,Im ξ j > 0 and Cj 6= 0 for
j = 1, . . . , N, the equation(27)has a unique solution for every t∈ R. If

q(t) =
1

π
kt (0), (30)

then the ZS-system, with this potential, has reflection coefficient r. It has exactly N
bound states for frequencies{ξ1, . . . , ξN } and the relations(10)hold at these points.

This theorem is proved in [8],[6] and, in a slightly different formulation in [2].
Equation (27) involves integration over positive half rays. If there are bound states,

or the reflection coefficient is large, then this system of equations become exponen-
tially ill-conditioned ast decreases towards−∞. It is therefore useful to work both
ends against the middle. For that purpose one can derive theleft Marchenko equation,
which involves integration over negative half rays. As we donot consider this equation
in detail, we only explain how the left reduced scattering data is related to the right
scattering data. Recall thatr = b/a; given r, we can use (14) to determinea and
thereforeb. The left reflection coefficient is

r̃ (ξ) = −
b∗(ξ)

a(ξ)
.

The left norming constants are related to the right norming constants by the relations:

C̃k = −
ξ−1
k

Ck[a′(ξk)]2
. (31)

For the left equation, the exponential correction terms areexponentially decaying ast
tends to−∞. In most circumstances one is given the right reduced scattering data. In
order to use the left equation one needs to numerically determine botha andb as well
as the left norming constants{C̃ j }. This is very difficult to do stably and with sufficient
accuracy and is a primary motivation for introducting the hard pulse approximation.
The details of this problem and its solution are described in[9]

In the remainder of our analysis we concentrate on the right Marchenko equa-
tion, (27), with the understanding that everything said applies, mutatis mutandis,to
the left formulation as well.

The following Paley-Wiener type theorem is useful in applications:

Theorem 4. Suppose that q is a potential for the ZS-system with support in the half
line (−∞, t+]. Then the kernel function

g(s) = r̂ (s)− 2π i
N∑

j =1

Cke−iξks, (32)

for the right Marchenko equation is supported in the ray[−2t+,∞). A similar state-
ment holds for the kernel function of the left Marchenko equation.
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Remark1. The kernel of the operatorF∗
t Ft in the right Marchenko equation is ex-

pressible as

Rt (s, σ ) =

∫ 0

−∞
g∗(τ − s − 2t)g(τ − σ − 2t)

dτ

2π
. (33)

Proof of Theorem(4). If q has support in(−∞, t+], then the scattering coefficientb
has an analytic extension to the upper half plane. This is becauseψ1+ = [e−iξ t ,0]†

for t ≥ t+, and therefore equation (5) shows that

b(ξ) = ψ21−(ξ; t+)e
−iξ t+ .

Whenr has a meromorphic extension to the upper half plane, then theintegrand,g,
has a different representation. If the zeros ofa in the upper half plane have imaginary
parts less thanη0, then

g(t) =
1

2π

∞∫

−∞

b(ξ + i η0)

a(ξ + i η0)
ei (ξ+iη0)tdξ, (34)

see [1]. Using the well known asymptotics forψ21−, we conclude thate2iξ t+r satisfies
the hypotheses of the Paley-Wiener Theorem in the half planeIm ξ ≥ η0. This function
is therefore the Fourier transform of a function with support in (−∞,0]. Henceg is
supported in[−2t+,∞)]. This argument appliesmutatis mutandisto the kernel of the
left Marchenko equation.

Remark2. If a has only simple zeros then (34) implies that the norming constants are
given by

Ci =
b(ξi )

a′(ξi )
.

Given that the potential has support in an appropriate half line, the formula (34) defines
the kernel functions for the right Marchenko equation, whether or not the zeros ofa
are simple.

3 The Hard Pulse Approximation

Consider a potential of the form

qh(t) =

∞∑

j =−∞

µ j δ(t − j1),

such that
∞∑

j =−∞

|µ j | < ∞.
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We call such a function adiscrete potential. For potentials this singular, the differential
equation (1) does not make sense and is replaced by the recursion:

9 j +1(ξ) =

[
e−iξ1 0

0 eiξ1

]


cos
∣∣µ j

∣∣ µ j
|µ j |

sin
∣∣µ j

∣∣

−
µ∗

j
|µ j |

sin
∣∣µ j

∣∣ cos
∣∣µ j

∣∣


9 j (ξ). (35)

This describes the jump att = j1, in a “solution” to the differential equation with the
singular potential. The solutions,9 j (ξ), of the recursion (35), with standard asymp-
totic boundary conditions asj → ±∞, (see (37)), are periodic inξ of period π

1 . We
therefore usew = e2iξ1 as the spectral parameter for the discrete problem. We suppose
that9±, j (w) are solutions to (35) with

9±, j (w) =

[
A±, j (w)w

−
j
2

B±, j (w)w
j
2

]
, (36)

where

lim
j →±∞

[
A±, j (w)

B±, j (w)

]
=

[
1
0

]
for all w ∈ S1. (37)

The discrete scattering matrix is defined to be
[

a −b∗

b a∗

]
=

[
9∗

1+, j 9∗
2+, j

−92+, j 91+, j

] [
91−, j −9∗

2−, j
92−, j 9∗

1−, j

]
, (38)

which is easily shown to be independent ofj . The reflection coefficient is defined to be

r (w) =
b(w)

a(w)
.

The following basic results are established in [8]:

Proposition 1. Letµ : Z → C be a sequence of complex numbers such that

∞∑

j =−∞

|µ j | < ∞.

Then there are unique solutions9±, j to equations (35), satisfying (36) and (37). Fur-
thermore, for each integer j , the functions A−, j , w−1B−, j , A∗

+, j and B∗
+, j extend

analytically to the unit disk inw.

1. The functionsa andb are inL2(S1) and satisfy

|a(w)|2 + |b(w)|2 = 1 forw ∈ S1 andâ(0) > 0. (39)

2. The functiona = A∗
+, j A−, j + B∗

+, j B−, j has an analytic extension to the unit
disk. We assume thata has finitely many zeros{w1, . . . , wm} in the unit disk,
which are all simple. For each zerowk of a, there is a constantc′

k such that

[
A−, j (wk)

B−, j (wk)

]
= c′

k

[
−B∗

+, j (wk)w
j
k

A∗
+, j (wk)w

j
k

]
for all j ∈ Z. (40)
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Set

ck =
c′

k

a′(wk)
(41)

3. The functionsA± andB± are inL2(S1) and satisfy

|A±, j (w)|
2 + |B±, j (w)|

2 = 1 forw ∈ S1 and Â±, j (0) > 0. (42)

4. The data(a,b;w1, . . . , wm; c′
1, . . . , c

′
m) is called thediscrete scattering datafor

the potentialq, and the data(r ;w1, . . . , wm; c1, . . . , cm) is called thereduced
discrete scattering datafor the potentialq.

5. The functionsa andb can be determined from the reduced scattering data by the
formulas

a =

m∏

k=1

(
w∗

k

|wk|

wk −w

1 −w∗
kw

)
· exp(−5̃+(1 + |r |2)) (43)

b = ra.

Here5+ is the projection onto the positive Fourier components and:

5̃+




∞∑

j =−∞

a jw
j


 =

∞∑

j =1

a jw
j +

1

2
a0, (44)

and5− is the analogous projection onto the negative Fourier components.

6. The function
wB∗

+, j

Â+, j (0)
can be determined from the reduced scattering data. It is

the unique solution to the discrete right Marchenko equation:

(1 +5+r ∗
j 5−r j5+)

(
wB∗

+, j

Â+, j (0)

)
= −5+r ∗

j , (45)

where

r j = 5−rw j −1 −

m∑

k=1

ckw
j
k

w −wk
. (46)

7. The potentialq(t) =
∑∞

j =−∞ µ j δ(t − j1) can be recovered using

µ j =
γ j

|γ j |
arctan|γ j | with γ j = F(

wB∗
+, j

Â+, j (0)
)(1). (47)

HereF denotes the Fourier transforms as the map fromL2(S1) → ℓ2(Z) defined
by

F( f )(n) =
1

2π

2π∫

0

f (θ)e−inθdθ. (48)



4 Convergence of Hard Pulses 12

Theorem 5. Let S= (r ;w1, . . . , wm; c1, . . . , cm) be arbitrary discrete reduced scat-
tering data, as above, such that r is in H1(S1). Then there is a well defined discrete
potential q(t) =

∑∞
j =−∞ µ j δ(t − j1) for the ZS-system such that S is the correspond-

ing discrete scattering data. This potential can be found bysolving equation(45)and
using(47).

There is entirely analogous left scattering data and a left Marchenko equation. The
left reflection coefficients = −b∗

a and the left norming constants are related to the
right by:

c̃k =
−w−1

k

ck [a′(wk)]2
. (49)

In their frequency domain formulation, equations (45) and (46), the Marchenko equa-
tions, admit of a recursive solution. It is both extremely efficient and very stable; for
the details see [8].

4 Convergence of Hard Pulses

Let S = (r ; ξ1, . . . , ξN; C1, . . . ,CN ) be reduced continuum scattering data withr ∈

H 1(R). There is a unique potentialq : R → C corresponding toS. However, to prac-
tically computeq(t) for somet ∈ R, one needs to use a finite, discrete approximation
to the Marchenko equation. We describe a method of doing this, using the hard pulse
approximation, and then show the pointwise convergence of the softened pulses{q11 }

to q as1 → 0.
Choose a time step1. As the reflection coefficient for the discrete inverse problem

we use the periodic function

r1(ξ) = e2iξ1
∞∑

n=−∞

r (ξ +
nπ

1
). (50)

As in ordinary signal processing, there is obviously a notion of Nyquist sampling rate
for discrete approximation in inverse scattering. We assume thatr is smooth enough
and decays rapidly enough so that this sum and its term by termderivative converge
absolutely and uniformly. The bound states are defined by thepairs{(wk,21iwkCk)}

wherewk = e21iξk .

If we conjugate the discrete Marchenko equation,

(1 +5+r1∗
j 5−r1j 5+)h j1 = −5+r1∗

j ,

by the Fourier transform then, for eachj , we obtain the equation:

K̃1
j1(m)+

∞∑

n=1

R̃1j1(m,n)K̃
1
j1
1

π
=

−

[
1

π
r̂ ∗(−21(m + j ))+ 21i

m∑

l=1

C∗
l e−2i1(m+ j )ξ∗

l

]
for m> 0.

(51)
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The discrete kernel function is given by

R̃1j1(m,n) =

−1∑

l=−∞

r̂ ∗(21(l − m − j ))r̂ (21(l − n − j ))
1

π
. (52)

This is simply the Riemann sum approximation to equation (27), with t = j1 and
sample spacing 21. The j th coefficient of the hard pulse is

µ j =
γ j

|γ j |
arctan|γ j |

whereγ j = K̃1
j1(1).

We define a piecewise constant function on[0,∞) by setting

K1
j1(s) =

π

1
K̃1

j1(m) for 2(m − 1)1 ≤ s< 2m1. (53)

We denote the piecewise constant extension, in both variables, of R̃1j1 to [0,∞) ×

[0,∞) by R1j1(s, σ ), and set

G1
j1(s) =r̂ ∗(−21(m + j ))+ 2π i

N∑

l=1

C∗
l e−2i1(m+ j )ξ∗

l for 2(m − 1)1 ≤ s < 2m1

=g j1(−21(m + j )) for 2(m − 1)1 ≤ s < 2m1,
(54)

wheregt is defined in (29). With these definitions we see that, except possibly for a
discrete set of points,

K1
j1(s)+

∞∫

0

R1j1(s, σ )K
1
j1(σ )

dσ

2π
= −G1

j1(s), for s ≥ 0. (55)

For the remainder of this section we assume thatr̂ , ∂sr̂ and∂2
s r̂ are inL1(R) and

tend to zero as|s| → ∞, which is the case ifr is sufficiently smooth and decays
sufficiently rapidly. We letAt : L2[0,∞) → L2[0,∞) denote the operator defined by
Rt andA1j1 : L2[0,∞) → L2[0,∞) denote the operator defined byR1j1.

Lemma 1. If j1 ≤ t < ( j + 1)1, then the L2-operator norm of the difference
At − A1j1 satisfies the estimate

‖At − A1j1‖ ≤ 12(1+ | j1− t|)N(t) (56)

where

M0(y) = sup
x≤0

|g(x − y)| and M1(y) =

0∫

−∞

|∂sg(x − y)|dx

N(t)2 =




∞∫

0

M2
0(s + 2t)ds






∞∫

0

M2
1(s + 2t)ds


 .

(57)
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Remark3. The functiong is defined in (32). Our assumptions onr̂ imply thatM0 and
M1 are uniformly bounded andN(t) is finite for eacht .

Proof. These estimates follow from the elementary fact that theL2-operator norm sat-
isfies the estimate

‖At − A1j1‖ ≤ ‖Rt − R1j1‖L2([0,∞)2), (58)

and pointwise estimates for|Rt − R1j1|. To derive the pointwise estimate we see that

|Rt (s, σ ) − R1j1(s, σ )| ≤

−1∑

n=−∞

[ 21(n+1)∫

21n

|g(τ − s − 2t)− g(21(n − k − j ))||g(τ − σ − 2t)|dτ+

21(n+1)∫

21n

|g(τ − s − 2t)− g(21(n − m − j ))||g(21(n − k − j ))|dτ

]
.

(59)

Herek andm satisfy 21k ≤ s < 21(k + 1) and 21m ≤ σ < 21(m + 1). Assuming
that j1 ≤ t < ( j + 1)1, then these estimates imply that the sum on the right is
bounded by

6(1+ | j1− t|)[M0(σ + 2t)M1(s + 2t)+ M0(s + 2t)M1(σ + 2t)].

The estimate in (56), follows from (58), by using this estimate to bound theL2-norm
of the differenceRt − R1j1.

Using the lemma we can obtain uniform bounds on the difference|kt (s)−K1
j1(s)|,

for t in any positive ray[t0,∞), however the constant in these estimates diverges as
t → −∞. In most applications this is not an issue because, using the left Marchenko
equation, we can show that bothkt (0) andK1

j1(0) tend uniformly and rapidly to zero

ast or j1 go to−∞. To prove the bounds on|kt(s) − K1
j1(s)| we need to estimate

‖gt − G1
j1‖L2.

Lemma 2. If j1 ≤ t < ( j + 1)1, then

‖gt − G1
j1‖L2([0,∞)) ≤ (1+ |t − j1|)‖M

1∂sg‖L2((−∞,−2t)), (60)

here
M
1h(s) = sup

|σ−s|≤41
|h(σ )|.

If 2n1 ≤ s ≤ 2(n + 1)1, then

|gt(s)− G1
j1(s)| ≤ (1+ |t − j1|)M1∂sgt(s) (61)
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Proof. The second estimate is an immediate consequence of the definition of G1
j1 and

the mean value theorem. The first estimate follows from the second by integration. Our
assumptions on̂r imply that the right hand side of (60) is finite and tends to zero as
t → ∞.

Using the lemmas we can prove our convergence results.

Theorem 6. If r̂ , ∂sr̂ , and∂2
s r̂ are in L1(R) and tend to zero as|s| → ∞, and j1 ≤

t < ( j + 1)1, then

‖kt −K1
j1‖L2([0,∞)) ≤ (1+|t − j1|)[‖M

1∂sgt‖L2([0,∞))+12‖G1
j1‖L2([0,∞))]. (62)

Proof. Throughout this argument,L2 meansL2([0,∞)). BecauseAt is a positive self
adjoint operator, it follows that

‖kt − K1
j1‖L2 ≤ ‖(Id +At )(kt − K1

j1)‖L2. (63)

This estimate implies that

‖kt − K1
j1‖L2 ≤ ‖gt − G1

j1‖L2 + ‖(At − A1j1)K
1
j1‖L2. (64)

Because the operator in the discrete Marchenko equation is also positive, it follows that
‖K1

j1‖L2 ≤ ‖G1
j1‖L2. Combining these estimates with (56), and (60) gives (62).

The uniform pointwise convergence is an immediate consequence. We express the
pointwise differencekt(s)− K1

j1(s) as

kt (s)− K1
j1(s) = −gt(s)+ G1

j1(s)− At (kt − K1
j1)(s)+ (A1j1 − At )K

1
j1(s). (65)

From this identity we obtain the estimate

|kt (s)− K1
j1(s)| ≤ |gt (s)− G1

j1(s)| +

√√√√√
∞∫

0

|Rt (s, σ )|2dσ‖kt − K1
j1‖L2+

12N(t)(1 + |t − j1|)‖G1
j1‖L2.

(66)

Putting this together with the estimates above gives the uniform convergence ofK1
j1

to kt , as1 → 0.

Corollary 1. If r̂ , ∂sr̂ , and ∂2
s r̂ are in L1(R) and tend to zero as|s| → ∞, and

j1 ≤ t < ( j + 1)1, then for s≥ 0 we have

|kt (s)− K1
j1(s)| ≤ (1+ |t − j1|)×


‖M

1∂sgt‖L2 + ‖M
1∂sgt‖L2

√√√√√
∞∫

0

|Rt (s, σ )|2dσ + 12N(t)‖G1
j1‖L2


 .

(67)
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Letµ j denote thej th coefficient in the hard pulseqh(t) with scattering data

S1 = {r1(w);w1, . . . , wN; 2iw1C11, . . . ,2iwNCN1}, (68)

andq(t) the smooth potential with scattering dataS= {r (ξ); ξ1, . . . , ξN ,C1; . . . ,CN }.

In light of the formulæq(t) = 1
π

kt (0) and

µ j =
K1

j1(0)

1|K1
j1(0)|

arctan

[
1

π
|K1

j1(0)|

]
=

K1
j1(0)

π
[1 + O(12|K1

j1(0)|)] (69)

with

q11 (t) =

∞∑

j =−∞

µ j

1
χ[0,1)(t − j1),

we have that
|q(t)− q11 (t)| ≤ Ct1. (70)

HereCt is finite and tends to zero ast → ∞. To summarize we have:

Theorem 7. If r̂ , ∂sr̂ , and∂2
s r̂ are in L1(R) and tend to zero as|s| → ∞, and q is the

continuum potential with scattering data S and q1
1 is the softening of the hard pulse

with scattering data S1, then |q(t) − q11 (t)| ≤ Ct1, where Ct → 0 as t → ∞.

Both q(t) and q11 (t) tend to zero as t→ −∞, at a rate that is uniform in1. Indeed
‖q − q11 ‖L1 tends to zero as1 → 0.

Proof. From (67) and (69) it follows that

∞∫

t

Csds< ∞ (71)

for any t > −∞. All the statements have been proved but the last two. These follow
from estimates given in Theorem 4 of [5], which we recall: ifgr (gl ) is the kernel
function for the right (left) Marchenko equation, then we set

Mgr (s) = sup
σ≥s

|gr (σ )| and Igr (s) =

∞∫

s

|gr (σ )|dσ

(
Mgl (s) = sup

σ≤s
|gl (σ )| and Igl (s) =

s∫

−∞

|gl (σ )|dσ

)
.

(72)

If Igr (2t) < 1 (Igl (2t) < 1), then

|q(t)| ≤
Mgr (2t)

1 − I 2
gr (2t)

(
|q(t)| ≤

Mgl (2t)

1 − I 2
gl (2t)

)
(73)

These estimates are easily extended to the discrete approximation to the Marchenko
equations. The estimates for the left Marchenko equation serve to establish the last two
claims in the theorem.
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Beginning with the continuum left scattering data and usingthe left Marchenko
equations, a similar result can be obtained ast → −∞. However, the left discrete
potential is not exactly the same as the discrete potential obtained above: Discretiz-
ing the left and right continuum Marchenko equations, separately, in the above sense,
does not produce consistentdiscretescattering data. Such a discretization has been
discussed in the literature, for example see [7]. In general, the π

1
-periodization of the

left continuum scattering coefficient does not give the discrete left scattering coefficient
that corresponds tor1(w). In order to get consistent left and right discrete Marchenko
equations, one must first replace the scattering data by discrete scattering data, in the
above manner, and then derive the data for the discrete left equation from the data for
the discrete right equation. The theorem implies that the left and right discrete poten-
tials differ from the continuum potential, and hence one another, byO(1).

Empirically one finds that small errors in the approximate computation of the left
scattering data can lead to large errors in the reconstructed potential. Moreover, as it
entails locating the zeros{ξ j }, of a and evaluatinga′(ξ j ), it is very difficult to compute
the left continuum scattering data with sufficient accuracy. On the other hand, the
determination of the left discrete scattering data from theright discrete scattering data
can often be done with sufficient accuracy and guarantees that the resulting hard pulse
has the correct scattering data. In particular, once1 is small enough for the aliasing
error: ∑

n6=0

r (ξ +
πn

1
) (74)

to be small, then the reflection coefficient corresponding tothe discrete potential is
a very good approximation to the original reflection coefficient in a neighborhood of
zero.

The theorem states that‖q11 − q‖L1 tends to zero as1 → 0; one can easily show
that theL2-norms of the functionsq11 are uniformly bounded as1 → 0. Hence, if
Z1 are the locations of the bound states of the potentialq11 , then the energy formula
implies that the sum ∑

ξ∈Z1

Im ξ

is uniformly bounded. We can therefore use Theorem 2 to conclude that the bound state
data for the potentialq11 , at least for Reξ in a fixed interval converges, as1 → 0, to
the bound state data ofq(t).

The behavior ofr11 (ξ) for large|ξ | is governed by the asymptotics for a piecewise
constant potential. These are spelled out in Appendix A. We see the decaying side
lobes, with periodicityπ1 in Figure 1(c), which shows the magnitude ofr11 , for an
approximation to a 90◦-sinc-pulse with a bandwidth of 1000 Hz. Note thatr11

2
in Fig-

ure 1(b) has considerable support outside the fundamental period [−500,500]. These
side lobes appear whenever the soft pulse approximation is used.
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(c) A plot of |r11 |, the soft
pulse approximation.

Figure 1. Plots of the absolute reflection coefficients for various approximations to a
90◦-sinc pulse showing several fundamental periods.

5 Softening Hard Pulses

A hard pulse is a sum ofδ-function which is nonphysical. The RF-envelope which is
actually used, e.g. in an NMR experiment, is afinite sum of “softened” pulses. For
example one could replace eachµ j δ(t − j1) by a characteristic function of width1
with the same integral, leading to the softened pulse:

q11 =

P+∑

j =−P−

µ j

1
χ[0,1)(t − j1);

see [10]. The reflection coefficientr11 corresponding toq11 tends to zero at infinity.
The differenceq1h − q11 is only “small” in the weak distributional sense. Nonetheless,
under certain conditions, the difference|r10 (ξ)−r11 (ξ)| can be made small forξ in any
fixed disk in the complex plane. The relationship betweenr10 andr11 is studied below.

For our analysis of this approximation, we consider pulses defined by the scattering
dataS1, given in (68). We assume that the corresponding continuum scattering data
satsifies the hypotheses of the previous section. For each1, we consider the one
parameter family of pulses

q1ǫ =

P+∑

j =−P−

µ j

ǫ1
χ[0,ǫ1)(t − j1), ǫ ∈ [0,1], (75)

with the understanding thatq10 is the sum ofδ-pulses given above. While we do not
make the dependence explicit, the limits of summationP−, P+ depend on1. In general
they would be chosen to ensure that the scattering data of thetruncated softened pulse
differs very little from that of the hard pulse for|ξ | < π

21 . If we fix an error then this
would imply that1(P+ + P−) ≈ L, for some fixedL .
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Let r1ǫ denote the reflection coefficient defined byq1ǫ . The potentialq1ǫ is sup-
ported in the interval[−P−1, P+1]. In order to studyr1ǫ we need to find a formula
for ψǫ1−(ξ; P+1). To simplify the exposition, we translate in time to replaceP− with
1 andP+ by

P = P− + P+.

This just has the effect of multiplying the reflection coefficient by a linear phasee21i P−ξ .

As is well known,ψǫ1−(ξ; P1) can be conveniently expressed in terms of a prod-
uct of 2× 2-matrices. The solution operator at timet0 + 1 to the ZS-system with
potential given by

ǫ−1µχ[0,ǫ1)(t − t0)

is

Uµ,ǫ,1(ξ) =


e−i (1−ǫ)ξ1

(
α cos(α)−iǫξ1 sin(α)

α

)
e−i (1−ǫ)ξ1

(
µ sin(α)
α

)

−ei (1−ǫ)ξ1
(
µ∗ sin(α)

α

)
ei (1−ǫ)ξ1

(
α cos(α)+iǫξ1 sin(α)

α

)

 ,

(76)
where

α =

√
(ǫξ1)2 + |µ|2. (77)

The solution operator for the ZS-system, at timeP1 with the potential given by (75)
is therefore the product of the 2× 2-matrices:

Uǫ,1(ξ) = UµP,ǫ,1(ξ) · · · Uµ1,ǫ,1(ξ)

=

[
A1ǫ (ξ) −B1∗

ǫ (ξ)

B1ǫ (ξ) A1∗
ǫ (ξ)

]
.

(78)

From the definition we see that

r1ǫ (ξ) =
B1ǫ (ξ)e

−2i Pξ1

A1ǫ (ξ)
. (79)

The entries of (76), and (78) are continuous atǫ = 0. The functions(A1ǫ , B1ǫ ) are none
other than the scattering coefficients for the ZS-system with potentialq1ǫ . If ǫ = 0 then
A10 andB10 can be expressed as

A10 (ξ) = e2iM ξ1P(e2iξ1), B10 (ξ) = e2iM ′ξ1Q(e2iξ1),

WhereP andQ are polynomials of degreeP − 1. As expectedA10 andB10 are1−1π-
periodic functions.

The questions of principal interest are:

1. How well doesr11 (ξ) approximater10 (ξ) over the interval[− π
21 ,

π
21 ]?

2. How rapidly doesr11 decay outside of[− π
21 ,

π
21 ]?

3. How are the zeros ofA11 in the upper half plane related to those ofA10 ?
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Figure 2. Plots of the error functionsD1 andD2 for µ ∈ [0,25].

The first question admits of a fairly simple analysis. We firstconsider a sin-
gle term in the product expansion (78), examining the dependence of the difference
‖Uµ,1,1(ξ) − Uµ,0,1(ξ)‖ on (µ,1), for small1|ξ |. By settingζ = ξ1 this reduces
to consideration of the differences

D1(µ, ζ ) =

∣∣∣∣∣e
iζ

(
cos

√
|µ|2 + ζ 2 −

i ζ sin
√

|µ|2 + ζ 2
√

|µ|2 + ζ 2

)
− cos|µ|

∣∣∣∣∣

D2(µ, ζ ) =

∣∣∣∣∣e
iζ µ sin

√
|µ|2 + ζ 2

√
|µ|2 + ζ 2

−
µ sin|µ|

|µ|

∣∣∣∣∣ ,
(80)

for ζ ∈ [−π, π]. As the plots in Figures 2 and 3 show, the only way to make both
differences small is to take|µ| small.

In terms of pulse design, this means that1 should be taken to be small, which in
turn generally forcesP to be large. A computation with Taylor series shows that, near
(0,0),

D1(µ, ζ ) = |µ|2F(|µ|, ζ ),

D2(µ, ζ ) = |µζ |G(|µ|, ζ ),
(81)

whereF and G are entire functions. For a fixedr, Theorem 7 shows that the{µ j }

appearing in (78) satisfy
|µ j | = O(1).

Forξ restricted to afixeddisk in the complex plane,ζ also behaves likeO(1).Provided
1 Im ξ is bounded, both error functions areO((1 + |ξ |)12) as1 tends to zero.

We expressU1,1 as

U1,1 = UµP,0,1(Id2 +EP)UµP−1,0,1(Id2 +EP−1) · · ·Uµ1,0,1(Id2 +E1),
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Figure 3. Plots of the error functionsD1 andD2 for µ ∈ [0,0.1].

where
Id2 +E j = U−1

µ j ,0,1
Uµ j ,1,1.

The estimates shows that‖E j ‖ ≤ C(1 + |ξ |)12. Using this expression, the estimates
above and Theorem 7, one can show that, the difference satisfies

‖U1,1(ξ)− U0,1(ξ)‖ ≤
∑

(ǫ1,...,ǫP)∈2′
P

‖E1‖
ǫ1 . . . ‖EP‖ǫP

≤(1 + C(1 + |ξ |)12)P − 1

(82)

Here 2′P are the binary sequences of lengthP, excluding(0, . . . ,0). Provided that
(1 + |ξ |)P, is o(1−2) this estimate implies that implies that the differences

|A11 (ξ)− A10 (ξ)|, |B11 (ξ)− B10 (ξ)|

can be made uniformlyO(P(1 + |ξ |)12). In particular, the zeros ofA11 in the upper
half plane converge to those ofA10 .

A Asymptotics with simple jumps

Suppose thatϕ is a function with two continuous derivatives and−∞ < α < β < ∞.

We establish asymptotic formulæ and estimates for the scattering data(ac,bc) for the
ZS-system with a potentialχ[α,β]ϕ having simple jumps:

ac(ξ) =1 +
‖ϕ‖2

L2[α,β]

2i ξ
+ O

(
1

(1 + |ξ |)2

)
,

e2iξβbc(ξ) =e2iξβ T̂[α,β;ϕ∗(α),ϕ∗(β)](2ξ)+ O

(
1

(1 + |ξ |)2

)
.

(83)
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HereT[µ,ν;A,B] is the piecewise, linear function

T[µ,ν;A,B](t) = χ[µ,ν](t)
B(t − µ)+ A(ν − t)

ν − µ
. (84)

For large realξ this implies that

rc(ξ) =
bc(ξ)

ac(ξ)
= T̂[α,β;ϕ∗(α),ϕ∗(β)](2ξ)(1 −

‖ϕ‖2
L2[α,β]

2i ξ
)+ O(|ξ |−3). (85)

Using the composition rules for the scattering data of potentials with dijoint support,
it is easy to use this formula to work out asymptotics for the reflection coefficient of a
potential on the form in (17). Figures 1(b,c) show the predicted sidelobes quite clearly.

We use the standard integral equations, defining the components ofψ1−, see [5].
Let

f1(ξ; t) = ψ11−(ξ; t)eiξ t .

It follows from (3), and (5) that

ac(ξ) = 1 +

β∫

α

M1(ξ; ∞, s) f1(ξ; s)ds,

bc(ξ) = −

β∫

α

e−2iξsϕ∗(s) f1(ξ; s)ds.

(86)

Where, in light of the simple form assumed by the potential wehave that

M1(ξ; ∞, s) = −ϕ∗(s)χ[α,β](s)

β∫

s

e2iξ(x−s)ϕ(x)dx

= −ϕ∗(s)χ[α,β](s)


e2iξ(β−s)ϕ(β)− ϕ(s)

2i ξ
−

β∫

s

e2iξ(x−s)ϕ′(x)

2i ξ
dx




(87)

Since(x − s) ≥ 0 in the integral, this expression remains uniformly bounded for ξ in
the upper half plane, and implies that

M1(ξ; ∞, s) = −ϕ∗(s)χ[α,β](s)

[
e2iξ(β−s)ϕ(β)− ϕ(s)

2i ξ
+ O

(
1

1 + |ξ |2

)]
. (88)

This formula holds forξ with nonnegative real part, with the implied constant in the
O-term only depending on theC2[α, β]-norm ofϕ.
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Using this formula forM1(ξ; ∞, s) in (86) gives

ac(ξ) = 1 +
‖ϕχ[α,β]‖

2
L2

2i ξ
+ O

(
1

1 + |ξ |2

)

bc(ξ) = −

β∫

α

e−2iξsϕ∗(s)ds+ O

(
1

1 + |ξ |2

)
.

(89)

This completes the analysis ofac; for bc we integrate by parts again to get:

bc(ξ) =
e−2iξβϕ∗(β)− e−2iξαϕ∗(α)

2i ξ
+ O

(
1

1 + |ξ |2

)
. (90)

The proof is completed by observing that

T̂[µ,ν;A,B] = −
Be−iνξ − Ae−iµξ

i ξ
+

B − A

β − α

e−iνξ − e−iµξ

ξ2
.

If ϕ hask + 1 derivatives, then we can integrate by parts in (87)k-times to get an
asymptotic expansion forM1 with an error term of orderO(|ξ |−(k+1)). This can, in
turn, be used in (86) to obtain higher order asymptotic expansions forac andbc. For
smooth potentials, vanishing at infinity, expansions of this type are well known in the
inverse scattering literature.
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