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ABSTRACT. Let X be a compact complex manifold with strictly pseudoconvex
boundary, Y. In this setting, the Sping Dirac operator is canonically identified
with 3 + 9% : € (X; AVeveny . ¢ (x; A0-0dd) In this note we prove a
priori estimates for a modification of the 3-Neumann boundary condition. This
is a step toward obtaining a subelliptic Fredholm Sping¢ Dirac operators, whose
index equals the holomorphic Euler characteristic of X.

INTRODUCTION

Let X be an even dimensional manifold with an almost complex structure J. It
is well known that the almost complex structure defines a Spinc-structure on X.
A compatible choice of metric defines a Sping-Dirac operator, ¢ which acts on
sections of the bundle of complex spinors, . The metric on X induces a metric on
the bundle of spinors. We let (o, o) denote the pointwise inner product. This, is
turn, defines an inner product of the space of sections of $, that are smooth up to
the boundary, by setting:

(0,0)12 = /(a,a)dV
X

If the complex structure is integrable then the bundle of complex spinors is
canonically identified with @,-0A%9. If the metric is Kihler then the Spinc Dirac
operator is given by

Oc = 9 + 9.
Here 8* denotes the formal adjoint of 8. This operator is called the Dolbeault-Dirac
operator by Duistermaat, see [2]. If the metric is hermitian, though not Kihler, then

Oc =3+ 0% + T,

here 7 is a homomorphism carrying A%¢¥" to A%° and vice versa. It vanishes
at points where the metric is Kéhler. It is customary to write ¢ = 0 + 0 where

6?:- (GOO(X, AO,even) N (€OO(X, A0,0dd)
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and O is the formal adjoint of ;. If X is a compact manifold then the L>-closure
of 3 is a Fredholm operator. It has the same principal symbol as d + 3* and
therefore its index is given by

(1) Ind@f) = Z(—l)f dim H%/ (X).

j=0

If X is a manifold with boundary then the kernels and cokernels of 5% are in-
finite dimensional. To obtain a Fredholm operator we need to impose boundary
conditions. In this instance there are no local boundary conditions for 8% which
define elliptic problems. In this note we prove the basic a priori estimates for a
small modification of the classical 3-Neumann condition. In a latter publication
we will show that this leads to a Fredholm operator whose index is given by the
finite part of the Euler characteristic of the 9-Neumann complex. We restrict our
attention to metrics which are Kihler in a neighborhood of bX. With this restric-
tion, and appropriate boundary conditions, the operators . and d + 0* have the
same index. We therefore concentrate on the latter operator.

Remark 1. In this paper C is used to denote a variety of positive constants which
depend only on the geometry of X. We make extensive usage of the boundary
adapted (1, — %)—Sobolev space. For a definition see [6]. For our applications, the
most important properties of this space are the following facts:

(a) The restriction map H(L_%)(X) — L*(bX) is continuous.
(b) The Poisson kernel for the Dirac operator is continuous as a map

L*(X: E [px) — H, _1,(X; E).
Here E is an appropriate spinor bundle.
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1. SUBELLIPTIC BOUNDARY CONDITIONS FOR Og

Henceforth X denotes a compact complex manifold with strictly pseudoconvex
boundary. The kernels of 5% are both infinite dimensional. Let * denote the oper-
ators defined on bX which are the projections onto the boundary values of element
in ker 5%; these are the Calderon projections. They are classical pseudodifferential
operators of order 0; see [1]. The L2-closure of the operators 0%, with domains
consisting of smooth spinors such that ?* (o | »x) = 0, are elliptic with Fredholm
index zero.

Let p be a smooth defining function for the boundary of X. If o is a section of
AP, smooth up to b X, then the d-Neumann boundary condition is the requirement
that

dplo Tpx=0.
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As all holomorphic functions on X satisfy this condition, using this as a boundary
condition for the operator J¢ again leads to an operator with an infinite dimensional
nullspace. Let & denote an orthogonal projection acting on €°°(bX) with range the
boundary values of holomorphic functions on X, or briefly, a Szegd projection. For
o, an element of %“(Y; A%even @y A0-0dd) we write

o =o09+0+07,

with ¢’ the terms in o with degrees larger than 1. The augmented d-Neumann
condition, on even degree forms is defined to be

+ (00 . _300'0 _
(2) R (O'/> rbX— (3,0J0’) FhX— 0.
The boundary condition on odd degree forms, formally adjoint to (2), is given by
_ (o _ (Ad=9)dp]o _
3) R <0/) [bx= ( 3o’ ) lbx= 0.

The operations in the lower right impose the d-Neumann condition in degrees
greater than 1; the boundary value of the O-degree part of o is orthogonal to the
nullspace of 9),, whereas the d p-component of the (0, 1)-part has boundary value
lying in the nullspace of 8. We prove a priori estimates for smooth forms satisfy-
ing the boundary conditions above.

2. A PRIORI ESTIMATES

The 3-Neumann conditions leads to basic integration-by-parts formulz for 8%.

Lemma 1. Ifo € €°(X; A%") (or o € € (X; A%°Y) satisfies (2) ( (3)), then
4) (050, 050) 2 = (30, 30) 12 + (3%0, %) 2
Proof of the lemma. The proof of the lemma is a simple consequence of the facts
that
(@ =0 i
(b) If nisa (0, j)-form satisfying dp|n [,x= 0, then, for 8 any
smooth (0, j — 1)-form we have
(5) (B,0"n) 12 = (0B, n) 2.
If o =09+ 0y + -+ + 0y, then we need to show that
(002, 0% 0a(j41)) 12 = 0.
This follows immediately from (a), (b), and the fact that oy(;;) satisfies (2). A

similar proof applies in the odd case. O

The lemma implies that

(©6) )

(0f0,0f0)2 = (30’,00") 12 + (3%0’, 0*0”") 12 + (D00, D00) 12,

(0c0,050) 2 = (307, 30") 12 + (3%0’, 3*0") 2 + (301, do1) 12 + (8% 01, 3% 01) 2.
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The “basic estimate” for the 3-Neumann problem therefore implies (in the odd or
even case) that there is a positive constant C so that
2 + 2 1.
(7) IIU’II(],f%) < CllIogo 2 + llo’l13:1;
see [4].

To prove an a priori estimate in the even case we need to consider oy. Let & be
the Bergmann projector on X. We also have the classical estimate

®) 1Ad =B)ooll _1, < ClIdooll72 + llooll72]-
To handle %Bo, we use the boundary condition, which implies that
0 =F(00 [px) = SAAd=B)oo] [5x) + F([Boo] [px).
As L([Bay] Tpx) = [Boy] [»x this implies that
[Bool [px= F((Id =B)oo] [px)-
If I is the Poisson kernel for 0" then
Boog = HF([Ad =B)oo] [x),
which, in turn, shows that
©) IBoolly 1) < CIAd=B)oolly 1.
Here we use the fact that J{ is a continuous map from L*(bX; A% |,x) to
H(L_%)(X; Adeveny: see [1].

Combining this estimate with (8) and (6) we obtain the basic a priori estimate
for the even case:

Lemma 2. There is a positive constant, C such that if o € €%°(X; A*¢"*"), satis-
fies (2), then

2 2 2
(10) ol ) < CUBEo 12 + o1,
To obtain an analogous result for the odd case we need to estimate o; in terms

of |07 o ||;2. We use the method employed in [5].

Lemma 3. Suppose that o, € € (X; A%V satisfies (3); write 01 = o019 + fé,o,
where f = 0p]oy. There is a positive constant C, independent of o\ so that

2 2 2 -2

(11) ||010||(]’7%) + 1 £z < Clllollyz + 107 o1 ll72]-

Proof. As o satisfies the d-Neumann condition, it satisfies the classical %—estimate,
2 - 2 2

(12) |I010I|<1y7%) < C[I8¢om0ll;2 + llonoll;2]-

To prove (11) we first show that ||0¢ (f 3p)|l,2 bounds the H'-norm of f and then
handle the cross terms which arise in the computation of |9 (o190 + f ap) ”12'

Let W denote the unique (1, 0)-vector field, defined in a neighborhood of b X
such that W annihilates the orthocomplement of dp and satisfies

dp(W) = 1.
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We cover bX by neighborhoods {U;} such that in each U there is an orthogonal
basis for T'X of the form {W, Z,, ..., Z,}. Let {dp, wy, . . ., w,} denote the dual
basis of (1, 0)-forms.

As f [px satisfies a global boundary condition, care is required in the use of
partitions of unity. In a fixed neighborhood U; we can write

n
g1 = Zajc?)j,
j=1
we then have the formula
5010 = Zikajd)k A\ CZ)]' + Z[ajf_)d)j —I—Wajé,o A\ CT)J]
J#k J

5*010 = — Z[Zjaj + cjaj].
J#k

(13)

Here {c;} are smooth functions. We also have

0(fap) =Y Z;fi; ndp
j=1

3*(fap) = —Wf +cf.

(14)

Here c is a smooth function; the second formula holds in a neighborhood of b X.
It suffices to assume that f is supported in a small neighborhood of bX. If i is
a smooth function with support in U; then a simple integration by parts shows that

i sraols: = Y- [ 1Z,wrav
Jj=1 X

(1) )
=Y [ 1z, Pav +Re [ Lo,

J‘:l X X

where L is a smooth vector field defined on U,. Thus we see that
(16)

_ _ 1 <& _ -
BRI / UZ;WHIP+1Z;(W)I*dV]+ Re / Loy f (b f)dV
J=lx X
On the other hand

10*(fap)l;, = / |WfI*dV + Re / Lyf fdv,
X

X
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where L is another smooth first order differential operator. Integrating by parts in
this formula gives

/}Wf&ﬂ/:/WWUVdV+R§/Lgjﬂv+

X X X

(17)
f (c(W,dp)fW f —o(W,dp) fW £)dS,
bX

again L{ is a smooth first order operator. The vector field W = N — iT where
N is a outward pointing normal vector and 7' is tangent to bX. Since o (dp, W) =
o(W,dp) = 1, the boundary term in (17) can be rewritten as

2i | fTfdS.
/

The Toeplitz operator ¥ — i TY has a positive definite symbol of positive order
in the Heisenberg calculus; see [3]. In light of the fact that ¥ f = f, this implies
that there is a positive constant C so that

(18) OIS Tox 12 < 2i / fT fds.

bX
Combining this with (17) shows that there is a positive constant C so that
1 774 i a* A
(19 = /[|Wf|2 +IWfIP +Re(fLe NIV — I fll,_1y < CII*(f3p)72-

2
X

To prove this estimate we did not use a partition of unity. Combining (19) with (16),

summed over a partition of unity, gives the estimate
(20)

(VA -I—Re/ FLof = 1f g1y < CUIBC AP+ 18" (FIpNIT2 + 1 £ ol -],
X

for a positive constant C. Applying the Cauchy-Schwarz inequality and standard
interpolation inequalities, shows that there is a positive constant C so that

21 LI < CUIBCFIP)IZ> + 18372 + I FIpllz-],

To finish we need to show that the cross terms are of lower order. Supposing
that o is supported in a chart U; we have the formula

(3010, I(fIp)) + (3*010, 3*(f3P)) =

22 n L _ )
= Re / Z[Z./@/Wf—WajZ,/f]—kZa‘,L’jf av |,

x \J=l
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with { Lf/} smooth first order operators. Integrating by parts in the first sum on the
right-hand side gives,

Re /Z[ZjajW—f—Waijf]dV :ReZ[faijde+
(23) x = =1ty

faijde].

bX

In light of the fact that 8, f [,x= 0, the boundary term in (23) is zero. Applying
the Cauchy-Schwarz inequality we easily combine (12), (21) and (23) to complete
the proof of (11). O

The a priori estimate for the odd Dirac operator with boundary condition defined
by R~ is summarized in the following lemma.

Lemma 4. Suppose that o € € (X; A%°) satisfies (3) and o = 019+ fé,o +0o’,
as in Lemma 3. Then there is a positive constant C so that

(24) oG,y + llonollgy gy + 1 F 15 < CUBCo N7 + llo 7]

3. THE KERNELS OF Og

The estimates (24) and (10) imply that the closures of 5% on the domains defined
by ®* have compact resolvent and therefore closed ranges and finite dimensional
kernels. Higher norm estimates can be derived exactly as for the usual 9-Neumann
problem. We will return to this in a later publication. Note that such estimates
imply that the kernels of E% are contained in 6*°(X; @A%). For ¢ > 0 we let

%g’q (X) denote the finite dimensional vector space of 9-Neumann harmonic (0, q)-
forms:

Ho?(X) = {w € € (X; A") 1 dw =0, 3*w=0, dple [Hx=0}.

It follows easily from (4) that

k
0,2j
(25) ker 9 = @ ¥ (X,
j=l1
with k the greatest integer in dimTX. Away from degree 1 a similar result is immedi-
ate for 0. The result also holds in degree 1.

Lemma 5. If oy is a smooth (0, 1)-form which satisfies (3) and 9.0, = 0, then o,
satisfies the d-Neumann condition.

Proof. We use the Hodge decomposition defined by the d-Neumann operator to
write

o] = 55*(@%101 + P%1g,.
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The 5*5‘93’101 term is absent because 5*5‘52’101 = 5*%2’1501, and do; = 0. The
second term on the right-hand side satisfies the 9-Neumann condition, so it suffices
to show that the first term is zero.
Leta = 8*&@2’101, and write
a lpx= ap + o,

where o = Fa [,x . Let ag be the homomorphic extension of &g and a; = a — ay.

We integrate by parts to obtain

(da, da) > = (day, da) >
(26) L 1_*_ L ) )
= (a1, 0°0a) 2 + (0 (9, dr)ay, 9a) 12px)-

Recall that 3*da = 0, and, therefore, the first term on the right-hand side in (26)
vanishes. As

<(7(5, dr)a], éa>L2(bX) = (al, G(é*, dr)éa)LZ(bX),

and 0(5*, dr)éa [»x belongs to the range of &, whereas a; [,y is perpindicular to

the range of &, the second term also vanishes, and therefore da = 0. U

Using this lemma and (4) we obtain (modulo the smoothness of ker 0) that if
dim X is even then

k
27) kerdg = P # >~ (X).
j=1
and, if dim X is odd, then
k
(28) kerdg = EP a7+ (X).
j=0

To show that the closure of 3g is a Fredholm operator and compute its index,
it remains to show that the adjoint of the closure of 5g is the closure of J. Once
the higher norm estimates for O are established, then this result follows exactly as
for the 3-Neumann problem. One shows that the range of (0c)*0¢ +1d, restricted
to the smooth elements in its domain, is dense in L2. This implies that the domain
(05)* equals the closure of the domain of Jg.
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