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Abstract

We assume that the manifold with boundary,X, has a SpinC-structure
with spinor bundleS/. Along the boundary, this structure agrees with the struc-
ture defined by an infinite order integrable almost complex structure and the
metric is Kähler. In this case the SpinC-Dirac operatorð agrees with̄∂ + ∂̄∗

along the boundary. The induced CR-structure onbX is integrable and either
strictly pseudoconvex or strictly pseudoconcave. We assume thatE → X
is a complex vector bundle, which has an infinite order integrable complex
structure alongbX, compatible with that defined alongbX. In this paper use
boundary layer methods to prove subelliptic estimates for the twisted SpinC-
Dirac operator acting on sections onS/⊗ E. We use boundary conditions that
are modifications of the classical∂̄-Neumann condition. These results are
proved by using the extended Heisenberg calculus.

Introduction

Let X be an even dimensional manifold with a SpinC-structure, see [11]. A compat-
ible choice of metric,g, defines a SpinC-Dirac operator,ð which acts on sections
of the bundle of complex spinors,S/. This bundle splits as a direct sumS/ = S/e⊕ S/o.

The metric onT X induces a metric on the bundle of spinors. We let〈σ, σ 〉g denote
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the pointwise inner product. This, in turn, defines an inner product on the space of
sections ofS/, by setting:

〈σ, σ 〉X =
∫

X

〈σ, σ 〉gdVg

If X has an almost complex structure, then this structure definesa SpinC-
structure, see [4]. If the complex structure is integrable,then the bundle of complex
spinors is canonically identified with⊕q≥03

0,q. We use the notation

3e =
⌊ n

2⌋⊕

q=0

30,2q 3o =
⌊ n−1

2 ⌋⊕

q=0

30,2q+1. (1)

If the metric is Kähler, then the SpinC Dirac operator is given by

ð = ∂̄ + ∂̄∗.

Here ∂̄∗ denotes the formal adjoint of̄∂ defined by the metric. This operator is
called the Dolbeault-Dirac operator by Duistermaat, see [4]. If the metric is Her-
mitian, though not Kähler, then

ðC = ∂̄ + ∂̄∗ + M0,

with M0 a homomorphism carrying3e to 3o and vice versa. It vanishes at points
where the metric is Kähler. It is customary to writeð = ðe + ðo where

ð
e : C

∞(X; S/e) −→ C
∞(X; S/o),

andðo is the formal adjoint ofðe.

If X has a boundary, then the kernels and cokernels ofðeo are generally in-
finite dimensional. To obtain a Fredholm operator we need to impose boundary
conditions. In this instance, there are no local boundary conditions for ðeo that
define elliptic problems. Starting with the work of Atiyah, Patodi and Singer, the
basic boundary value problems for Dirac operators on manifolds with boundary
have been defined by classical pseudodifferential projections acting on the sections
of the spinor bundle restricted to the boundary. In this paper we analyzesubel-
liptic boundary conditions forðeo obtained by modifying the classical∂̄-Neumann
and dual∂̄-Neumann conditions. Thē∂-Neumann conditions on a strictly pseu-
doconvex manifold allow for an infinite dimensional null space in degree 0 and,
on a strictly pseudoconcave manifold, in degreen − 1. We modify these boundary
conditions by using generalized Szegő projectors, in the appropriate degrees, to
eliminate these infinite dimensional spaces.
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In this paper we prove the basic analytic results needed to doindex theory for
these boundary value problems. To that end, we compare the projections defining
the subelliptic boundary conditions with the Calderon projector and show that, in
a certain sense, these projections are relatively Fredholm. We should emphasize
at the outset that these projections are not relatively Fredholm in the usual sense
of say Fredholm pairs in a Hilbert space, used in the study of elliptic boundary
value problems. Nonetheless, we can use our results to obtain a formula for a
parametrix for these subelliptic boundary value problems that is precise enough
to prove, among other things, higher norm estimates. This formula is related to
earlier work of Greiner and Stein, and Beals and Stanton, see[7, 2]. We use the
extended Heisenberg calculus introduced in [6]. Similar classes of operators were
also introduced by Greiner and Stein, Beals and Stanton as well as Taylor, see [7,
2, 1, 14]. The results here and their applications in [5] suggest that the theory of
Fredholm pairs has an extension to subspaces ofC

∞ sections where the relative
projections satisfy appropriate tame estimates.

In this paperX is a SpinC-manifold with boundary. The SpinC structure along
the boundary arises from an almost complex structure that isintegrable to infinite
order. This means that the induced CR-structure onbX is integrable and the Nijen-
huis tensor vanishes to infinite order along the boundary. Wegenerally assume that
this CR-structure is either strictly pseudoconvex (or pseudoconcave). When we
say that “X is a strictly pseudoconvex (or pseudoconcave) manifold,” this is what
we mean. We usually treat the pseudoconvex and pseudoconcave cases in tandem.
When needed, we use a subscript+ to denote the pseudoconvex case and−, the
pseudoconcave case.

Indeed, as all the important computations in this paper are calculations in Tay-
lor series along the boundary, it suffices to consider the case that the boundary of
X is in fact a hypersurface in a complex manifold, and we oftendo so. We suppose
that the boundary ofX is the zero set of a functionρ such that

1. dρ 6= 0 alongbX.

2. ∂∂̄ρ is positive definite alongbX. Henceρ < 0, if X is strictly pseudoconvex
andρ > 0, if X is strictly pseudoconcave.

3. The length of∂̄ρ in the metric with Kähler form−i ∂∂̄ρ is
√

2 alongbX.

This implies that the lengthdρ is 2 alongbX.

If bX is a strictly pseudoconvex or pseudoconcave hypersurface,with respect to
the infinite order integrable almost complex structure along bX, then a defining
functionρ satisfying these conditions can always be found.

The Hermitian metric onX, near tobX, is defined by∂∂̄ρ. If the almost com-
plex structure is integrable, then this metric is Kähler. This should be contrasted to
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the usual situation when studying boundary value problems of APS type: here one
usually assumes that the metric is a product in a neighborhood of the boundary,
with the boundary a totally geodesic hypersurface. Since weare interested in using
the subelliptic boundary value problems as a tool to study the complex structure of
X and the CR-structure ofbX, this would not be a natural hypothesis. Instead of
taking advantage of the simplifications that arise from using a product metric, we
use the simplifications that result from using Kähler coordinates.

Let P
eo denotes the Calderon projectors andR

′ eo, the projectors defining the
subelliptic boundary value problems on the even (odd) spinors, respectively. These
operators are defined in [5] as well as in Lemmas 4 and 5. The main objects of
study in this paper are the operators:

T
′ eo = R

′ eo
P

eo + (Id −R
′ eo)(Id −P

eo). (2)

These operators are elements of the extended Heisenberg calculus. If X is strictly
pseudoconvex, thenT′ eo is an elliptic operator, in the classical sense, away from the
positive contact direction. Along the positive contact direction, most of its principal
symbol vanishes. If instead we compute its principal symbolin the Heisenberg
sense, we find that this symbol has a natural block structure:

(
A11 A12

A21 A22

)
. (3)

As an element of the Heisenberg calculusAi j is a symbol of order 2− (i + j ). The
inverse has the identical block structure

(
B11 B12

B21 B22

)
, (4)

where the order ofBi j is (i + j ) − 2. The principal technical difficulty that we
encounter is that the symbol ofT

′ eo along the positive contact direction could,
in principle, depend on higher order terms in the symbol ofP

eo as well as the
geometry ofbX and its embedding as the boundary ofX. In fact, the Heisenberg
symbol ofT′ eo is determined by the principal symbol ofP

eo and depends in a very
simple way on the geometry ofbX →֒ X. It requires some effort to verify this
statement and explicitly compute the symbol. Another important result is that the
leading order part ofB22 vanishes. This allows the deduction of the classical sharp
anisotropic estimates for these modifications of the∂̄-Neumann problem from our
results. Analogous remarks apply to strictly pseudoconcave manifolds with the
two changes that the difficulties occur along the negative contact direction, and the
block structure depends on the parity of the dimension.
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As it entails no additional effort, we work in somewhat greater generality and
consider the “twisted” SpinC Dirac operator. To that end, we letE → X denote a
complex vector bundle and consider the Dirac operator acting on sections ofS/⊗ E.

The bundleE is assumed to have an almost complex structure near tobX, that is
infinite order integrable alongbX. We assume that this almost complex structure
is compatible with that defined onX alongbX. By this we meanE → X defines,
alongbX, an infinite order germ of a holomorphic bundle over the infinite order
germ of the holomorphic manifold.We call such a bundle a complex vector bundle
compatiblewith X. When necessary for clarity, we let∂̄E denote thē∂-operator
acting on sections of30,q ⊗ E. A Hermitian metric is fixed on the fibers ofE and
∂̄∗

E denotes the adjoint operator. AlongbX, ðE = ∂̄E + ∂̄∗
E. In most of this paper

we simplify the notation by suppressing the dependence onE.

We first recall the definition of the Calderon projector in this case, which is due
to Seeley. We follow the discussion in [3]. We then examine its symbol and the
symbol ofTeo

± away from the contact directions. Next we compute the symbolin
the appropriate contact direction. We see thatT

eo
± is a graded elliptic system in the

extended Heisenberg calculus. Using the parametrix forT
eo
± we obtain parametri-

ces for the boundary value problems considered here as well as those introduced
in [5]. Using the parametrices we prove subelliptic estimates for solutions of these
boundary value problems formally identical to the classical ∂̄-Neumann estimates
of Kohn. We are also able to characterize the adjoints of the graph closures of the
various operators as the graph closures of the formal adjoints.

Acknowledgments
Boundary conditions similar to those considered in this paper were first suggested to

me by Laszlo Lempert. I would like to thank John Roe for some helpful pointers on the
SpinC Dirac operator.

1 The extended Heisenberg Calculus

The main results in this paper rely on the computation of the symbol of an operator
built out of the Calderon projector and a projection operator in the Heisenberg
calculus. This operator belongs to the extended Heisenbergcalculus, as defined
in [6]. While we do not intend to review this construction in detail, we briefly
describe the different symbol classes within a single fiber of the cotangent bundle.
This suffices for our purposes as all of our symbolic computations are principal
symbol computations, which are, in all cases, localized to asingle fiber.

Each symbol class is defined by a compactification of the fibersof T∗Y. In our
applications,Y is a contact manifold of dimension 2n−1. Let L denote the contact
line within T∗Y. We assume thatL is oriented andθ is a global, positive section of
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L . According to Darboux’s theorem, there are coordinates(y0, y1, . . . , y2(n−1)) for
a neighborhoodU of p ∈ Y, so that

θ ↾U= dy0 +
1

2

n−1∑

j =1

[y j dyj +n − y j +ndyj ], (5)

Let η denote the local fiber coordinates onT∗Y defined by the trivialization

{dy0, . . . , dy2(n−1)}.

We often use the splittingη = (η0, η
′). In the remainder of this section we do

essentially all our calculations at the pointp. As such coordinates can be found
in a neighborhood of any point, and in light of the invarianceresults established
in [6], these computations actually cover the general case.

1.1 The compactifications ofT∗Y

We define three compactifications of the fibers ofT∗Y. The first is the standard
radial compactification,RT∗Y, defined by adding one point at infinity for each
orbit of the standardR+-action, (y, η) 7→ (y, λη). Along with y, standard polar
coordinates in theη-variables define local coordinates nearbRT∗Y :

r R =
1

|η|
, ω j =

η j

|η|
, (6)

with r R a smooth defining function forbRT∗Y.

To define the Heisenberg compactification we first need to define a parabolic
action of R+. Let T denote the vector field defined by the conditionsθ(T) =
1, iT dθ = 0. As usualiT denotes interior product with the vector fieldT. Let
H ∗ denote the subbundle ofT∗Y consisting of forms that annihilateT. Clearly
T∗Y = L⊕H ∗, letπL⊕πH∗ denote the bundle projections defined by this splitting.
The parabolic action ofR+ is defined by

(y, η) 7→ (y, λπH∗(y, η) + λ2πT (y, η)) (7)

In the Heisenberg compactification we add one point at infinity for each orbit under
this action. A smooth defining function for the boundary is given by

r H = [|πH∗(y, η)|4 + |πT (y, η)|2]− 1
4 . (8)

In [6] it is shown that the smooth structure ofH T∗Y depends only on the contact
structure, and not the choice of contact form.
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In the fiber overy = 0, r H = [|η′|4 + |η0|2]−
1
4 . Coordinates near the boundary

in the fiber overy = 0 are given by

r H , σ0 =
η0

[|η′|4 + |η0|2]
1
2

, σ j =
η j

[|η′|4 + |η0|2]
1
4

, j = 1, . . . , 2(n − 1). (9)

The extended Heisenberg compactification can be defined by performing a
blowup of either the radial or the Heisenberg compactification. Since we need
to lift classical symbols to the extended Heisenberg compactification, we describe
the fiber ofeHT∗Y in terms of a blowup ofRT∗Y. In this model we parabolically
blowup the boundary of contact line, i.e., the boundary of the closure ofL in RT∗Y.

The conormal bundle to thebRT∗Y defines the parabolic direction. The fiber of the
compactified space is a manifold with corners, having three hypersurface boundary
components. The two boundary points ofL become 2(n − 1) dimensional disks.
These are called the upper and lower Heisenberg faces. The complement ofbL
lifts to a cylinder, diffeomorphic to(−1, 1) × S2n−3, which was call the “classi-
cal” face. Letre± be defining functions for the upper and lower Heisenberg faces
andrc a defining function for the classical face. From the definition we see that
coordinates near the Heisenberg faces, in the fiber overy = 0, are given by

reH = [r 2
R + |ω′|4] 1

4 , σ̃ j = ω j

reH
, for j = 1, . . . , 2n − 2, (10)

with reH a smooth defining function for the Heisenberg faces. In orderfor an arc
within T∗Y to approach either Heisenberg face it is necessary that, foranyǫ > 0,

|η′| ≤ ǫ|η0|,

as|η| tends to infinity. Indeed, for arcs that terminate on the interior of a Heisenberg
face the ratioη′/

√
|η0| approaches a limit. Ifη0 → +∞ (−∞), then the arc

approaches the upper (lower) parabolic face. In the interior of the Heisenberg faces
we can use[|η0|]−

1
2 as a defining function.

1.2 The symbol classes and pseudodifferential operators

The symbols of order zero are defined in all cases as the smoothfunctions on the
compactified cotangent space:

S0
R = C

∞(RT∗Y), S0
H = C

∞(H T∗Y), S0
eH = C

∞(eHT∗Y). (11)

In the classical and Heisenberg cases there is a single orderparameter for symbols,
the symbols of orderm are defined as

Sm
R = r −m

R C
∞(RT∗Y), Sm

H = r −m
H C

∞(H T∗Y). (12)
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In the extended Heisenberg case there are three symbolic orders(mc, m+, m−), the
symbol classes are defined by

Smc,m+,m−
eH = r −mc

c r −m+
e+ r −m−

e− S0
eH. (13)

If a is a symbol belonging to one of the three classes above, andϕ is a smooth
function with compact support inU, then the Weyl quantization rule is used to
define the localized operatorMϕa(X, D)Mϕ :

Mϕa(X, D)Mϕ f =
∫

R2n−1

∫

R2n−1

ϕ(y)a(
y + y′

2
, η)ϕ(y′) f (y′)ei 〈η,y−y′〉 dy′dη

(2π)2n−1
.

(14)
The operatorMϕ is multiplication byϕ. As usual, the Schwartz kernel ofa(X, D)

is assumed to be smooth away from the diagonal.
We denote the classes of pseudodifferential operators defined by the symbol

classesSm
R, Sm

H , Smc,m+,m−
eH by9m

R,9m
H ,9

mc,m+,m−
eH , respectively. As usual, the lead-

ing term in the Taylor expansion of a symbol along the boundary can be used to
define a principal symbol. Because the defining functions forthe boundary compo-
nents are only determined up to multiplication by a positivefunction, invariantly,
these symbols are sections of line bundles defined on the boundary. We letRσm(A),
Hσm(A) denote the principal symbols for the classical and Heisenberg pseudodif-
ferential operators of orderm. In each of these cases, the principal symbol uniquely
determines a function on the cotangent space, homogeneous with respect to the ap-
propriateR+ action. An extended Heisenberg operator has three principal symbols,
corresponding to the three boundary hypersurfaces ofeHT∗Y. For an operator with
orders(mc, m+, m−) they are denoted byeHσ c

mc
(A), eHσm+(+)(A), eHσm−(−)(A).

The classical symboleHσ c
mc

(A) can be represented by a radially homogeneous
function defined onT∗Y \ L . The vector fieldT defines a splitting toT∗Y into
two half spaces

T∗
±Y = {(y, η) : ±η(T) > 0}. (15)

The Heisenberg symbols,eHσm±(±)(A) can be represented by parabolically homo-
geneous functions defined in the half spaces ofT∗

±Y. In most of our computations
we use the representations of principal symbols in terms of functions, homoge-
neous with respect to the appropriateR+-action.

1.3 Symbolic composition formulæ

The quantization rule leads to a different symbolic composition rule for each class
of operators. For classical operators, the composition of principal symbols is given
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by pointwise multiplication: IfA ∈ 9m
R , B ∈ 9m′

R , thenA ◦ B ∈ 9m+m′
R and

Rσm+m′(A ◦ B)(p, η) = Rσm(A)(p, η)Rσm′(B)(p, η). (16)

For Heisenberg operators, the composition rule involves a nonlocal operation in the
fiber of the cotangent space. IfA ∈ 9m

H , B ∈ 9m′
H , then A ◦ B ∈ 9m+m′

H . For our
purposes it suffices to give a formula forHσm+m′(A ◦ B)(p,±1, η′); the symbol
is then extended toT∗

p Y \ H ∗ as a parabolically homogeneous function of degree
m + m′. It extends toH ∗ \ {0} by continuity. On the hyperplanesη0 = ±1 the
composite symbol is given by

Hσm+m′(A ◦ B)(p,±1, η′) =
1

π2(n−1)

∫

R2(n−1)

∫

R2(n−1)

am(±1, u + η′)bm′(±1, v + η′)e±2iω(u,v)dudv, (17)

whereω = dθ ′, the dual ofdθ ↾H∗ , and

am(η) = Hσm(A)(p, η), bm′(η) = Hσm′(B)(p, η).

Note that the composed symbols in each half space are determined by the com-
ponent symbols in that half space. Indeed the symbols that vanish in a half space
define an ideal. These are called the upper and lower Hermite ideals. The right
hand side of (17) defines two associative products on appropriate classes of func-
tions defined onR2(n−1), which are sometimes denoted byam♯±bm′ . An operator in
9m

H is elliptic if and only if the functionsHσm(p,±1, η′) are invertible elements,
or units, with respect to these algebra structures.

Using the representations of symbols as homogeneous functions, the compo-
sitions for the different types of extended Heisenberg symbols are defined using
the appropriate formula above: the classical symbols are composed using (16) and
the Heisenberg symbols are composed using (17), with+ for eHσ (+) and− for
eHσ (−). These formulæ and their invariance properties are established in [6].

The formula in (17) would be of little use, but for the fact that it has an in-
terpretation as a composition formula for a class of operators acting onR

n−1. The
restrictions of a Heisenberg symbol to the hyperplanesη0 = ±1 defineisotropic
symbols onR

2(n−1). An isotropic symbol is a smooth function onR
2(n−1) that sat-

isfies symbolic estimates in all variables, i.e.,c(η′) is an isotropic symbol of order
m if, for every 2(n − 1)-multi-indexα, there is a constantCα so that

|∂α
η′c(η′)| ≤ Cα(1 + |η′|)m−|α|. (18)

We splitη′ into two parts

x = (η1, . . . , ηn−1), ξ = (ηn, . . . , η2(n−1)). (19)

9



If c is an isotropic symbol, then we define two operators acting onS(Rn−1) by
defining the Schwartz kernels ofc±(X, D) to be

k±
c (x, x′) =

∫

Rn−1

e±i 〈ξ,x−x′〉c(
x + x′

2
, ξ )dξ. (20)

The utility of the formula in (17) is a consequence of the following proposition:

Proposition 1. If c1 and c2 are two isotropic symbols, then the complete symbol
of c±

1 (X, D) ◦ c±
2 (X, D) is c1♯±c2, with ω =

∑
dxj ∧ dξ j . An isotropic operator

c±(X, D) : S(Rn−1) → S(Rn−1) is invertible if and only if c(η′) is a unit with
respect to the♯± product.

Remark1. This result appears in essentially this form in [13]. It is related to an
earlier result of Rockland.

If A is a Heisenberg (or extended Heisenberg operator), then theisotropic sym-
bols Hσm(A)(p,±1, η′) (eHσ±(A)(p,±1, η′)) can be quantized using (20). We
denote the corresponding operators byHσm(A)(p,±), (eHσ (A)(p,±)). We call
these “the” model operators defined byA at p. Often the point of evaluation,p is
fixed and then it is omitted from the notation. The choice of splitting in (19) cannot
in general be done globally. Hence the model operators are not, in general, glob-
ally defined. What is important to note is that the invertibility of these operators
doesnot depend on the choices made to define them. From the proposition it is
clear thatA is elliptic in the Heisenberg calculus if and only if the model operators
are everywhere invertible. An operator in the extended Heisenberg calculus is el-
liptic if and only if these model operators are invertible and the classical principal
symbol is nonvanishing.

All these classes of operators are easily extended to act between sections of
vector bundles. When necessary we indicate this by using, e.g. 9m

R(Y; F1, F2)

to denote classical pseudodifferential operators of orderm acting from sections of
the bundleF1 to sections of the bundleF2. In this case the symbols take values
in P∗(hom(F1, F2)), where P : T∗Y → Y is the canonical projection. Unless
needed for clarity, the explicit dependence on bundles is suppressed.

1.4 Lifting classical symbols toeHT∗Y

We close our discussion of the extended Heisenberg calculusby considering lifts
of classical symbols fromRT∗Y to eHT∗Y. As above, it suffices to consider what
happens on the fiber overp. This fixed point of evaluation is suppressed to sim-
plify the notation. Leta(η) be a classically homogeneous function of degreem.
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The transition from the radial compactification to the extended Heisenberg com-
pactification involves blowing up the points(±∞, 0) in the fiber of RT∗Y. We
need to understand the behavior ofa near these points. Away fromη = 0, we can
expressa(η) = r −m

R a0(ω), wherea0 is a homogeneous function of degree 0. Using
the relations in (6) and (10) we see that

r R = r 2
eH

√
1 − |σ̃ ′|4, ω′ = reHσ̃ ′. (21)

NearbL we can user R andω′ as coordinates, where the functiona has Taylor
expansions:

a±(r R, ω′) = r −m
R a0(±

√
1 − |ω′|2, ω′) ∼ r −m

R

∑

α

a(α)
± ω′α. (22)

To find the lift, we substitute from (21) into (22) to obtain

a(reH, σ̃ ′) ∼ r −2m
eH (1 − |σ̃ ′|4)− m

2

∑

α

a(α)
± r |α|

eHσ̃ ′α. (23)

We summarize these computations in a proposition.

Proposition 2. Let a(η) be a classically homogeneous function of order m with
Taylor expansion given in(22). If a(α)

± vanish for|α| < k±, then the symbol a∈ Sm
R

lifts to define an element of Sm,2m−k+,2m−k−
eH . The Heisenberg principal symbols (as

sections of line bundles on the boundary) are given by

eHam± = r k±−2m
eH (1 − |σ̃ ′|4)− m

2

∑

|α|=k±

a(α)
± σ̃ ′α. (24)

Remark2. From this proposition it is clear that the Heisenberg principal symbol of
the lift of a classical pseudodifferential operator may notbe defined by its classical
principal symbol. It may depend on lower order terms in the classical symbol.

To compute with the lifted symbols it is more useful to represent them as
Heisenberg homogeneous functions. In the computations that follow we only en-
counter symbols of the form

a(η) =
h(η)

|η|k
, (25)

with h(η) a polynomial of degreel . In the fiber overp, the coordinateη0 is parabol-
ically homogeneous of degree 2 whereas the coordinates inη′ are parabolically ho-
mogeneous of degree 1. Using this observation, it is straightforward to find the rep-
resentations, as parabolically homogeneous functions, ofthe Heisenberg principal
symbols defined bya(η). First observe that|η′|2/η0 is parabolically homogeneous
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of degree 0, and therefore, in terms of theparabolic homogeneitieswe have the
expansion

1

|η|k
= 1

|η0|k
1

(
1 + |η′|2

η2
0

)k

∼
1

|η0|k


1 +

∞∑

j =1

ck, j

|η0| j

( |η′|2

|η0|

) j

 .

(26)

Thus|η|−k lifts to define a symbol inS−k,−2k,−2k
eH . Note also that only even parabolic

degrees appear in this expansion.
We complete the analysis by expressingh(η) as a polynomial inη0 :

h(η) =
l ′∑

j =0

η
j
0h j (η

′), (27)

hereh j is a radially homogeneous polynomial of degreel − j , and l ′ ≤ l . We
assume thathl ′ 6= 0. Evidentlyηl ′

0hl ′(η
′) is the term with highest parabolic order,

and thereforeh lifts to define a parabolic symbol of orderl ′ + l . Combining these
calculations gives the following result:

Proposition 3. If h(η) is a radially homogeneous polynomial of degree l with ex-
pansion given by(27), then h(η)|η|−k lifts to define an element of Sl−k,l ′+l−2k,l ′+l−2k

eH .

As parabolically homogeneous functions, the Heisenberg principal symbols are

(±1)l ′ |η0|l
′−khl ′(η

′). (28)

Proof. The statement about the orders of the lifted symbols followsimmediately
from (26) and (27). We observe that|η0|−

1
2 is a defining function for the upper

and lower Heisenberg faces, andη′/
√

|η0| is parabolically homogeneous of degree
0. As noted, the term in the expansion ofh(η)|η|−k with highest parabolic degree
is that given in (28). We can express it as the leading term in the Taylor series of
the lifted symbol along the Heisenberg face as:

(±1)l ′ |η0|l
′−khl ′(η

′) = (±1)l ′[
√

|η0|]l+l ′−2khl ′

(
η′

√
|η0|

)
. (29)

Note that the terms in the parabolic expansions of the lift ofh(η)|η|−k all have
the same parity.
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2 The symbol of the Dirac Operator and its inverse

Let X be a manifold with boundary,Y and suppose thatX has a Spin
C
-structure

and a compatible metric. LetðE denote the twisted Spin
C
-Dirac operator andðeo

E

its “even” and “odd” parts. Letρ be a defining function forbX. As noted above,
E → X is a complex vector bundle with compatible almost complex structure
alongbX. The manifoldX can be included into a larger manifold̃X in such a way
that its Spin

C
-structure and Dirac operator extend smoothly toX̃ and such that the

operatorsðeo
E are invertible, see Chapter 9 of [3]. LetQeo

E denote the inverses of
ð

eo
E . These are classical pseudodifferential operators of order−1. The existence of

an exact inverse just simplifies the presentation a little, aparametrix suffices for
our computations.

Let r denote the operation of restriction of a section ofS/eo ⊗ E, defined on
X̃ to X, and γǫ the operation of restriction of a smooth section ofS/eo ⊗ E to
Yǫ = {ρ−1(ǫ)}. We use the convention used in [5]: ifX is strictly pseudoconvex
thenρ < 0 on X and if X is strictly pseudoconcave thenρ > 0 on X. We define
the operator

K̃ eo
E

d= r Qeo
E γ ∗

0 : C
∞(Y; S/oe⊗ E ↾Y) −→ C

∞(X; S/eo⊗ E). (30)

Hereγ ∗
0 is the formal adjoint ofγ0. We recall that, alongY the symbolσ1(ð

eo
E , dρ)

defines an isomorphism

σ1(ð
eo, dρ) : S/eo⊗ E ↾Y−→ S/oe⊗ E ↾Y . (31)

Composing, we get the usual Poisson operators

K
eo
E± =

∓
i
√

2
K̃ eo

E ◦ σ1(ð
eo
E , dρ) : C

∞(Y; S/eo⊗ E ↾Y) −→ C
∞(X; S/eo ⊗ E), (32)

which map sections ofS/eo ⊗ E ↾Y into the nullspace ofðeo
E . The factor∓/

√
2 is

inserted becauseρ < 0 on X, if X is strictly pseudoconvex, and‖dρ‖ =
√

2.

The Calderon projectors are defined by

P
eo
E±s

d= lim
∓ǫ→0+

γǫK
eo
E±s for s ∈ C

∞(Y; S/eo⊗ E ↾Y). (33)

The fundamental result of Seeley is thatP
eo
E± are classical pseudodifferential oper-

ators of order 0. The ranges of these operators are the boundary values of elements
of kerðeo

E±. Seeley gave a prescription for computing the symbols of these oper-
ators using contour integrals, which we do not repeat, as we shall be computing
these symbols in detail in the following sections. See [12]
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Remark3 (Notational remark) . The notationP± used in this paper doesnot fol-
low the usual convention in this field. UsuallyP± would refer to the Calderon
projectors defined by approaching a hypersurface in a singleinvertible double from
either side. In this case one would have the identityP+ + P− = Id . In our usage,
P+ refers to the projector for the pseudoconvex side andP− the projector for the
pseudoconcave side. With our convention it is not usually true thatP+ +P− = Id .

As we need to compute the symbol ofQeo
E is some detail, we now consider how

to find it. We start with the formally self adjoint operatorsDeo
E = ð

eo
E ð

oe
E . If Qeo

E(2)

is the inverse ofDeo
E then

Qeo
E = ð

oe
E Qeo

E(2). (34)

In carefully chosen coordinates, it is a simple matter to geta precise description of
symbols ofðeo

E andQeo
E(2) and thereby the symbols ofQeo

E . Throughout this and the
following section we repeatedly use the fact that the principal symbol of a classical,
Heisenberg or extended Heisenberg pseudodifferential operator is well defined as
a (collection of) homogeneous functions on the cotangent bundle. To make these
computations tractable it is crucial to carefully normalize the coordinates. At the
boundary, there is a complex interplay between the Kähler geometry ofX and the
CR-geometry ofbX. For this reason the initial computations are done in a Kähler
coordinate system about a fixed pointp ∈ bX. In order to compute the symbol of
the Calderon projector we need to switch to a boundary adapted coordinate sys-
tem. Finally, to analyze the Heisenberg symbols ofT

eo
E± we need to use Darboux

coordinates atp. Since the boundary is assumed to be strictly pseudoconvex (pseu-
doconcave), the relevant geometry is the same at every boundary point, hence there
is no loss in generality in doing the computations at a fixed point.

We now suppose that, in a neighborhood of the boundary,X is a complex man-
ifold and the Kähler form of the metric is given byωg = −i ∂∂̄ρ. We are implicitly
assuming thatbX is either strictly pseudoconvex or strictly pseudoconcave. Our
convention on the sign ofρ implies that, in either case,ωg is positive definite near
to bX. As noted above it is really sufficient to assume thatX has an almost com-
plex structure alongbX that is integrable to infinite order, however, to simplify the
exposition we assume that there is a genuine complex structure in a neighborhood
of bX. We fix an Hermitian metrich on sections ofE.

Fix a point p on the boundary ofX and let(z1, . . . , zn) denote Kähler coordi-
nates centered atp. This means that

1. p ↔ (0, . . . , 0)

2. The Hermitian metric tensorgi j̄ in these coordinates satisfies

gi j̄ =
1

2
δi j̄ + O(|z|2). (35)

14



As a consequence of Lemma 2.3 in [15], we can choose a local holomorphic frame
(e1(e), . . . , er (z)) for E such that

h(ej (z), ek(z)) = δ j k + O(|z|2). (36)

Equation (35) implies that, after a linear change of coordinates, we can arrange to
have

ρ(z) = −2 Rez1 + |z|2 + Re(bz, z) + O(|z|3). (37)

In this equationb is ann × n complex matrix and

(w, z) =
n∑

j =1

w j zj . (38)

We use the conventions for Kähler geometry laid out in Section IX.5 of [10]. The
underlying real coordinates are denoted by(x1, . . . , x2n), with zj = x j + i x j +n,

and(ξ1, . . . , ξ2n) denote the linear coordinates defined on the fibers ofT∗X by the
local coframe field{dx1, . . . , dx2n}.

In this coordinate system we now compute the symbols ofðE = ∂̄E + ∂̄∗
E, Deo

E ,

Qeo
E(2) andQeo

E . For these calculations the following notation proves very useful: a
term which is a symbol of order at mostk vanishing, atp, to orderl is denoted by
Ok(|z|l ). As we work with a variety of operator calculi, it is sometimesnecessary
to be specific as to the sense in which the order should be taken. The notation
OC

j refers to terms of order at mostj in the sense of the classC. If C = eH we
sometimes use an appropriate multi-order. If no symbol class is specified, then
the order is with respect to the classical, radial scaling. If no rate of vanishing is
specified, it should be understood to beO(1).

Recall that, with respect to the standard Euclidean metric

〈∂z̄ j , ∂z̄k〉eucl =
1

2
and〈dz̄j , dz̄k〉eucl = 2. (39)

Orthonormal bases forT1,0X and31,0X, near top, take the form

Z j =
√

2(∂z j + ej k(z)∂zk), ω j =
1

√
2
(dzj + f j k(z)dzk), (40)

with ej k and f j k both O(|z|2). With respect to the trivialization ofE given above,
the symbol ofðE is a polynomial inξ of the form

σ (ðE)(z, ξ ) = d(z, ξ ) = d1(z, ξ ) + d0(z), (41)

with d j (z, ·) a polynomial of degreej such that

d1(z, ξ ) = d1(0, ξ ) + O1(|z|2), d0(z) = O0(|z|). (42)
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The linear polynomiald1(0, ξ ) is the symbol of̄∂E + ∂̄∗
E on C

n with respect to the
flat metric. These formulæ imply that

σ (Deo
E ) = 12(z, ξ ) + 11(z, ξ ) + 10(z, ξ ), (43)

with 1 j (z, ·) a polynomial of degreej such that

12(z, ξ ) = 12(0, ξ ) + O2(|z|2)
11(z, ξ ) = O1(|z|), 10(z, ξ ) = O0(1).

(44)

As the metric is Kähler,Deo
E is half the Riemannian Laplacian, hence the principal

symbol at zero is

12(0, ξ ) =
1

2
|ξ |2 ⊗ Id . (45)

Here Id is the identity homomorphism on the appropriate bundle. As it has no sig-
nificant effect on our subsequence computations, or results, we heretofore suppress
the explicit dependence on the bundleE, except where necessary.

The symbolσ (Qeo
(2)) = q̃ = q̃−2 + q̃−3 + . . . is determined by the usual

symbolic relations:

q̃−2 = 1−1
2

q̃−3 = −q̃−2[11q̃−2 + i Dξ j 12Dx j q̃−2],
(46)

etc. Using the expressions in (44) we obtain that

q̃−2 = 2

|ξ |2
(Id +O0(|z|2))

q̃−3 =
O1(|z|)

|ξ |4
,

(47)

and generally fork ≥ 2 we have

q̃−2k =
lk∑

j =0

O2 j (1)

|ξ |2(k+ j )

q̃−(2k+1) =
l ′k∑

j =0

O1+2 j (1)

|ξ |2(k+ j +1)
.

(48)

The exact form of denominator is important in the computation of the symbol of
Calderon projectors. The numerators are polynomials inξ of the indicated degrees.

Set
σ (Qeo) = q = q−1 + q−2 + . . . (49)
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As it has no bearing on the calculation, for the moment we do not keep track of
whether to use the even or odd part of the operator. Note that the symbol ofQeo

(2) is
the same for both parities. From the standard composition formula, we obtain that

q−1 = d1q̃−2

q−2 = d1q̃−3 + d0q̃−2 + i
2n∑

j =1

Dξ j d1Dx j q̃−2.
(50)

Generally, we have

q−(2+k)(x, ξ ) = d0(x)q̃−(2+k)(x, ξ ) + d1(x, ξ )q̃−(3+k)(x, ξ )+

i
∑

|α|=1

Dα
ξ d1(x, ξ )Dα

x q̃−(2+k)(x, ξ ). (51)

Combining (42) and (47) shows that

q−2 = O−2(|z|). (52)

Using the expressions in (48) we see that fork ≥ 2 we have

q−2k =
lk∑

j =0

O2 j (1)

|ξ |2(k+ j )
, q−(2k−1) =

l ′k∑

j =0

O2 j +1(1)

|ξ |2(k+ j )
. (53)

In order to compute the symbol of the Calderon projector, we introduce bound-
ary adapted coordinates,(t, x2, . . . , x2n) where

t = −
1

2
ρ(z) = x1 + O(|x|2). (54)

Note thatt is positive on a pseudoconvex manifold and negative on a pseudocon-
cave manifold.

We need to use the change of coordinates formula to express the symbol in the
new variables. From [8] we obtain the following prescription: Let w = φ(x) be a
diffeomorphism anda(x, ξ ) the symbol of a classical pseudodifferential operator
A. Let (w, η) be linear coordinates in the cotangent space, thenaφ(w, η), the
symbol ofA in the new coordinates, is given by

aφ(φ(x), η) ∼
∞∑

k=0

∑

α∈Ik

(−i )k∂α
ξ a(x, dφ(x)t η)∂α

x̃ ei 〈8x (x̃),η〉

α!

∣∣∣∣
x=x̃

, (55)

where
8x(x̃) = φ(x̃) − φ(x) − dφ(x)(x̃ − x). (56)
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HereIk are multi-indices of lengthk. Our symbols are matrix valued, e.g.q−2 is
really (q−2)pq. As the change of variables applies component by component, we
suppress these indices in the computations that follow.

In the case at hand, we are interested in evaluating this expression atz = x = 0,

where we havedφ(0) = Id and

80(x̃) = (−
1

2
[|z̃|2 + Re(bz̃, z̃) + O(|z̃|3)], . . . , 0).

Note also that, in (55), the symbola is only differentiated in the fiber variables and,
therefore, any term of the symbol that vanishes atz = 0, in the Kähler coordinates,
does not contribute to the symbol at 0 in the boundary adaptedcoordinates. Of
particular importance is the fact that the termq−2 vanishes atz = 0 and therefore
does not contribute to the final result. Indeed we shall see that only the principal
symbolq−1 contributes to the Heisenberg principal symbol along the positive (or
negative) contact direction.

Thek = 1 term from (55) vanishes, thek = 2 term is given by

− i ξ1

2
tr[∂2

ξ j ξk
q(0, ξ )∂2

x j xk
φ(0)]. (57)

For k > 2, the terms have the form
∑

α∈Ik

∂α
ξ q(0, ξ )pα(ξ1). (58)

Here pα is a polynomial of degree at most⌊ |α|
2 ⌋. As we shall see, the terms for

k > 2 do not contribute to the final result.
To compute thek = 2 term we need to compute the Hessians ofq−1 andφ(x)

at x = 0. We define the 2n × 2n matrix B so that

Re(bz, z) = 〈Bx, x〉; (59)

if b = b0 + ib1, then

B =
(

b0 −b1

−b1 −b0

)
. (60)

With these definitions we see that

∂2
x j xk

φ(0) = −(Id +B). (61)

We further simplify the notation by lettingd1(ξ)
d= d1(0, ξ ), then

q−1(0, ξ ) =
2d1(ξ)

|ξ |2
. (62)
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Differentiating gives
∂q−1

∂ξ j
=

2∂ξ j d1

|ξ |2
−

2ξ j d1

|ξ |4
(63)

and
∂2q−1

∂ξk∂ξ j
= −4

d1 Id +ξ ⊗ ∂ξdt
1 + ∂ξd1 ⊗ ξ t

|ξ |4
+ 16d1

ξ ⊗ ξ t

|ξ |6
. (64)

Hereξ and∂ξd1 are regarded as column vectors.
We now compute the principal part of thek = 2 term

qc
−2(ξ) =i ξ1 tr

[
(Id +B)

(
−2

d1 Id +ξ ⊗ ∂ξdt
1 + ∂ξd1 ⊗ ξ t

|ξ |4
+ 8d1

ξ ⊗ ξ t

|ξ |6

)]

= 4i ξ1

[
(1 − n)

d1

|ξ |4
+ 2d1〈Bξ, ξ 〉

|ξ |6
− 〈Bξ, ∂ξd1〉

|ξ |4

]
.

(65)

Becauseq−2 vanishes at 0 and because the order of a symbol is preserved under
a change of variables we see that the symbol ofQeo at p is therefore

q(0, ξ ) =
2d1(ξ)

|ξ |2
+ qc

−2(ξ) + O−3(1). (66)

For the computation of the Calderon projector it is useful tobe a little more precise
about the error term. The terms of highest symbolic order aremultiples of terms
of the formξ k

1∂α
ξ q− j where|α| = 2k. We describe, in a proposition, the types of

terms that arise as error terms in (66)

Proposition 4. TheO−3(1)-term in (66) is a sum of terms of the form appearing
in (53) along with terms of the forms

ξ l
1h2m(ξ)

|ξ |2(k+l ′+m)
with either k= 1 and l ≥ 2 or k ≥ 2

ξ l
1h2m+1(ξ)

|ξ |2(k+l ′+m)
with k ≥ 2.

(67)

Here l′ ≥ l , m is a nonnegative integer and hj (ξ) is a radially homogeneous
polynomial of degree j.

Proof. This statement is an immediate consequence of (53), (55) andthe fact that
80(x̃) vanishes quadratically atx̃ = 0.
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3 The symbol of the Calderon projector

We are now prepared to compute the symbol of the Calderon projector; it is ex-
pressed as 1-variable contour integral in the symbol ofQeo. If q(t, x′, ξ1, ξ

′) is
the symbol ofQeo in the boundary adapted coordinates, then the symbol of the
Calderon projector is

p±(x′, ξ ′) =
1

2π

∫

Ŵ±(ξ1)

q(0, x′, ξ1, ξ
′)dξ1 ◦ σ1(ð

eo,∓idt). (68)

Here we recall thatq(0, x′, ξ1, ξ
′) is a meromorphic function ofξ1. For each fixed

ξ ′, the poles ofq lie on the imaginary axis. If X is strictly pseudoconvex, then t > 0
on X and we takeŴ+(ξ1) to be a contour enclosing the poles ofq(0, x′, ·, ξ ′) in the
upper half plane. IfX is strictly pseudoconcave, thent < 0 on X andŴ−(ξ1) is a
contour enclosing the poles ofq(0, x′, ·, ξ ′) in the lower half plane. In a moment
we use a residue computation to evaluate these integrals. For this purpose we note
that the contourŴ+(ξ1) is positively oriented, whileŴ−(ξ1) is negatively oriented.

The Calderon projector is a classical pseudodifferential operator of order 0 and
therefore its symbol has an asymptotic expansion of the form

p = p0 + p−1 + . . . (69)

The contact line,L p, is defined inT∗
p Y by the equations

ξ2 = · · · = xn = xn+2 = · · · = ξ2n = 0, (70)

andξn+1 is a coordinate along the contact line. Becauset = −1
2ρ, the positive

contact direction is given byξn+1 < 0. If X is pseudoconvex then, forξ ′ /∈ L+
p , it

suffices to computep0, whereas ifX is pseudoconcave, then forξ ′ /∈ L−
p it suffices

to computep0. We begin our computations with the principal symbol

Proposition 5. If X is strictly pseudoconvex (pseudoconcave) and p∈ bX with
coordinates normalized at p as above, then

peo
0 (0, ξ ′) =

doe
1 (±i |ξ ′|, ξ ′)

|ξ ′|
◦ σ1(ð

eo,∓idt). (71)

Proof. The leading term in the symbol of the Calderon projector comes from

q−1(0, ξ ) = 2d1(ξ)

|ξ |2
= 2d1(ξ1, ξ

′))

(ξ1 + i |ξ ′|)(ξ1 − i |ξ ′|)
. (72)

Evaluating the contour integral in (68) gives (71).
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Along the contact directions we need to evaluate higher order terms. We begin
by showing that the error terms in (66) contribute terms thatlift to have Heisenberg
order less than−2

Proposition 6. The error terms in(66) contribute terms to the symbol of the
Calderon projector that lift to have Heisenberg orders at most−4.

Proof. We first check the terms that come from the lower order terms inthe symbol
of Qeo before changing variables. These are of the forms given in (53) with k ≥ 2.

It suffices to consider a term of the form

h2 j +1(ξ)

|ξ |2(k+ j )
(73)

for k ≥ 2 and j ≥ 0. Applying the contour integration to such a term gives a
multiple of

∂
k+ j −1
ξ1

[
h2 j +1(ξ)

(ξ1 ± i |ξ ′|)k+ j

]

ξ1=±i |ξ ′ |
. (74)

As ξn+1 has Heisenberg order 2, it is not difficult to see that the highest parabolic
order term results ifh2 j +1(ξ) = ξ

2 j +1
n+1 . Differentiating gives a term of the form

ξ
2 j +1
n+1

|ξ ′|2k+2 j −1
. (75)

Proposition 3 implies that this term lifts to have Heisenberg order 4−4k. As k ≥ 2
the proposition follows in this case.

Among the terms that come from the change of variables formula, there are two
cases to consider: those coming fromq−1 and those coming fromq−k for k ≥ 3.

Recall thatq−2 does not contribute anything to the symbol atp. The terms in (55)
coming from the principal symbol are of the form

ξ l
1h1+2 j (ξ)

|ξ |2(1+ j +l ′)
where 2≤ l ≤ l ′ and j ≥ 0. (76)

Clearly the worst case is whenl = l ′ andh2 j +1 = ξ
2 j +1
n+1 . The contour integral

applied to such a term produces a multiple of

ξ
2 j +1
n+1

|ξ ′|l+2 j +1
. (77)

This lifts to have Heisenberg order−2l . As l ≥ 2, this completes the analysis of
the contribution of the principal symbol.
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Finally we need to consider terms of the forms given in (67) with k ≥ 2 and
l ≥ 1. As before, the worse case is withl = l ′ andh2 j +1(ξ) = ξ

2 j +1
n+1 . The contour

integral gives a term of the form

ξ
2 j +1
n+1

|ξ ′|2 j +1

1

|ξ ′|2k+l−2
. (78)

As 2k+l ≥ 5, these terms lift to have Heisenberg order at most−6. This completes
the proof of the proposition.

To finish our discussion of the symbol of the Calderon projector we need to
compute the symbol along the contact direction. This entails computing the contri-
bution fromqc

−2. As we now show, terms arising from the holomorphic Hessian of
ρ do not contribute anything to the symbol of the Calderon projector. To do these
computations we need to have an explicit formula for the principal symbold1(ξ)

of ð at p. For the purposes of these and our subsequent computations, it is useful
to use the chiral operatorsðeo. As we are working in a Kähler coordinate system,
we only need to find the symbols ofðeo for C

n with the flat metric. Letσ denote a
section of3eo ⊗ E. We splitσ into its normal and tangential parts atp :

σ = σ t +
dz̄1√

2
∧ σ n, i ∂z̄1

σ t = 0, i ∂z̄1
σ n = 0. (79)

With this splitting we see that

ð
eσ =

√
2

(
∂z̄1 ⊗ IdE,n Dt

−Dt −∂z1 ⊗ IdE,n

)(
σ t

σ n

)

ð
oσ =

√
2

(
−∂z1 ⊗ IdE,n −Dt

Dt ∂z̄1 ⊗ IdE,n

)(
σ n

σ t

)
,

(80)

where IdE,n is the identity matrix acting on the normal, or tangential parts of3eo⊗
E ↾bX and

Dt =
n∑

j =2

[∂z j ej − ∂z̄ j ǫ j ] with ej = i√2∂z̄ j
andǫ j =

dz̄j√
2

∧ . (81)

These symbols are expressed in the block matrix structure shown in (3). It is now
a simple matter to computedeo

1 (ξ) :

de
1(ξ) =

1
√

2

(
(i ξ1 − ξn+1) ⊗ IdE,n d(ξ ′′)

−d(ξ ′′) −(i ξ1 + ξn+1) ⊗ IdE,n

)

do
1(ξ) =

1
√

2

(
−(i ξ1 + ξn+1) ⊗ IdE,n) −d(ξ ′′)

d(ξ ′′) (i ξ1 − ξn+1) ⊗ IdE,n

) (82)
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whereξ ′′ = (ξ2, . . . , ξn, ξn+2, . . . , ξ2n) and

d(ξ ′′) =
n∑

j =2

[(i ξ j + ξn+ j )ej − (i ξ j − ξn+ j )ǫ j ]. (83)

As ǫ∗
j = ej we see thatd(ξ ′′) is a self adjoint symbol.

In the next section we show that, in the block structure shownin equation (3),
the (1, 1) block of the symbol ofTeo has Heisenberg order 0, the (1, 2) and the
(2, 1) blocks have Heisenberg order−1. The symbolqc

−2 produces a term that lifts
to have Heisenberg order−2 and therefore we only need to compute the(2, 2)

block arising from this term.
We start with the nontrivial term of order−1.

Lemma 1. If X is either pseudoconvex or pseudoconcave we have that

1

2π

∫

Ŵ±(ξ ′)

4i ξ1(1 − n)d1(ξ1, ξ
′)dξ1

|ξ |4
= −

i (n − 1)∂ξ1d1

|ξ ′|
(84)

Remark4. As d1 is a linear polynomial,∂ξ1d1 is a constant matrix.

Proof. The residue theorem implies that

1

2π

∫

Ŵ±(ξ ′)

4i ξ1(1 − n)d1(ξ1, ξ
′)dξ1

|ξ |4
= ±4(n − 1)∂ξ1

[
ξ1d1

(ξ1 ± i |ξ ′|)2

]

ξ1=±i |ξ ′ |.
(85)

The lemma follows from this equation by an elementary computation.

We complete the computation by evaluating the contributionfrom the other
terms inqc

−2 along the contact line.

Proposition 7. For ξ ′ along the positive (negative) contact line we have, for j=
1, 2, that ∫

Ŵ±(ξ ′)

[
2d1(ξ)〈Bξ, ξ 〉 − |ξ |2〈Bξ, ∂ξd1〉

|ξ |6

]

j j

ξ1dξ1 = 0. (86)

The subscript11 refers to the upper left block and22 the lower right block of the
matrix. If ξn+1 < 0, then we useŴ+(ξ ′), whereas ifξn+1 > 0, then we useŴ−(ξ ′).

Proof. To prove this result we need to evaluate the contour integralwith

ξ ′ = ξ ′
c = (0, . . . , 0, ξn+1, 0, . . . , 0),
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recalling that the positive contact line corresponds toξn+1 < 0. Hence, along the
positive contact line|ξ ′| = −ξn+1. Because

[de
1]11 = [do

1]22 and[de
1]22 = [do

1]11, (87)

it suffices to prove the result for the(2, 2) block in both the even and odd cases.
We first compute the integrand alongξ ′

c.

Lemma 2. For ξ ′ along the contact line we have
[

2de
1(ξ)〈Bξ, ξ 〉 − |ξ |2〈Bξ, ∂ξde

1〉
|ξ |6

]

22

=

(ξ1b1
11 + ξn+1b0

11) + i (ξ1b0
11 − ξn+1b1

11)

(ξn+1 + i ξ1)(ξn+1 − i ξ1)3
⊗ IdE,n (88)

[
2do

1(ξ)〈Bξ, ξ 〉 − |ξ |2〈Bξ, ∂ξdo
1〉

|ξ |6

]

22

=

(ξ1b1
11 + ξn+1b0

11) − i (ξ1b0
11 − ξn+1b1

11)

(ξn+1 − i ξ1)(ξn+1 + i ξ1)3
⊗ IdE,n . (89)

The subscript22 refers to the lower right block of the matrix.

Proof. Observe that along the contact line

〈Bξ, ξ 〉 = b0
11(ξ

2
1 − ξ2

n+1) − 2b1
11ξ1ξn+1.

We outline the proof for the even case. The lower right block of de
1(ξ) equals

−(i ξ1 + ξn+1) ⊗ IdE,n, thus
[
∂ξde

1

]
22 = (−i, 0 . . . , 0,−1, 0, . . . , 0) ⊗ IdE,n .

Putting these expressions into the formula on the left hand side of (88) gives IdE,n

times

−2(i ξ1 + ξn+1)(b0
11(ξ

2
1 − ξ2

n+1) − 2b1
11ξ1ξn+1)

|ξ |3

−
(ξ1b1

11 + ξn+1b0
11) − i (ξ1b0

11 − ξn+1b1
11)

|ξ |4
. (90)

To complete the calculation we express|ξ |2 = (ξn+1 + i ξ1)(ξn+1 − i ξ1), cancel and
place the result over a common denominator. This leads to thecancellation of a
second factor ofξn+1 + i ξ1. The odd case follows,mutatis mutandis, using

do
1(ξ) = (i ξ1 − ξn+1) ⊗ IdE,n .

The details are left to the reader.
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To complete the proof of the proposition we need to compute the contour inte-
grals of the expressions in (88) and (89) timesξ1, along the appropriate end of the
contact line. We state these computations as lemmas.

Lemma 3. If ξn+1 < 0, then

even
∫

Ŵ+(ξ ′
c)

(ξ1b1
11 + ξn+1b0

11) + i (ξ1b0
11 − ξn+1b1

11)

(ξ1 − i ξn+1)(ξ1 + i ξn+1)3
ξ1dξ1 = 0

odd
∫

Ŵ+(ξ ′
c)

(ξ1b1
11 + ξn+1b0

11) − i (ξ1b0
11 − ξn+1b1

11)

(ξ1 + i ξn+1)(ξ1 − i ξn+1)3
ξ1dξ1 = 0

(91)

Note that this implies that, ifξn+1 > 0, then the same integrals vanish ifŴ+(ξ ′
c) is

replaced byŴ−(ξ ′
c).

Proof. The second statement follows by observing that the singularterms in the
integrand in the upper half plane are those coming from(ξ1 + i ξn+1). If ξn+1 > 0,

then these become the singular terms in the lower half plane.Using a residue
computation we see that the even case gives

(π i )∂2
ξ1

[
(ξ1b1

11 + ξn+1b0
11) + i (ξ1b0

11 − ξn+1b1
11)

(ξ1 − i ξn+1)

]

ξ1=−iξn+1

=
2π

(−2i ξn+1)2

[
b1

11 + ib0
11 −

(ξ1b1
11 + ξn+1b0

11) + i (ξ1b0
11 − ξn+1b1

11)

ξ1 − i ξn+1

]

ξ1=−iξn+1

.

(92)

The quantity in the brackets is easily seen to vanish. The oddcase follows easily
from the observation that

[
(ξ1b

1
11 + ξn+1b0

11) − i (ξ1b0
11 − ξn+1b1

11)
]
ξ1=−iξn+1

= 0. (93)

The two lemmas prove the proposition.

As a corollary, we have a formula for the−1 order term in the symbol of the
Calderon projector

Corollary 1. If X is strictly pseudoconvex (pseudoconcave), then, in thenormal-
izations defined above, for j= 1, 2, we have

[peo
−1(0, ξ ′)] j j = −

i (n − 1)∂ξ1d
oe
1

|ξ ′|
◦ σ1(ð

eo,∓idt). (94)
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We have shown that the order−1 term in the symbol of the Calderon projector,
along the appropriate half of the contact line, is given by the right hand side of
equation (84). It is determined by the principal symbol ofQeo and does not depend
on the higher order geometry ofbX. As we have shown that all other terms in the
symbol of Qeo contribute terms that lift to have Heisenberg order less than −2,

these computations allow us to find the principal symbols ofT
eo
± and deduce the

main results of the paper. As noted above, the off diagonal blocks have Heisenberg
order−1, so the classical terms of order less than zero cannot contribute to their
principal parts.

4 The subelliptic boundary conditions

We now give formulæ for the chiral forms of the subelliptic boundary conditions
defined in [5] as well as the isomorphismsσ1(ð

eo,∓idt). We begin by recalling
the basic properties of compatible almost complex structures defined on a contact
field and of the symbol of a generalized Szegő projector. Letθ denote a positive
contact form definingH. An almost complex structure onH is compatible if

1. X 7→ dθ(J X, X) defines an inner product onH.

2. dθ(J X, JY) = dθ(X, Y) for sections ofH.

Letω′ be the dual symplectic form onH ∗ andJ ′ the dual almost complex structure.
The symbol of a field of harmonic oscillators is defined by

hJ(η) = ω′(J ′πH∗(η), πH∗(η)). (95)

The model operator defined by the symbolhJ is a harmonic oscillator, as such
its minimum eigenstate or vacuum state is one dimensional. The projector onto
the vacuum state has symbolsJ0 = 21−ne−hJ . An operatorS′ in the Heisenberg
calculus with principal symbolsJ0, for a compatible almost complex structureJ,
such that

[S′]2 = S
′ and[S′]∗ = S

′ (96)

is called a generalized Szegő projector. Generalized conjugate Szegő projectors are
analogously defined, with the symbol supported on the lower half space. A gen-
eralized Szegő projector acting on sections of a complex vector bundleF → bX
is an operator in90

H (Y; F), which satisfies the conditions in (96) and its principal
symbol issJ0 ⊗ IdF .
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Lemma 4. According to the splittings of sections of3eo ⊗ E given in(79), the
subelliptic boundary conditions, defined by the generalized Szeg̋o projectorS

′, on
even (odd) forms are given byR

′ eo
+ σ ↾bX= 0 where

R
′ e
+σ ↾bX=




S
′ 0

0 0
0

0 Id






σ t

σ n




bX

R
′ o
+ σ ↾bX=




1 − S
′ 0

0 Id
0

0 0






σ n

σ t




bX
(97)

Lemma 5. According to the splittings of sections of3eo ⊗ E given in(79), the
subelliptic boundary conditions, defined by the generalized conjugate Szegő pro-
jector S̄

′, on even (odd) forms are given byR
′ eo
− σ ↾bX= 0 where, if n is even,

then

R
′ e
−σ ↾bX=




0 0

0
Id 0
0 1− S̄

′






σ t

σ n




bX

R
′ o
− σ ↾bX=




Id 0

0
0 0
0 S̄

′






σ n

σ t




bX

.

(98)
If n is odd, then

R
′ e
−σ ↾bX=




0 0
0 S̄

′ 0

0 Id






σ t

σ n




bX

R
′ o
− σ ↾bX=




Id 0
0 1− S̄

′ 0

0 0






σ n

σ t




bX

.

(99)

Remark5. These boundary conditions are introduced in [5]. For the purposes of
this paper, these formulæ can be taken as the definitions of the projectionsR′ eo

± ,

which, in turn, define the boundary conditions.

Lemma 6. The isomorphisms at the boundary between3eo ⊗ E and3oe ⊗ E are
given by

σ1(ð
eo
± ,∓idt)σ t =

±
√

2
σ t , σ1(ð

eo
± ,∓idt)σ n =

∓
√

2
σ n. (100)

We have thus far succeeded in computing the symbols of the Calderon projec-
tors to high enough order to compute the principal symbols ofT

eo
± as elements of

the extended Heisenberg calculus. The computations have been carried out in a
coordinate system adapted to the boundary. This suffices to examine the classical
parts of the symbols. In the next section we further normalize the coordinates, in
order to analyze the Heisenberg symbols.

We close this section by computing the classical parts of thesymbols ofTeo
±

and showing that they are invertible on the complement of theappropriate half of
the contact line. Recall that the positive contact ray,L+, is given atp by ξ ′′ =
0, ξn+1 < 0.
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Proposition 8. If X is strictly pseudoconvex, then, on the complement of theposi-
tive contact direction, the classical symbolsRσ0(T

eo
+ ) are given by

Rσ0(T
e
+)(0, ξ ′) =

1

2|ξ ′|

(
(|ξ ′| + ξn+1) Id −d(ξ ′′)

d(ξ ′′) (|ξ ′| + ξn+1) Id

)

Rσ0(T
o
+)(0, ξ ′) =

1

2|ξ ′|

(
(|ξ ′| + ξn+1) Id d(ξ ′′)

−d(ξ ′′) (|ξ ′| + ξn+1) Id

) (101)

These symbols are invertible on the complement of L+.

Proof. Away from the positive contact directionR′ eo
+ are classical pseudodifferen-

tial operators with

Rσ0(R
′ e
+ ) =

(
0 0
0 Id

)
, Rσ0(R

′ o
+ ) =

(
Id 0
0 0

)
(102)

The formulæ in (101) follow easily from these relations, along with (71), (82),
and (100). To show that these symbols are invertible away from the positive con-
tact direction, it suffices to show that their determinants do not vanish. Up to the
factor of (2|ξ ′|)−1, these symbols are of the formλ Id +B whereλ is real (and
nonnegative) andB is skew-adjoint. As a skew-adjoint matrix has purely imagi-
nary spectrum, the determinants of these symbols vanish if and only if d(ξ ′′) = 0
and |ξ ′| + ξn+1 = 0. The first condition implies that|ξ ′| = |ξn+1|, hence these
determinant vanish if and only ifξ ′ belongs to the positive contact ray.

An essentially identical argument, taking into account thefact thatR
′ eo
− are

classical pseudodifferential operators on the complementof L−, suffices to treat
the pseudoconcave case.

Proposition 9. If X is strictly pseudoconcave, then, on the complement of the
negative contact direction, the classical symbolsRσ0(T

eo
− ) are given by

Rσ0(T
e
−)(0, ξ ′) =

1

2|ξ ′|

(
(|ξ ′| − ξn+1) Id d(ξ ′′)

−d(ξ ′′) (|ξ ′| − ξn+1) Id

)

Rσ0(T
o
−)(0, ξ ′) =

1

2|ξ ′|

(
(|ξ ′| − ξn+1) Id −d(ξ ′′)

d(ξ ′′) (|ξ ′| − ξn+1) Id

) (103)

These symbols are invertible on the complement of L−.

Remark6. Propositions 8 and 9 are classical and implicitly stated, for example, in
the work of Greiner and Stein, and Beals and Stanton, see [2, 7].
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5 The Heisenberg symbols ofTeo
±

To compute the Heisenberg symbols ofT
eo
± we change coordinates, one last time,

to get Darboux coordinates atp. Up to this point we have used the coordinates
(ξ2, . . . , ξ2n) for T∗

p bX, which are defined by the coframedx2, . . . , dx2n, with
dxn+1 the contact direction. Recall that the contact formθ, defined by the complex
structure and defining functionρ/2, is given byθ = i

2 ∂̄ρ. The symplectic form on
H is defined bydθ. At p we have

θp = −
1

2
dxn+1, dθp =

n∑

j =2

dxj ∧ dxj +n. (104)

By comparison with (5), we see that properly normalized coordinates forT∗
p bX are

obtained by setting

η0 = −2ξn+1, η j = ξ j +1, η j +n−1 = ξ j +n+1 for j = 1, . . . , n − 1. (105)

As usual we letη′ = (η1, . . . , η2(n−1)); whenceξ ′′ = η′.

As a first step in lifting the symbols of the Calderon projectors to the ex-
tended Heisenberg compactification, we re-express them, through order−1 in the
ξ -coordinates:

pe
+(ξ ′) = 1

2|ξ ′|

[(
(|ξ ′| − ξn+1) Id d(ξ ′′)

d(ξ ′′) (|ξ ′| + ξn+1) Id

)
− (n − 1)

(
Id 0
0 Id

)]

(106)

po
+(ξ ′) =

1

2|ξ ′|

[(
(|ξ ′| + ξn+1) Id d(ξ ′′)

d(ξ ′′) (|ξ ′| − ξn+1) Id

)
− (n − 1)

(
Id 0
0 Id

)]

(107)

pe
−(ξ ′) =

1

2|ξ ′|

[(
(|ξ ′| + ξn+1) Id −d(ξ ′′)

−d(ξ ′′) (|ξ ′| − ξn+1) Id

)
+ (n − 1)

(
Id 0
0 Id

)]

(108)

po
−(ξ ′) =

1

2|ξ ′|

[(
(|ξ ′| − ξn+1) Id −d(ξ ′′)

−d(ξ ′′) (|ξ ′| + ξn+1) Id

)
+ (n − 1)

(
Id 0
0 Id

)]

(109)
Various identity and zero matrices appear in these symboliccomputations. Pre-
cisely which matrix is needed depends on the dimension, the bundleE, the parity,
etc. We do not encumber our notation with these distinctions.
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In order to computeHσ (Teo
± ), we represent the Heisenberg symbols as model

operators and use operator composition. To that end we need to quantized(η′)

as well as the terms coming from the diagonals in (106)– (109). We first treat
the pseudoconvex side. In this case we need to consider the symbols on positive
Heisenberg face, where the function|ξ ′| + ξn+1 vanishes.

We express the various terms inpeo
+ , near the positive contact line as sums of

Heisenberg homogeneous terms

|ξ ′| =η0

2
(1 + OH

−2)

|ξ ′| − ξn+1 = η0(1 + OH
−2), |ξ ′| + ξn+1 =

|η′|2

η0
(1 + OH

−2)

d(ξ ′′) =
n−1∑

j =1

[(iη j + ηn+ j −1)ej − (iη j − ηn+ j −1)ǫ j ].

(110)

Recall that the notationOH
j denotes a term of Heisenberg order at mostj . To find

the model operators, we splitη′ = (w, ϕ). Using the quantization rule in (20) (with
the+ sign) we see that

η j − iηn+ j −1 ↔ C j
d= (w j − ∂w j )

η j + iηn+ j −1 ↔ C∗
j

d= (w j + ∂w j )

|η′|2 ↔ H
d=

n−1∑

j =1

w2
j − ∂2

w j
.

(111)

The following standard identities are useful

n−1∑

j =1

C∗
j C j − (n − 1) = H =

n−1∑

j =1

C j C
∗
j + (n − 1) (112)

We letD+ denote the model operator defined, using the+ quantization, byd(ξ ′′),

it is given by

D+ = i
n−1∑

j =1

[C j ej − C∗
j ǫ j ]. (113)

This is the model operator defined by∂̄b + ∂̄∗
b acting on⊕q3

0,q
b ⊗ E. This operator

can be split into even and odd parts,D
eo
+ and these chiral forms of the operator are

what appear in the model operators below. To keep the notation from becoming
too complicated we suppress this dependence.
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With these preliminaries, we can compute the model operators for P
e
+ and

Id −P
e
+ in the positive contact direction. They are:

eHσ (Pe
+)(+) =

(
Id D+

η0
D+
η0

H−(n−1)

η2
0

)
eHσ (Id −P

e
+)(+) =

(
H+n−1

η2
0

−D+
η0

−D+
η0

Id

)
.

(114)
The denominators involvingη0 are meant to remind the reader of the Heisenberg
orders of the various blocks:η−1

0 indicates a term of Heisenberg order−1 andη−2
0

a term of order−2. Similar computations give the model operators in the odd case:

eHσ (Po
+)(+) =

(
H−(n−1)

η2
0

D+
η0

D+
η0

Id

)
eHσ (Id −P

o
+)(+) =

(
Id −D+

η0

−D+
η0

H+n−1
η2

0

)
.

(115)
Let π ′

0 = eHσ (+)(S′); this is a self adjoint rank one projection defined by a com-
patible almost complex structure onH, then

eHσ (R′ e
+)(+) =




π ′
0 0

0 0
0

0 Id


 , eHσ (R′ o)(+) =




1 − π ′
0 0

0 Id
0

0 0


 . (116)

We can now compute the model operators forT
eo
+ on the upper Heisenberg face.

Proposition 10. If X is strictly pseudoconvex, then, at p∈ bX, the model opera-
tors for T

eo
+ , in the positive contact direction, are given by

eHσ (Te
+)(+) =




π ′
0 0

0 0
−
[
1 − 2π ′

0 0
0 Id

]
D+
η0

D+
η0

H−(n−1)

η2
0


 (117)

eHσ (To
+)(+) =




π ′
0 0

0 0

[
1 − 2π ′

0 0
0 Id

]
D+
η0

−D+
η0

H+(n−1)

η2
0


 . (118)

Proof. Observe that the Heisenberg orders of the blocks in (117) and(118) are
(

0 −1
−1 −2

)
. (119)

Proposition 6 shows that all other terms in the symbol of the Calderon projector
lead to diagonal terms of Heisenberg order at most−4, and off diagonal terms of
order at most−2. This, along with the computations above, completes the proof of
the proposition.
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A similar analysis applies for the pseudoconcave case. Herewe use that, near
the negative contact line, we have

|ξ ′| = −
η0

2
(1 + OH

−2)

|ξ ′| + ξn+1 = −η0(1 + OH
−2), |ξ ′| − ξn+1 = −

|η′|2

η0
(1 + OH

−2)

(120)

The formula ford(ξ ′′) is the same, however, the quantization rule is slightly differ-
ent, note the± in equation (20). Using the− sign we get the following quantiza-
tions:

η j − iηn+ j −1 ↔ C∗
j

d= (w j + ∂w j )

η j + iηn+ j −1 ↔ C j
d= (w j − ∂w j )

|η′|2 ↔ H
d=

n−1∑

j =1

w2
j − ∂2

w j
.

(121)

With the− sign we therefore obtain that the model operator defined byd(ξ ′′) is

D− = i
n−1∑

j =1

[C∗
j ej − C j ǫ j ]. (122)

Using computations identical to those above, we find that themodel operators for
P

eo
− and Id−P

eo
− , along the negative contact direction are:

eHσ (Pe
−)(−) =

(
Id D−

|η0|
D−
|η0|

H+(n−1)

|η0|2

)
eHσ (Id −P

e
−)(−) =

(
H−(n−1)

|η0|2
− D−

|η0|
− D−

|η0| Id

)

eHσ (Po
−)(−) =

(
H+(n−1)

|η0|2
D−
|η0|

D−
|η0| Id

)
eHσ (Id −P

o
−)(−) =

(
Id − D−

|η0|
− D−

|η0|
H−(n−1)

|η0|2

)
.

(123)

The Heisenberg orders of the various blocks are indicated bypowers of|η0|, as we
evaluate the symbols along the hyperplaneη0 = −1 to obtain the model operators.
Let π̄ ′

0 denote the rank one projection, which is the principal symbol of S̄
′. If n is

even, then

eHσ (R′ e
−)(−) =




0 0

0
Id 0
0 1− π̄ ′

0


 eHσ (R′ o

− )(−) =




Id 0

0
0 0
0 π̄ ′

0


 . (124)
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If n is odd, then

eHσ (R′ e
−)(−) =




0 0
0 π̄ ′

0
0

0 Id


 eHσ (R′ o

− )(−) =




Id 0
0 1− π̄ ′

0
0

0 0


 . (125)

Proposition 11. If X is strictly pseudoconcave, then at p∈ bX, the model opera-
tors for T

eo
− , in the negative contact direction, are given, for n even by,

eHσ (Te
−)(−) =




H−(n−1)

|η0|2
− D−

|η0|[
Id 0
0 1− 2π̄ ′

0

]
D−
|η0|

0 0
0 π̄ ′

0


 (126)

eHσ (To
−)(−) =




H+(n−1)

|η0|2
D−
|η0|

−
[
Id 0
0 1− 2π̄ ′

0

]
D−
|η0|

0 0
0 π̄ ′

0


 (127)

If n is odd, then

eHσ (Te
−)(−) =




0 0
0 π̄ ′

0
−
[
Id 0
0 1− 2π̄ ′

0

]
D−
|η0|

D−
|η0|

H+(n−1)

|η0|2


 (128)

eHσ (To
−)(−) =




0 0
0 π̄ ′

0

[
Id 0
0 1− 2π̄ ′

0

]
D−
|η0|

− D−
|η0|

H−(n−1)

|η0|2


 (129)

Proof. In the even case the Heisenberg orders of the blocks are

(
−2 −1
−1 0

)
, (130)

while in the odd case they are

(
0 −1

−1 −2

)
. (131)

As before, the proposition follows from this observation, the computations above,
and Proposition 6.

This brings us to the main technical result in this paper.
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Theorem 1. If X is strictly pseudoconvex (pseudoconcave), E→ X a compatible
complex vector bundle andS′ (S̄′) a generalized (conjugate) Szegő projector, de-
fined by a compatible deformation of the almost complex structure on H induced
by the embedding of bX as the boundary of X, then the operatorsTeo

E+ (Teo
E−) are

graded elliptic elements of the extended Heisenberg calculus. If X is pseudoconvex
or X is pseudoconcave and n is odd, then,as block matrices, the parametrices for
T

eo
E± have Heisenberg orders (

0 1
1 1

)
. (132)

If X is pseudoconcave and n is even, then,as block matrices, the parametrices for
T

eo
E− have Heisenberg orders (

1 1
1 0

)
. (133)

Proof. Using standard symbolic arguments, to prove the theorem it suffices to con-
struct operatorsUeo

± , V
eo
± , in the extended Heisenberg calculus, so that

U
eo
± T

eo
± = Id +OeH

−1,−1

T
eo
± V

eo
± = Id +OeH

−1,−1.
(134)

As usual, this just amounts to the invertibility of the principal symbols. Away from
the positive (negative) Heisenberg face this is clear, as the operator is classically
elliptic of order 0. Along the Heisenberg face, the operator is graded so a little
discussion is required. For a graded Heisenberg operatorA, denote the matrix of
model operators by

A =
(

A11 A12

A21 A22

)
.

The blocks ofA have orders eitheri + j − 4 or 2− (i + j ). Suppose the model
operators are invertible with inverses given by

B =
(

B11 B12

B21 B22

)
.

The orders of the blocks ofB are either 4− (i + j ) or (i + j )− 2. Let B denote an
extended Heisenberg operator with principal symbol given by B. Then, in the first
case, we have

AB =
(

Id +E−1 E−1

E0 Id +E−1

)
BA =

(
Id +F−1 F0

F−1 Id +F−1

)
. (135)
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HereE j , F j denote operators with the indicated Heisenberg orders. Setting

Br = B

(
Id 0

−E0 Id

)
, Bl =

(
Id −F0

0 Id

)
B (136)

gives the right and left parametrices called for in equation(134). A similar argu-
ment works if the orders ofA are (i + j ) − 2. Thus it suffices to show that the
model operatorseHσ (Teo

± )(±) are invertible, in the graded sense used above. This
is done in the next two sections.

Remark7. In the analysis below we show that the order 2 block in the parametrix
is absent, hence it is not necessary to correctB with a triangular matrix.

6 Invertibility of the model operators with classical Szeg̋o
projectors

In this section we prove Theorem 1 with the additional assumption that the prin-
cipal symbol ofS′ (S̄′) agrees with the principal symbol,π0, (π̄0) of the classical
Szegő projector (conjugate Szegő projector) defined by the CR-structure onbX. In
this case the structure of the model operators is a little simpler. It is not necessary
to assume that the CR-structure onbX is embeddable, as all that we require are the
symbolic identities

σ1(∂̄bS) = 0, andσ1(∂̄
∗
bS̄) = 0. (137)

Note thatSE (or S̄E) are projectors onto sections of3eo
b ⊗ E ↾bX . Because the

complex structure ofE is compatible with that ofX, using the holomorphic frame
introduced in (36), we see that

σ (SE) = σ (S) ⊗ IdE, σ (S̄E) = σ (S̄) ⊗ IdE . (138)

Thus we may continue to suppress the explicit dependence onE.

The operators{C j } are called the creation operators and the operators{C∗
j } the

annihilation operators. They satisfy the commutation relations

[C j , Ck] = [C∗
j , C∗

k ] = 0, [C j , C∗
k ] = −2δ j k (139)

The operatorsD± act on sums of the form

ω =
n−1∑

k=0

∑

I ∈I
′
k

f I ω̄
I , (140)
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hereI
′
k are increasing multi-indices of lengthk. The coefficients,{ f I } are sections

of the appropriate holomorphic bundle, assumed trivialized nearp, as described
in Section 2, with vanishing connection coefficients. We refer to the terms with
|I | = k as the terms of degreek. For an increasingk-multi-index I = 1 ≤ i1 <

i2 < · · · < ik ≤ n − 1, ω̄ I is defined by

ω̄ I = 1

2
k
2

dz̄i1 ∧ · · · ∧ dz̄ik . (141)

We first describe the relationships among the operatorsπ0, D+, π̄0 andD−.

Lemma 7. Let π0 and π̄0 be the symbols of the classical Szegő projector and
conjugate Szeg̋o projector respectively, then

[
π0 0
0 0

]
D+ = 0 and

[
0 0
0 π̄0

]
D− = 0 (142)

Proof. The range ofD+ in degree 0, whereπ0 acts, is spanned by expressions of
the form

n−1∑

j =1

C j f I ej ω̄
I , with |I | = 1. (143)

Taking the adjoint, the first identity in (137) is equivalentto π0C j = 0 for all j ,
and the lemma follows in this case. The range ofD− in degreen − 1, whereπ̄0

acts, is spanned by expressions of the form

n−1∑

j =1

C j f I ǫ j ω̄
I , with |I | = n − 2. (144)

Once again, (137) implies thatπ̄0C j = 0; the proof of the lemma is complete.

This lemma simplifies the analysis of the model operators forT
eo
± . The follow-

ing lemma is useful in finding their inverses.

Lemma 8. Let5q denote projection onto the terms of degree q,

5qω =
∑

I ∈I′
q

f I ω̄
I . (145)

The operatorsD± satisfy the identities

D
2
+ =

n−1∑

j =1

C j C
∗
j ⊗ Id +

n−1∑

q=0

2q5q, D
2
− =

n−1∑

j =1

C j C
∗
j ⊗ Id +

n−1∑

q=0

2(n − 1− q)5q.

(146)
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Proof. In the proof of this lemma we make extensive usage of the following clas-
sical identities, whose verification we leave to the reader.

Lemma 9. The operators{ej , ǫ j } satisfy the following relations

ej ek = −ekej , ǫ j ǫk = −ǫkǫ j for all j , k,

ǫ j ek = −ej ǫk if j 6= k.
(147)

For j = k we have

ǫ j ej ω̄
I =

{
ω̄ I if j ∈ I

0 if j /∈ I
ej ǫ j ω̄

I =
{

ω̄ I if j /∈ I

0 if j ∈ I
(148)

We start withD+, using the lemma we obtain that

D
2
+ = −

∑

j 6=k

(
1

2
[C j , Ck]ej ek +

1

2
[C∗

j , C∗
k ]ǫ j ǫk − [C j , C∗

k ]ej ǫk

)
+

n−1∑

j =1

[C j C
∗
j ej ǫ j + C∗

j C j ǫ j ej ].
(149)

It follows from the commutation relations that the sum overj 6= k vanishes. Us-
ing (139) we rewrite the second sum as

n−1∑

j =1

[C j C
∗
j ej ǫ j + (C j C

∗
j + 2)ǫ j ej ]. (150)

The statement of the lemma follows easily from (150), and thefact that

n−1∑

j =1

ǫ j ej ω̄
I = |I |ω̄ I . (151)

The argument forD− is quite similar. The analogous sum overj 6= k vanishes and
we see that

D
2
− =

n−1∑

j =1

[C∗
j C j ej ǫ j + C j C

∗
j ǫ j ej ]

=
n−1∑

j =1

[(C j C
∗
j + 2)ej ǫ j + C j C

∗
j ǫ j ej ].

(152)
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The proof is completed as before using

n−1∑

j =1

ej ǫ j ω̄
I = (n − 1 − |I |)ω̄ I . (153)

instead of (151).

Before we construct the explicit inverses, we show thateHσ (Teo
± )(±) are Fred-

holm elements (in the graded sense), in the isotropic algebra. Notice that this is
a purely symbolic statement in the isotropic algebra. The isotropic blocks have
orders (

0 1
1 2

)
(154)

on the pseudoconvex side and on the pseudoconcave side ifn is odd, and orders
(

2 1
1 0

)
(155)

on the pseudoconcave side ifn is even. The leading order part in the isotropic alge-
bra is independent of the choice of generalized (conjugate)Szegő projector. In the
former case we can think of the operator as defining a map fromH1(Rn−1; E1) ⊕
H2(Rn−1; E2) to H1(Rn−1; F1) ⊕ H0(Rn−1; F2) for appropriate vector bundles
E1, E2, F1, F2. In the later case the map is fromH2(Rn−1; E1) ⊕ H1(Rn−1; E2) to
H0(Rn−1; F1) ⊕ H1(Rn−1; F2). It is as maps between these spaces that the model
operators are Fredholm.

Proposition 12. The model operators,eHσ (Teo
± )(±), are graded Fredholm ele-

ments in the isotropic algebra.

Proof. As noted above this is a purely symbolic statement in the isotropic algebra.
It suffices to show that the model operators are invertible, by appropriately graded
elements of the isotropic algebra, up to an error of lower order. Equation (149)
shows that

[H−1
D±]D± = D±[H−1

D±] = Id +Oiso
−1. (156)

HereOiso
j is a term of order at mostj in the isotropic algebra. Up to lower order

terms, the model operators are

eHσ (Teo
+ )(+) =

(
0 ∓D+

±D+ H

)

n odd eHσ (Teo
− )(−) =

(
0 ∓D−

±D− H

)

n even eHσ (Teo
− )(−) =

(
H ∓D−

±D− 0

)
(157)
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The isotropic principal symbol ofH is |η′|2. For these computations, we letH−1

denote a model operator with isotropic principal symbol|η′|−2. Using (156), we
see that the operators in (157) have right parametrices:

(
0 ∓D+

±D+ H

)(
Id ±H−1

D+
∓H−1

D+ 0

)
= Id +Oiso

−1

n odd

(
0 ∓D−

±D− H

)(
Id ±H−1

D−
∓H−1

D− 0

)
= Id +Oiso

−1

n even

(
H ∓D−

±D− 0

)(
0 ±H−1

D−
∓H−1

D− Id

)
= Id +Oiso

−1

(158)

The same model operators provide left parametrices as well.This proves the propo-
sition.

Remark8. Note that the block of the principal symbols of the parametrices, ex-
pected to have order 2, actually vanishes. As a result, the inverses of the model
operators have Heisenberg order at most 1, which in turn allows us to deduce the
standard subelliptic12-estimates for these boundary value problems.

The operatorsDe
± andD

o
± are adjoint to one another. From (146) and the well

known properties of the harmonic oscillator, it is clear that D
e
+D

o
+ is invertible.

As D
e
+ has a one dimensional null space this easily implies thatD

o
+ is injective

with image orthogonal to the range ofπ0, while D
e
+ is surjective. The analogous

statements forDeo
− depend on the parity ofn, asD

2
− has a null space of dimension

one spanned by the forms of degreen − 1 in the image ofπ̄0. If n is even, then
D

e
− is injective andDo

− is surjective, with a one dimensional null space spanned by
the range ofπ̄0. If n is odd, thenD

o
− is injective andD

e
− is surjective. With these

observations we easily invert the model operators.
We begin with the+ side. Let[De

+]−1u denote the unique solution to the
equation

D
e
+v = u,

orthogonal to the null space ofD
e
+. We let

⊓
u =

(
1 − π0 0

0 Id

)
u; (159)

this is the projection onto the range ofD
o
+ and

u0 =
(

π0 0
0 0

)
u, (160)
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denotes the projection onto the nullspace ofD
e
+. We let [Do

+]−1 denote the unique
solution to

D
o
+v = ⊓

u.

Proposition 12 shows that these partial inverses are isotropic operators of order−1.

With this notation we find the inverse ofeHσ (Te
+)(+). The vector[u, v] satis-

fies
eHσ (Te

+)(+)

[
u
v

]
=
[
a
b

]
(161)

if and only if

u = a0 + [De
+]−1(H − (n − 1))[Do

+]−1⊓
a + [De

+]−1b

v = −[Do
+]−1⊓

a.
(162)

Writing out the inverse as a block matrix of operators, with appropriate factors of
η0 included, gives:

[eHσ (Te
+)(+)]−1 =




(
π0 0
0 0

)
+ [De

+]−1(H − (n − 1))[Do
+]−1

(
1 − π0 0

0 Id

)
η0[De

+]−1

−η0[Do
+]−1

(
1 − π0 0

0 Id

)
0




(163)

The isotropic operators[Deo
+ ]−1 are of order−1, whereas[De

+]−1(H−(n−1))[Do
+]−1

is of order zero. The Schwartz kernel ofπ0 is rapidly decreasing. From this
we conclude that the Heisenberg orders, as a block matrix, ofthe parametrix for
[eHσ (Te

+)(+)] are (
0 1
1 1

)
. (164)

We get a 1 in the lower right corner because the principal symbol, a priori of order
2, of this entry vanishes. The solution for the odd case is givenby

u = a0 + [De
+]−1(H + (n − 1))[Do

+]−1⊓
a − [De

+]−1b

v = [Do
+]−1⊓

a.
(165)

Once again the 2, 2 block of [eHσ (To
+)(+)]−1 vanishes, and the principal symbol

has the Heisenberg orders indicated in (164).
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We complete this analysis by writing the solutions to

eHσ (Teo
− )(−)

[
u
v

]
=
[
a
b

]
, (166)

in the various cases. Forn even, the operatorDe
− is injective andD

o
− has a one

dimensional null space. We letu0 denote the projection ofu onto the null space

and
⊓
u the projection onto its complement. With the notation for the partial inverses

of D
eo
− analogous to that used in the+ case, we have the solution operators:

even u = [De
−]−1

⊓
b

v = b0 + [Do
−]−1(H − (n − 1))[De

−]−1
⊓
b − [Do

−]−1a

odd u = −[De
−]−1

⊓
b

v = b0 + [Do
−]−1(H − (n − 1))[De

−]−1
⊓
b + [Do

−]−1a

(167)

Here and in (168), “even” and “odd” refer to the parity of the spinor. Forn even, the
operatorDo

− is injective andDe
− has a one dimensional null space. We letu0 denote

the projection ofu onto the null space and
⊓
u the projection onto its complement.

even u = a0 + [De
−]−1(H + (n − 1))[Do

−]−1⊓
a + [De

−]−1b

v = −[Do
−]−1⊓

a,

odd u = a0 + [De
−]−1(H + (n − 1))[Do

−]−1⊓
a − [De

−]−1b

v = [Do
−]−1⊓

a.

(168)

If n is even, then the(1, 1) block of the principal symbols of[eHσ (Teo
− )(−)]−1

vanishes and therefore the Heisenberg orders of the blocks of the parametrices are
[
1 1
1 0

]
. (169)

If n is odd, then the(2, 2) block the principal symbols of[eHσ (Teo
− )(−)]−1 van-

ishes and therefore the Heisenberg orders of the blocks of the parametrices are
[
0 1
1 1

]
. (170)

For the case of classical Szegő projectors, Lemma 7 impliesthat the model
operators satisfy

[eHσ (Teo
± )(±)]∗ = eHσ (Toe

± )(±). (171)
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From Proposition 12 we know that these are Fredholm operators. Since we have
shown that all the operatorseHσ (Teo

± )(±) are surjective, i.e., have a left inverse,
it follows that all are in fact injective and therefore invertible. In all cases this
completes the proof of Theorem 1 in the special case that the principal symbols
of S

′ or S̄
′ agree with those of the classical Szegő projector or conjugate Szegő

projector.

7 Invertibility of the model operators with generalized
Szeg̋o projectors

The proof of Theorem 1, with generalized Szegő projectors,is not much different
from that covered in the previous section. We show here that the parametrices for
eHσ (Teo

− )(−) differ from those with classical Szegő projectors (or conjugate Szegő
projectors) by operators of finite rank. The Schwartz kernels of the correction terms
are in the Hermite ideal, and so do not affect the Heisenberg orders of the blocks in
the parametrix. As before the principal symbol in the(2, 2) block (or(1, 1) block,
where appropriate) vanishes.

In [6] we characterize the set of compatible almost complex structures in the
following way:

Lemma 10. Let J1 and J2 be compatible almost complex structures on the co-
oriented contact manifold Y. For each p∈ Y there is a Darboux coordinate system
centered at p, so that, if(η0, η

′) are the linear coordinates on T∗p Y, then

hJ1(η) =
2(n−1)∑

j =1

η2
j and hJ2(η) =

n−1∑

j =1

[µ j η
2
j + µ−1

j η2
j +n−1] (172)

for positive numbers(µ1, . . . , µn−1).

We split the coordinatesη′ into (w1, . . . , wn−1;ϕ1, . . . , ϕn−1). Let H1 andH2

denote the harmonic oscillators obtained by quantizing these symbols with respect
to this splitting, then the ground states for these operators are spanned by

v0
1 = m1 exp


−

1

2

n−1∑

j =1

w2
j




v2
0 = m2 exp


−1

2

n−1∑

j =1

(
w j

µ j

)2

 ,

(173)
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with m j chosen so that‖v j
0‖L2 = 1. From these expressions we easily deduce the

following result.

Lemma 11. If J1 and J2 are compatible almost complex structures, then, with
respect to the L2-inner product onR

n−1 defined by a choice of splitting of Hp, we
have

〈v1
0, v

2
0〉 > 0. (174)

On a compact manifold, this inner product is a smooth function, bounded below by
a positive constant. Ifπ j

0 denote the projections onto the respective vacuum states,
then

〈v1
0, v

2
0〉2 = tr π1

0π2
0 , (175)

is therefore well defined independent of the choice of quantization.

Proof. Only the second statement requires a proof. In terms of any Darboux coor-
dinate system, the projection onto the vacuum state has Schwartz kernel

v
j
0 ⊗ v

j t
0 . (176)

This shows that (175) is correct. It is shown in [6] that the trace is independent of
the choice of quantization.

For our applications, the following corollary is very useful.

Corollary 2. Let J1 and J2 be compatible almost complex structures, In a choice
of quantization we define the model operator

P21 =
π2

0π1
0

tr π2
0π1

0

. (177)

This operator is globally defined, belongs to the Hermite ideal, and satisfies

π1
0 P21 = π1

0 . (178)

Proof. The first statement follows from Lemma 11 and the fact that thesymbols of
the projectors are globally defined. The relation in (177) iseasily proved using the
representations ofπ j

0 given in (176). The fact that P21 belongs to the Hermite ideal
is again immediate from the fact that its Schwartz kernel belongs toS(R2(n−1)).

Remark9. The relation (178) implies that

π1
0(P21π1

0 − π1
0) = 0. (179)

An analogous result, which we use in the sequel, holds for generalized conjugate
Szegő projectors.
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With these preliminaries, we can now complete the proof of Theorem 1. For
clarity, we useeHσ (Teo

± )(±) to denote the model operators with the classical (con-
jugate) Szegő projection, andeHσ (T′ eo

± )(±) with a generalized Szegő projection
(or generalized conjugate Szegő projection).

Proposition 13. If π ′
0 (π̄ ′

0) is a generalized (conjugate) Szegő projection, which is a
deformation ofπ0, (π̄0), theneHσ (Teo

± )(±) are invertible elements of the isotropic
algebra. The inverses satisfy

[eHσ (T′ eo
+ )(+)]−1 = [eHσ (Teo

+ )(+)]−1 +
(

c1 c2

c3 0

)
, (180)

if n is even, then

[eHσ (T′ eo
− )(−)]−1 = [eHσ (Teo

− )(−)]−1 +
(

0 c2

c3 c1

)
, (181)

and if n is odd, then

[eHσ (T′ eo
− )(−)]−1 = [eHσ (Teo

− )(−)]−1 +
(

c1 c2

c3 0

)
. (182)

Here c1, c2, c3 are finite rank operators in the Hermite ideal.

Proof. The arguments for the different cases are very similar. We give the details
for one+ case and one− case and formulæ for the answers in representative cases.
In these formulæ we letz0 denote the unit vector spanning the range ofπ0 andz′

0,

the unit vector spanning the range ofπ ′
0.

Proposition 12 implies thateHσ (T′ eo
± )(±) are Fredholm operators. Since the

differences
eHσ (T′ eo

± )(±) − eHσ (Teo
± )(±)

are finite rank operators, it follows thateHσ (T′ eo
± )(±) have index zero. It therefore

suffices to construct a left inverse.
We begin with the+ even case by rewriting the equation

eHσ (T′ e
+)(+)

[
u
v

]
=
[
a
b

]
, (183)

as
[
π ′

0 0
0 0

]
[u + D

o
+v] =

[
π ′

0 0
0 0

]
a

[
1 − π ′

0 0
0 Id

]
D

o
+v = −

[
1 − π ′

0 0
0 Id

]
a

D
e
+u + (H − (n − 1))v = b.

(184)
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We solve the middle equation in (184) first. Let

α1 = (
z′

0 ⊗ zt
0

〈z′
0, z0〉

− π0)50a, (185)

and note thatπ0α1 = 0. Corollary 2 shows that this model operator provides a
globally defined symbol. The sectionv is determined as the unique solution to

D
o
+v = −(

⊓
a − α1). (186)

By construction(1−π ′
0)(a0+α1) = 0 and therefore the second equation is solved.

The section
⊓
u is now uniquely determined by the last equation in (184):

⊓
u = [De

+]−1(b + (H − (n − 1)))[Do
+]−1(

⊓
a − α1)). (187)

This leaves only the first equation, which we rewrite as
[
π ′

0 0
0 0

]
u0 =

[
π ′

0 0
0 0

]
(a − D

o
+v − ⊓

u). (188)

It is immediate that

u0 =
z0 ⊗ z′t

0

〈z0, z′
0〉

50(a − D
o
+v − ⊓

u). (189)

By comparing these equations to those in (162) we see that[eHσ (T′ e
+ )(+)]−1 has

the required form. The finite rank operators are finite sums ofterms involvingπ0,

z0 ⊗ z′t
0 andz′t

0 ⊗ z0, and are therefore in the Hermite ideal.
The solution in the+ odd case is given by

v = [Do
+]−1(

⊓
a − α1)

⊓
u = [De

+]−1[(H + (n − 1))v − b]

u0 =
z0 ⊗ z′t

0

〈z0, z′
0〉

50(a + D
o
+v − ⊓

u)

(190)

As beforeα1 is given by (185). Again the inverse ofeHσ (T′ o
+ )(+) has the desired

form.
In the − case, the computations are nearly identical forn odd. We leave the

details to the reader, and conclude by providing the solution for n even. We let̄z0

andz̄′
0 denote unit vectors spanning the ranges ofπ̄0 andπ̄ ′

0 respectively. We let

β1 = (
z̄′

0 ⊗ z̄t
0

〈z̄′
0, z̄0〉

− π̄0)5n−1b (191)
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The solution to

[eHσ (T′ e
− )(−)]−1

[
u
v

]
=
[
a
b

]
, (192)

is given by

u = [De
−]−1(

⊓
b − β1)

⊓
v = [Do

−]−1((H − (n − 1))u − a)

v0 =
z̄0 ⊗ z̄′t

0

〈z̄0, z̄′
0〉

5n−1(b − D
e
−u − ⊓

v).

(193)

The result forT′ o
− is

u = −[De
−]−1(

⊓
b − β1)

⊓
v = [Do

−]−1(a − (H − (n − 1))u)

v0 =
z̄0 ⊗ z̄′t

0

〈z̄0, z̄′
0〉

5n−1(b + D
e
−u − ⊓

v).

(194)

We leave the computations in the case ofn odd to the reader. In all cases we see
that the parametrices have the desired grading and this completes the proof of the
proposition.

As noted above, the operatorseHσ (T′ eo
± )(±) are Fredholm operators of index

zero. Hence, Solvability of the equations

eHσ (T′ eo
± )(±)

[
u
v

]
=
[
a
b

]
, (195)

for all [a, b] implies the uniqueness and therefore the invertibility of the model
operators. This completes the proof of Theorem 1. We now turnto applications of
these results.

8 The Fredholm property

Let D be a (pseudo)differential operator acting on smooth sections ofF → X, and
B a (pseudodifferential) boundary operator acting on sections of F ↾bX . The pair
(D, B) is the densely defined operator,σ 7→ Dσ, acting on sections ofF, smooth
on X, that satisfy

B[σ ]bX = 0. (196)
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The notation(D, B) is the closure of(D, B) in the graph norm

‖σ‖2
D

= ‖Dσ‖2
L2 + ‖σ‖2

L2. (197)

We let HD denote the domain of the closure, with norm defined by‖ · ‖D. The
following general result about Dirac operators, proved in [3], is useful for our anal-
ysis:

Proposition 14. Let X be a compact manifold with boundary andD an operator
of Dirac type acting on sections of F→ X. The trace map from smooth sections
of F to sections of F↾bX,

σ 7→ σ ↾bX,

extends to define a continuous map from HD to H− 1
2 (bX; F ↾bX).

The results of the previous sections show that the operatorsT
′ eo
± are elliptic

elements in the extended Heisenberg calculus. We now letU
′ eo
± denote a left and

right parametrix defined so that

U
′ eo
± T

′ eo
± = Id +K1

T
′ eo
± U

′ eo
± = Id +K2,

(198)

with K1, K2 finite rank smoothing operators. The principal symbol computations
show thatU′ eo

± has classical order 0 and Heisenberg order at most 1. Such an oper-

ator defines a bounded map fromH
1
2 (bX) to L2(bX). This follows because such

operators are contained in9
1
2 ,1,1
eH . If 1 is a positive (elliptic) Laplace operator, then

L = (1 + 1)
1
4 lifts to define an invertible elliptic element of this operator class.

An operatorA ∈ 9
1
2 ,1,1
eH can be expressed in the form

A = A′
L whereA′ ∈ 90,0,0

eH . (199)

It is shown in [6], that operators in90,0,0
eH act boundedly onH s, for all reals. This

proves the following result:

Proposition 15. The operatorsU
′ eo
± define bounded maps from Hs(bX; F) to

H s− 1
2 (bX; F) for s ∈ R. Here F is an appropriate vector bundle over bX.

Remark10. Various similar results appear in the literature, for example in [7]
and [2]. While the simple result in the proposition is adequate for our purposes,
much more precise, anisotropic estimates can also be deduced.

The mapping properties of the boundary parametrices allow us to show that the
graph closures of the operators(ðeo

± , R
′ eo
± ) are Fredholm. As usualE → X is a

compatible complex vector bundle. Except when needed for clarity, the explicit
dependence onE is suppressed.
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Theorem 2. Let X be a strictly pseudoconvex (pseudoconcave) manifold.The
graph closures of(ðeo

E+, R
′ eo
E+), ((ðeo

E−, R
′ eo
E−)), respectively, are Fredholm opera-

tors.

Proof. The argument is formally identical for all the different cases, so we do just
the case of(ðe

+, R
′ e
+). As beforeQe is a fundamental solution forðe

+ andK is the
Poisson kernel mapping the range ofP

e
+ into the null space ofðe

+. We need to
show that the range of the closure is closed, of finite codimension, and that the null
space is finite dimensional.

Let f be anL2-section of3o ⊗ E; with

u1 = Qe f andu0 = −KU
′ e
+ R

′ e
+ [u1]bX, (200)

we letu = u0 + u1. Proposition 15 and standard estimates imply that, fors ≥ 0,

there are constantsCs1, Cs2, independent off, so that

‖u1‖Hs+1 ≤ Cs1‖ f ‖Hs, ‖u0‖
Hs+ 1

2
≤ Cs2‖ f ‖Hs. (201)

The crux of the matter is to show thatR
′ e
+ [u0 + u1]bX = 0. For data satisfying

finitely many linear conditions, this is a consequence of thefollowing lemma.

Lemma 12. If T
′ e
+v ∈ Im R

′ e
+ , then

T
′ e
+ P

e
+v = T

′ e
+v. (202)

Proof of the lemma.As (Id −R
′ e
+)T′ e

+ = T
′ e
+ (Id −P

e
+) we see that the hypothesis

of the lemma implies that

T
′ e
+(Id −P

e
+)v = (Id −R

′ e
+)T′ e

+v = 0. (203)

The conclusion follows from this relation.

Sinceu0 ∈ kerðe
+ it follows that (Id −P

e
+)[u0]bX = 0, and therefore the defi-

nition of u0 implies that:

R
′ e
+ [u0 + u1]bX = T

′ e
+ [u0]bX + R

′ e
+ [u1]bX

= −T
′ e
+ P

e
+U

′ e
+R

′ e
+ [u1]bX + R

′ e
+ [u1]bX.

(204)

If
K2R

′ e
+ [u1]bX = K2R

′ e
+ [Qe f ]bX = 0, (205)

then
T

′ e
+ U

′ e
+ R

′ e
+ [u1]bX = R

′ e
+ [u1]bX ∈ Im R

′ e
+ . (206)
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Hence, applying Lemma 12, we see that

T
′ e
+ P

e
+U

′ e
+R

′ e
+ [u1]bX = T

′ e
+ U

′ e
+R

′ e
+ [u1]bX

= R
′ e
+ [u1]bX

(207)

Combining (204) and (207) gives the desired result:

R
′ e
+ [u0 + u1]bX = 0. (208)

It is also clear that, iff ∈ H s, thenu ∈ H s+ 1
2 . In particular, if f is smooth, then

so isu. Henceu belongs to the domain of(ðe
+, R

′ e
+ ).

The operatorK2 is a finite rank smoothing operator, and therefore the compo-
sition

f 7→ K2R
′ e
+ [Qe f ]bX (209)

has a kernel of the form

M∑

j =1

u j (x)v j (y) for (x, y) ∈ bX × X, (210)

with
u j ∈ C

∞(bX) andv j ∈ C
∞(X).

Hence, anL2-section, f satisfying (205) can be obtained as the limit of a sequence
of smooth sections< f n > that also satisfy this condition. Let< un > be the
smooth solutions to

ð
e
+un = f n, R

′ e
+ [un]bX = 0, (211)

constructed above. The estimates in (201) show that< un > converges to a limitu
in H

1
2 . It is also clear thatðe

+un converges weakly toðe
+u, and inL2 to f. Therefore

< un > converges tou in the graph norm. This shows thatu is in the domain of
the closure and satisfiesðe

+u = f. As the composition

f 7→ K2R
′ e
+ [Qe f ]bX,

is bounded, it follows that the range of(ðe
+, R

′ e
+ ) contains a closed subspace of

finite codimension and is therefore also a closed subspace offinite codimension.
To complete the proof of the theorem we need to show that the null space is

finite dimensional. Suppose thatu belongs to the null space of(ðe
+, R

′ e
+ ). This

implies that there is a sequence of smooth sections< un > in the domain of the
operator, converging tou in the graph norm, such that‖ðe

+un‖L2 converges to zero.
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Henceðe
+u = 0 in the weak sense. Proposition 14 shows thatu has boundary

values inH− 1
2 (bX) and that, in the sense of distributions,

R
′ e
+ [u]bX = lim

n→∞
R

′ e
+ [un]bX = 0.

Sinceu is in the null space ofðe
+, it is also the case thatP

e
+[u]bX = [u]bX. These

two facts imply thatT′ e
+ [u]bX = 0. Composing on the left withU′ e

+ shows that

(Id +K1)[u]bX = 0. (212)

As K1 is a finite rank smoothing operator, we conclude that[u]bX and thereforeu
are smooth. By the unique continuation property for Dirac operators, the dimen-
sion of the null space of(ðe

+, R
′ e
+ ) is bounded by the dimension of the null space

of (Id +K1). This completes the proof of the assertion that(ðe
+, R

′ e
+ ) is a Fred-

holm operator. The proofs in the other cases, are up to minor changes in notation,
identical.

Remark11. In the proof of the theorem we have constructed right parametrices
Q

′ eo
± for the boundary value problems(ðeo

± , R
′ eo
± ), which gain a half a derivative.

We close this section with Sobolev space estimates for the operators(ðeo
± , R

′ eo
± ).

Theorem 3. Let X be a strictly pseudoconvex (pseudoconcave) manifold,and
E → X a compatible complex vector bundle. For each s≥ 0, there is a posi-
tive constant Cs such that if u is an L2-solution to

ð
eo
E±u = f ∈ H s(X) andR

′ eo
E±[u]bX = 0

in the sense of distributions, then

‖u‖
Hs+ 1

2
≤ Cs[‖ð

eo
E±u‖Hs + ‖u‖L2]. (213)

Proof. With u1 = Qeo f, we see thatu1 ∈ H s+1(X) and

ð
eo
± (u − u1) = 0 with R

′ eo
± [u − u1]bX = −R

′ eo
± [u1]bX.

These relations imply thatPeo
± [u − u1]bX = [u − u1]bX and therefore

−R
′ eo
± [u1]bX = R

′ eo
± [u − u1]bX = T

′ eo
± [u − u1]bX. (214)

We applyU
′ eo
± to this equation to deduce that

(Id +K1)[u − u1]bX = −U
′ eo
± R

′ eo
± [u1]bX. (215)
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BecauseK1 is a smoothing operator, Proposition 15 implies that there is a constant
C′

s. so that

‖[u − u1]bX‖Hs(bX) ≤ C′
s[‖u1‖

Hs+ 1
2 (bX)

+ ‖[u − u1]‖
H− 1

2 (bX)
]. (216)

As the Poisson kernel carriesH s(bX) to H s+ 1
2 (X), boundedly, this estimate shows

thatu = u − u1 + u1 belongs toH s+ 1
2 (X) and that there is a constantCs so that

‖u‖
Hs+ 1

2
≤ Cs[‖ f ‖Hs + ‖u‖L2] (217)

This proves the theorem.

Remark12. In the cases = 0, this proof gives a slightly better result: the Poisson
kernel actually mapsL2(bX) into H(1,− 1

2 )(X) and therefore the argument shows

that there is a constantC0 such that ifu ∈ L2, ðeo
± u ∈ L2 andR

′ eo
± [u]bX = 0, then

‖u‖(1,− 1
2 ) ≤ C0[‖ f ‖L2 + ‖u‖L2] (218)

This is just the standard12-estimate for the operators(ðeo
± , R

′ eo
± )

It is also possible to prove localized versions of these results. The higher norm
estimates have the same consequences as for the∂̄-Neumann problem. Indeed, un-
der certain hypotheses these estimates imply higher norm estimates for the second
order operators considered in [5]. We prove these in the nextsection after showing
the the closures of the formal adjoints of(ðeo

± , R
′ eo
± ) are theL2-adjoints of these

operators.

9 Adjoints of the SpinC Dirac operators

In the previous section we proved that the operators(ðeo
± , R

′ eo
± ) are Fredholm op-

erators, as well as estimates that they satisfy. In this section we show that the
L2-adjoints of these operators are the closures of the formal adjoints.

Theorem 4. If X is strictly pseudoconvex (pseudoconcave), E→ X a compatible
complex vector bundle, then we have the following relations:

(ðeo
E±, R

′ eo
E±)∗ = (ðoe

E±, R
′ oe
E±). (219)

We take+ if X is pseudoconvex and− if X is pseudoconcave.
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Proof. The argument follows a standard outline. It is clear that

(ðoe
± , R

′ oe
± ) ⊂ (ðeo

± , R
′ eo
± )∗ (220)

Suppose that the containment is proper. This would imply that, for any nonzero,
real µ there exists a nonzero sectionv ∈ DomL2((ðeo

± , R
′ eo
± )∗), such that, for all

w ∈ Dom((ðoe
± , R

′ oe
± )),

〈[ðeo
± ]∗v, ð

oe
± w〉 + µ2〈v,w〉 = 0. (221)

Suppose thatR′ eo
± ðoe

± w ↾bX= 0. Sincev belongs to DomL2((ðeo
± , R

′ eo
± )∗)), we can

integrate by parts to obtain that

〈v, (ðeo
± ð

oe
± + µ2)w〉 = 0. (222)

This reduces the proof of the theorem to the following proposition.

Proposition 16. For any nonzero real numberµ, and

f ∈ C
∞(X; S/oe⊗ E),

there is a sectionw ∈ C
∞(X; S/oe ⊗ E), which satisfies

(ðeo
± ð

oe
± + µ2)w = f

R
′ oe
± w ↾bX= 0 and R

′ eo
± ð

oe
± w ↾bX= 0.

(223)

Before proving the proposition, we show how it implies the theorem. Letw, f
be as in (223). The boundary conditions satisfied byðoe

± w and (222) imply that we
have

〈v, f 〉 = 0. (224)

As f ∈ C
∞(X; S/oe ⊗ E) is arbitrary, this shows thatv = 0 as well and thereby

completes the proof of the theorem.

The proposition is a consequence of Theorems 1 and 3.

Proof of Proposition 16.The first step is to show that (223) has a weak solution for
any non-zero real numberµ, after which, we use a small extension of Theorem 3
to show that this solution is actually inC∞(X; S/oe ⊗ E).

Lemma 13. Let Q(w) = 〈ðoe
± w, ðoe

± w〉, denote the non-negative, symmetric quadratic
form with domain:

Dom(Q) = {w ∈ L2(X) : ð
oe
± w ∈ L2(X) andR

′ oe
± w ↾bX= 0}. (225)

The form Q is closed and densely defined. Let L denote the self adjoint operator
defined by Q. If w ∈ Dom(L), then

ð
eo
± ð

oe
± w ∈ L2 andR

′ eo
± ð

oe
± w ↾bX= 0. (226)
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Remark13. That a densely defined, closed, symmetric, non-negative quadratic
form defines a self adjoint operator is the content of TheoremVI.2.6 in [9]. For the
remainder of this section we letρ denote a defining function forbX, with dρ of
unit length along the sets{ρ = ǫ}, for ǫ sufficiently small.

Proof of Lemma.It is clear thatQ is densely defined. That the form is closed is an
immediate consequence of Proposition 14. By definition, thedomain ofL consists
of sectionsw ∈ Dom(Q), such that there exists ag ∈ L2, for which

Q(w, v) = 〈g, v〉 (227)

for all v ∈ Dom(Q). Since all smooth sections with compact support lie in Dom(Q),

it follows from (227) that
ð

eo
± ð

oe
± w = g ∈ L2, (228)

where the operator,ðeo
± ðoe

± , is applied in the distributional sense. This in turn im-
plies thatw ∈ H2

loc(X), and thatðoe
± w has restrictions to the sets{ρ = ǫ}, which

depend continuously onǫ in the H− 1
2 (bX)-topology.

Now let v be a section, smooth in the closure ofX, though not necessarily in
Dom(Q). The regularity properties ofw imply that

Q(w, v) = 〈ðeo
± ð

oe
± w, v〉 + 〈ðoe

± w, σ (ðoe
± ,−idρ)v〉bX. (229)

If v ∈ Dom(Q), then (228) shows that the boundary term in (229) must vanish.
If h is any smooth even (odd) section defined onbX, then by smoothly extending
(Id −R

′ oe
± )σ (ðeo

± , idρ)h to X we obtain a smooth sectionvh ∈ Dom(Q), with

vh ↾bX= (Id −R
′ oe
± )σ (ðeo

± , idρ)h. (230)

The identity
R

′ eo
± = σ (ðoe

± ,−idρ)(Id −R
′ oe
± )σ (ðeo

± , idρ) (231)

is easily established; it is equivalent to the symmetry of the non-chiral operator
(ð±, R

′
±). Hence, ifw ∈ Dom(L), then, for any smooth sectionh, we have

0 = 〈ðoe
± w, σ (ðoe

± ,−idρ)vh〉bX

= 〈ðoe
± w, σ (ðoe

± ,−idρ)(Id −R
′ oe
± )σ (ðeo

± , idρ)h〉bX

= 〈R′ eo
± ð

oe
± w, h〉bX.

(232)

As h is an arbitrary smooth section, this verifies the final assertion of the lemma.
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The operatorL is non-negative and self adjoint. Hence for any realµ 6= 0, and
f ∈ C

∞(X; S/oe ⊗ E), there is a uniquew ∈ Dom(L) satisfying (223) in the sense
of distributions. To complete the proof of the proposition we need to show that this
solution is smooth.

We rewrite this in terms of the system of first order equations:

D
µ
±

(
u
v

)
d=
(

ðoe
± −µ

µ ðeo
±

)(
u
v

)
=
(

a
b

)
,

R±

(
u
v

)
d=
(

R
′ oe
± 0
0 R

′ eo
±

)(
u
v

)

bX

= 0.

(233)

Clearly the solution constructed above satisfies

D
µ
±

(
w

1
µ
ðoe

± w

)
=
(

0
f
µ

)
andR±

(
w

1
µ
ðoe

± w

)
↾bX= 0, (234)

in the sense of distributions. To complete the proof of the proposition it suffices to
establish a regularity result for(Dµ

±, R±) analogous to Theorem 3. Indeed essen-
tially the same argument applies to this case.

Let P
µ
± denote the Calderon projector for the operatorD

µ
±, and set

T
µ
± = R±P

µ
± + (Id −R±)(Id −P

µ
±). (235)

Theorem 1 implies thatT0
± is a graded elliptic element of the extended Heisenberg

calculus. LetU0
± denote a parametrix forT0

±. We now show that

T
µ
± = T

0
± + OeH

−1,−2 (236)

HereOeH
−1,−2 is an extended Heisenberg operator, having Heisenberg order −2 on

the appropriate parabolic face and classical order−1. As the extended Heisenberg
order ofU0

± is (0, 1) we see that this operator is also a parametrix forT
µ
±. We now

verify (236).
The operatorDµ

±[Dµ
±]∗ is given by

D
µ
±[Dµ

±]∗ =
(

ðoe
± ðeo

± + µ2 0
0 ðeo

± ðoe
± + µ2

)
. (237)

The fundamental solutionQµ(2)
± has the form

Q
µ(2)
± =

(
Qeo(2)µ

± 0
0 Qoe(2)µ

±

)
, (238)
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whereQeo(2)µ
± = (ðoe

± ðeo
± + µ2)−1. A fundamental solution forDµ

± is then given by

Q
µ
± = [Dµ

±]∗Q
µ(2)
± =

(
ðeo

± Qeo(2)µ
± µQoe(2)µ

±
−µQeo(2)µ

± ðoe
± Qoe(2)µ

±

)
. (239)

The claim in (236) follows from the observation that

Qeo(2)µ
± − Qeo(2)0

± ∈ O−4, (240)

which is a consequence of the resolvent identity

(ðoe
± ð

eo
± + µ2)−1 − (ðoe

± ð
eo)−1 = −µ2(ðoe

± ð
eo
± + µ2)−1(ðoe

± ð
eo
± )−1, (241)

and the fact thatðoe
± ðeo

± is elliptic of order 2. Using (240) in (239) shows that

Q
µ
± = Q

0
± +

(
O−3 O−2

O−2 O−3

)
. (242)

We can now apply Proposition 6 to conclude that theO−3 terms along the diagonal
in Q

µ
± can only change the symbol ofP

0
± by terms with Heisenberg order−4. The

residue computations in Section 3 show that theO−2 off diagonal terms can only
contribute terms toPµ

± at Heisenberg order−2, hence

P
µ
± = P

0
± +

(
OeH

−2,−4 OeH
−1,−2

OeH
−1,−2 OeH

−2,−4

)
. (243)

The truth of (236) is an immediate consequence of (243) and the fact thatU0
± has

extended Heisenberg orders(0, 1).

As noted above, this shows that the leading order part of the parametrix forTµ
±

has the form (
U

oe
± 0

0 U
eo
±

)
. (244)

We letU
µ
± denote a parametrix chosen so that

U
µ
±T

µ
± = Id +Kµ

1 T
µ
±U

µ
± = Id +Kµ

2 (245)

with Kµ
1 , Kµ

2 smoothing operators of finite rank. Arguing as in Theorem 3, one
easily proves the desired regularity:

Lemma 14. Letµ ∈ C and s≥ 0, if ( f, g) belongs to L2, and satisfies

D
µ
±

(
f
g

)
=
(

a
b

)
∈ H s andR±

(
f
g

)
↾bX= 0, (246)
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in the sense of distributions, then f, g ∈ H s+ 1
2 . There is a constant Cs,µ, indepen-

dent of( f, g) so that

‖( f, g)‖
Hs+ 1

2
≤ Cs,µ

[
‖D

µ
±

(
f
g

)
‖Hs + ‖

(
f
g

)
‖L2

]
. (247)

Proof. Let U1 = Q
µ
±(a, b), so thatU1 ∈ H s+1, and

D
µ
±(U − U1) = 0. (248)

On the one handR±([U − U1]bX) = −R±([U1]bX) ∈ H s+ 1
2 (bX). On the other

hand[U − U1]bX ∈ Im P
µ
± and therefore

−R±([U1]bX) = R±([U − U1]bX) = T
µ
±([U − U1]bX).

We applyU
µ
± to this relation to obtain

−U
µ
±R±([U1]bX) = (Id +Kµ

1 )([U − U1]bX) (249)

Rewriting this result gives

[U ]bX = −U
µ
±R±([U1]bX) + (Id +Kµ

1 )([U1]bX) − Kµ
1 [U ]bX. (250)

All terms on the right hand side of (250), but the last are, by construction, in
H s(bX). Proposition 14 implies that[U ]bX ∈ H− 1

2 , as Kµ
1 is a smoothing op-

erator, the last term,Kµ
1 [U ]bX, is smooth. Thus[U − U1]bX is in H s(bX), and

U −U1 therefore belongs toH s+ 1
2 (X); henceU = U1 +U −U1 does as well. The

estimate (247) follows easily from the definition ofU1 and (250).

Thus the solutionw constructed above is smooth onX; this completes the
proofs of the proposition and Theorem 4

Using Theorem 4 we can describe the domains of(ðeo
± , R

′ eo
± ).

Corollary 3. The domains of the closures,(ðeo
± , R

′ eo
± ), are given by

Dom(ðeo
± , R

′ eo
± ) = {u ∈ L2(X; F) : ð

eo
± u ∈ L2(X; F ′), R

′ eo
± u ↾bX= 0} (251)

Remark14. Note that Proposition 14 implies thatu ↾bX∈ H− 1
2 (bX). It is in this

sense that the boundary condition in (251) should be understood.
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Proof. By Theorem 4, we need only show thatu satisfying the conditions in (251)
belong to Dom((ðoe

± , R
′ oe
± )∗). To show this we need only show that forsmooth

sections,v, with R
oe
± v ↾bX= 0, we have

〈ðoe
± v, u〉 = 〈v, ð

eo
± u〉. (252)

This follows by a simple limiting argument, because the mapǫ 7→ u ↾ρ=ǫ is con-
tinuous in theH− 1

2 -topology andv is smooth.

As a corollary of Lemma 14 we get estimates for the second order operators
ðoe

± ðeo
± , with subelliptic boundary conditions.

Corollary 4. Let X be a strictly pseudoconvex (pseudoconcave) manifold,E → X
a compatible complex vector bundle. For s≥ 0 there exist constants Cs such that
if u ∈ L2, ð

eo
E±u ∈ L2, ð

oe
E±ð

eo
E±u ∈ H s and R

′ eo
E±[u]bX = 0, R

′ oe
E±[ðeo

E±u] = 0 in
the sense of distributions, then

‖u‖Hs+1 ≤ Cs[‖ð
oe
E±ð

eo
E±u‖Hs + ‖u‖L2]. (253)

Proof. We apply Lemma 14 toU = (u, ðeo
± u). Initially we see thatD0

±U ∈ L2.

The lemma shows thatðeo
± u ∈ H

1
2 , and thereforeD0

±U ∈ H
1
2 . Applying the lemma

recursively, we eventually deduce thatD
0
±U ∈ H s and that there is constantC′

s so
that

‖u‖
Hs+ 1

2
+ ‖ð

eo
± u‖

Hs+ 1
2

≤ C′
s[‖ð

oe
± ð

eo
± u‖Hs + ‖u‖L2]. (254)

It follows from Theorem 3 that, for a constantC′′
s , we have

‖u‖Hs+1 ≤ C′′
s [‖u‖

Hs+ 1
2

+ ‖ð
eo
± u‖

Hs+ 1
2
] (255)

Combining the two estimates gives (253).

In the case thatX is a complex manifold with boundary, these estimates imply
analogous results for the modified∂̄-Neumann problem acting on individual form
degrees. These results are stated and deduced from Corollary 4 in [5].
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[8] L. H ÖRMANDER, The Analysis of Linear Partial Differential Operators,
vol. 3, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.

[9] T. K ATO, Perturbation Theory for Linear Operators, corrected 2nd printing
Springer Verlag, Berlin Heidelberg, 1980.

[10] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol.
2, John Wiley and Sons, New York, 1969.

[11] H. B. LAWSON JR. AND M.-L. M ICHELSOHN, Spin Geometry, vol. 38 of
Princeton Mathematical Series, Princeton University Press, 1989.

[12] R. SEELEY, Singular integrals and boundary value problems, Amer. Jour. of
Math., 88 (1966), pp. 781–809.

[13] M. E. TAYLOR, Noncommutative microlocal analysis, part I, vol. 313 of
Mem. Amer. Math. Soc., AMS, 1984.

[14] , Partial Differential Equations, Vol. 2, vol. 116 of Applied Mathemati-
cal Sciences, Springer Verlag, New York, 1996.

[15] R. WELLS, Differential Analysis on Complex Manifolds, vol. 165 of Graduate
Texts in Mathematics, Springer Verlag, New York, 1980.

58


