Two Lemmas in Łocal Analytic Geometry

Charles L. Epstein and Gennadi M. Henkin
Department of Mathematics, University of Pennsylvania
and
University of Paris, VI
This paper is dedicated to Leon Ehrenpreis.

Abstract. We prove two results about the local properties of generically one to one analytic mappings.

>	Version: .76; Revised: 12-15-98; Run: March 23,1999

§1: Introduction

In this paper we consider two local properties of analytic maps which are generically one to one. First we consider holomorphic maps from open sets in \mathbb{C}^{2} which behave locally like monoidal transformations: Let (z, w) denote coordinates for \mathbb{C}^{2} and $D, D^{\prime} \subset \mathbb{C}^{2}$ be neighborhoods of $(0,0)$. We call a holomorphic map $f: D \rightarrow D^{\prime}$ a germ of a blowdown if
(1) $\quad f(0, w)=(0,0)$,
(2) $\quad f$ is injective on $D \backslash\{z=0\}$.

We prove the following normal form result for such maps:
Lemma 1. Suppose that $f: D \rightarrow D^{\prime}$ is a germ of a blowdown then there are local coordinates, (ζ, ξ) on a neighborhood of $(0,0)$ such that in these coordinates the map is either

$$
\begin{gather*}
f(\zeta, \xi)=\left(\zeta, \zeta^{k} \xi\right), \quad k \in \mathbb{N} \text { or } \tag{1.1}\\
f(\zeta, \xi)=\left(\zeta^{j}, \zeta^{k_{1}}\left(\alpha_{1}+\zeta^{k_{2}}\left(\alpha_{2}+\ldots \zeta^{k_{p}}\left(\alpha_{p}+\xi\right) \ldots\right)\right)\right. \tag{1.2}\\
\alpha_{i} \in \mathbb{C}, k_{i} \in \mathbb{N}, i=1, \ldots, p
\end{gather*}
$$

As a consequence of the lemma we obtain the following:
Key words and phrases. blow down, Castelnuovo, Łojasiewicz, injectvity bound.
Research supported in part by the University of Paris, VI and NSF grant DMS96-23040

Corollary 1. If $f: D \rightarrow D^{\prime}$ is a germ of a blowdown then there is a finite sequence of point blow-ups of

$$
D^{\prime}=D_{0}^{\prime} \longleftarrow \pi_{\pi_{1}} D_{1}^{\prime} \longleftarrow \pi_{\pi_{2}} \cdots \pi_{\pi_{m}} D_{m}^{\prime}
$$

and lifted maps $f_{i}: D \rightarrow D_{i}^{\prime}$ so that

$$
f=\pi_{1} \circ \cdots \circ \pi_{i} \circ f_{i}
$$

and $f_{m}: D \rightarrow D_{m}^{\prime}$ is a germ of a biholomorphism.
This result shows that Castelnuovo's classical result characterizing a generically one to one map between smooth, compact complex surfaces as a composition of monoidal transformations has a completely satisfactory local analogue, see [GrHa].

The other result we prove is a consequence of the Łojasiewicz inequality. We let $|x|$ denote the Euclidean norm in \mathbb{R}^{m} for any m. If $F \subset \mathbb{R}^{m}$ we let

$$
d(x, F)=\inf _{y \in F}|x-y| .
$$

Let f be a real analytic function in an open neighborhood, $\Omega \subset \mathbb{R}^{n}$ of 0 and suppose that $f(0)=0$. Let Z_{f} denote the zero locus of f. Lojasiewicz proved that for each compact subset $K \subset \Omega$ there exist positive constants, C, N so that

$$
|f(x)| \geq C\left[d\left(x, Z_{f}\right)\right]^{N}
$$

see [Ło]. Hörmander proved a similar result but assuming that f is a polynomial. These results were originally used to prove division theorems for distributions. Hömander used his result to prove a tempered version of the Malgrange-Ehrenpreis theorem, see [Hö] and [Eh,Ma].

Now suppose that $D_{r} \subset \mathbb{R}^{n}$ is the ball of radius r and that $\psi: D_{1+\epsilon} \rightarrow \mathbb{R}^{N}, \epsilon>0$ is a real analytic mapping. Let $E_{\psi}=\left\{x \in D_{1+\epsilon} \mid \operatorname{rank} \psi_{*}<n\right\}$.
Lemma 2. Suppose that ψ is as above and that E_{ψ} is a non-empty proper subvariety of $D_{1+\epsilon}$. Suppose further that ψ is one to one on $D_{1+\epsilon} \backslash E_{\psi}$ and $\psi\left(D_{1+\epsilon} \backslash E_{\psi}\right) \cap \psi\left(E_{\psi}\right)=\emptyset$. Then there exist positive constants, C, N so that

$$
\begin{equation*}
|\psi(x)-\psi(y)| \geq C|x-y|\left[d\left(x, E_{\psi}\right)+d\left(y, E_{\psi}\right)\right]^{N} \text { for } x, y \in D_{1} \tag{1.3}
\end{equation*}
$$

We have found this a useful consequence of the Łojasiewicz inequality. For example we have the following corollary:
Corollary 2. With ψ as in Theorem 2 there exists an $M>0$ such that if $f \in \operatorname{Lip}_{1}\left(D_{1}\right)$ and

$$
|\nabla f(x)| \leq C\left[d\left(x, E_{\psi}\right)\right]^{M}
$$

then $\psi_{*}(f)(y)=f\left(\psi^{-1}(y)\right)$ is a Lipschitz function on the closed set $\psi\left(D_{1}\right)$. There is a constant C^{\prime}, independent of f such that

$$
\left\|\psi_{*}(f)\right\|_{\operatorname{Lip}_{1}\left(\psi\left(D_{1}\right)\right)} \leq C^{\prime}\left(\|f\|_{C_{0}\left(D_{1}\right)}+\sup _{x \in D_{1}} \frac{|\nabla f(x)|}{\left[d\left(x, E_{\psi}\right)\right]^{M}}\right)
$$

The proof of this corollary can be found in [EpHe].

§2: Proof of Lemma 1

Proof of Lemma 1. Since f maps $\{z=0\}$ to $(0,0)$ there are positive integers, j, k such that

$$
f(z, w)=\left(z^{j} \varphi_{1}(z, w), z^{k} \varphi_{2}(z, w)\right)
$$

where φ_{1}, φ_{2} are holomorphic. We suppose that j, k are the maximal such integers. Define the varieties:

$$
V_{i}=\left\{\varphi_{i}^{-1}(0)\right\}, i=1,2 .
$$

By assumption $V_{i} \cap\{z=0\}$ is a finite set for $i=1,2$. We claim that $(0,0) \notin V_{i}$ for at least one value of i.

Suppose that this is not the case. Each irreducible component of V_{2} has a local parametrization of the form $t \rightarrow\left(t^{a} g(t), t^{b} h(t)\right)$. This map is injective in some neighborhood of $t=0$ and a and b are positive integers. In particular there is an $\epsilon>0$ such that $g(t) \neq 0$ for $|t|<\epsilon$. We consider the composition

$$
f\left(t^{a} g(t), t^{b} h(t)\right)=\left(t^{j a} g(t)^{j} \varphi_{1}\left(t^{a} g(t), t^{b}(h(t)), 0\right)\right.
$$

Since $\varphi_{1}(0,0)=0$ there is a $c>0$ such that

$$
\varphi_{1}\left(t^{a} g(t), t^{b}(h(t))=t^{c} k(t), \text { where } k(0) \neq 0\right.
$$

By assumption this map is injective in a neighborhood of 0 , on the other hand it has the form:

$$
f\left(t^{a} g(t), t^{b} h(t)\right)=\left(t^{j a+c} g(t)^{j} k(t), 0\right)
$$

From this we conclude that $j a+c=1$. However this contradicts the assumptions that j, a and c are all at least 1. From this the claim follows. We therefore assume that $\varphi_{1}(0,0) \neq 0$. If we introduce the new coordinate

$$
\zeta=z\left(\varphi_{1}(z, w)\right)^{\frac{1}{j}}
$$

then in a neighborhood of $(0,0)$ the map has the form:

$$
f(\zeta, w)=\left(\zeta^{j}, \zeta^{k} \varphi_{2}(\zeta, w)\right)
$$

We first dispose of a simple special case. If $\varphi_{2}(0,0)=0$ then using the local parametrization of V_{2} from above we conclude that $j a=1$. In particular $j=1$. Suppose that $\varphi_{2}(\zeta, 0)=0$ so that $\varphi_{2}=w^{l} \varphi_{2}^{\prime}(\zeta, w)$ for an $l>0$; where this is the maximal such l. For sufficiently small $\zeta \neq 0$ the map

$$
w \rightarrow w^{l} \varphi_{2}^{\prime}(\zeta, w)
$$

must be injective and therefore $l=1$. Finally we observe that if $\varphi_{2}^{\prime}(0,0)=0$ then the set $f^{-1}(\{(t, 0)\}) \backslash\{(0,0)\}$ would have two distinct components passing through $(0,0)$. As this would contradict the injectivity of f on the complement of $\{z=0\}$ it follows that $\varphi_{2}^{\prime}(0,0) \neq 0$. If we introduce, as second coordinate $\xi=w \varphi_{2}^{\prime}(\zeta, w)$, then the map takes the form

$$
f(\zeta, \xi)=\left(\zeta, \zeta^{k} \xi\right)
$$

Now we treat the general case. There is a fixed $\epsilon>0$ such that the maps $\left\{w \rightarrow \varphi_{2}(\zeta, w)\right.$: $0<|\zeta|<\epsilon\}$ are injective in the set $B_{\epsilon}=\{|w|<\epsilon\}$. Hurwitz's theorem implies that $w \rightarrow$ $\varphi_{2}(0, w)$ is either injective in B_{ϵ} or constant. Let

$$
\alpha_{1}=\varphi_{2}(0,0)
$$

In the former case we introduce the new coordinate $\xi=\varphi_{2}(\zeta, w)-\alpha_{1}$ which puts the map into the normal form (1.2):

$$
f(\zeta, \xi)=\left(\zeta^{j}, \zeta^{k}\left(\alpha_{1}+\xi\right)\right)
$$

Note that if $\alpha_{1}=0$ then $j=1$ as follows from the argument above.
In the latter case we set $k_{1}=k$ and let $0<k_{2}$ be the largest integer such that

$$
\varphi_{2}(\zeta, w)=\alpha_{1}+\zeta^{k_{2}} \varphi_{2}^{(1)}(\zeta, w)
$$

where $\varphi_{2}^{(1)}$ is a holomorphic function. The same observation applies in this case: the maps $\left\{w \rightarrow \varphi_{2}^{(1)}(\zeta, w): 0<|\zeta|<\epsilon\right\}$ are injective in the set B_{ϵ}. This leads to the same dichotomy: either $\varphi_{2}^{(1)}(0, w)$ is injective on B_{ϵ} or constant. If we repeat this argument p-times we obtain sequences of complex numbers, $\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$, positive integers, $\left\{k_{1}, \ldots, k_{p+1}\right\}$ and a holomorphic function, $\varphi_{2}^{(p)}$ so that

$$
\varphi_{2}(\zeta, w)=\zeta^{k_{1}}\left(\alpha_{1}+\zeta^{k_{2}}\left(\alpha_{2}+\zeta^{k_{3}}\left(\ldots\left(\alpha_{p}+\zeta^{k_{p+1}} \varphi_{2}^{(p)}\right) \ldots\right)\right.\right.
$$

As before the maps $w \rightarrow \varphi_{2}^{(p)}(\zeta, w)$ are injective in B_{ϵ} for $\zeta \neq 0$. Observe that $\partial_{w} \varphi_{2}(\zeta, w)$ is divisible by ζ^{p+1}. In order for φ_{2} to depend on w in a non-trivial way there must a finite value, p such that $w \rightarrow \varphi_{2}^{(p)}(0, w)$ is injective in B_{ϵ}. If, for this p we let $\xi=\varphi_{2}^{(p)}(\zeta, w)-\alpha_{p+1}$ then we obtain the normal form, (1.2) for f :

$$
f(\zeta, \xi)=\left(\zeta^{j}, \zeta^{k_{1}}\left(\alpha_{1}+\zeta^{k_{2}}\left(\cdots+\zeta^{k_{p+1}}\left(\alpha_{p+1}+\xi\right) \ldots\right)\right)\right.
$$

Remark. The normal form, (1.2) can be re-expressed as

$$
f(\zeta, \xi)=\left(\zeta^{j}, q(\zeta)+\zeta^{N} \xi\right)
$$

where $q(\zeta)$ is a polynomial of degree at most $N=k_{1}+\cdots+k_{p}$. The condition that f be injective in some deleted neighborhood of $(0,0)$ is: for each $j^{\text {th }}$ root of unity, $e^{i \omega}$ the polynomial $q(\zeta)-q\left(e^{i \omega} \zeta\right)$ is not divisible by ζ^{N}. For example, if $\alpha_{p}=0$ so that the degree of q is less than N this is equivalent to the condition:

$$
\operatorname{gcd}\left(j, k_{1}, k_{1}+k_{2}, \ldots, k_{1}+\ldots k_{p}\right)=1
$$

We now deduce the corollary:

Proof of Corollary 1. The proof is a simple recursive argument using the normal form and the fact that a blow-up is locally described by either $(z, w) \rightarrow\left(z, \frac{w}{z}\right)$ or $(z, w) \rightarrow\left(\frac{z}{w}, w\right)$. If the map takes the normal form (1.1) then blowing up the origin in the target k-times and lifting the map f each time leads to a space D_{k}^{\prime} and a map $f_{k}: D \rightarrow D_{k}^{\prime}$, given by: $f_{k}(\zeta, \xi)=(\zeta, \xi)$.

If the map takes the normal form, (1.2) then the Jacobian determinant, J_{f} is easily computed, it is

$$
J_{f}=j \zeta^{j+k_{1}+\cdots+k_{p}-1}
$$

Let ord J_{f} denote the order of vanishing of J_{f} along $\{z=0\} \cap D$, this is of course invariant under biholomorphisms. We obtain a sequence of spaces, $\left\{D_{j}^{\prime}\right\}$ by the prescription: Define $\pi_{1}: D_{1}^{\prime} \rightarrow D^{\prime}$ as the blow-up of $f(\{z=0\} \cap D)=(0,0)$. The map, f lifts to define a map,

$$
f_{1}: D \longrightarrow D_{1}^{\prime}
$$

which satisfies $f=\pi_{1} \circ f_{1}$. It is evident that ord $J_{f_{1}}<\operatorname{ord} J_{f}$. If $J_{f_{1}}$ is non-vanishing then we are done as f_{1} is then the germ of a biholomorphism. Otherwise $f_{1}: D \rightarrow D_{1}^{\prime}$ is the germ of a blow-down but $f_{1}(\{\zeta=0\} \cap D)$ may not be $(0,0)$. The normal form theorem applies mutatis mutandis to this case as well and so we can define D_{2}^{\prime} by blowing up $f_{1}(\{\zeta=0\} \cap D)$ to obtain $\pi_{2}: D_{2}^{\prime} \rightarrow D_{1}^{\prime}$ and $f_{2}: D \rightarrow D_{2}^{\prime}$ with $f_{1}=\pi_{2} \circ f_{2}$. Apply this process recursively: assume that we have obtained spaces,

$$
D_{k}^{\prime} \xrightarrow{\pi_{k}} D_{k-1}^{\prime} \xrightarrow{\pi_{k-1}} \ldots \xrightarrow{\pi_{1}} D^{\prime}
$$

and germs of blow-downs

$$
f_{i}: D \rightarrow D_{i}^{\prime} \text { with } f_{i}=\pi_{i} \circ f_{i-1}, i=1 \ldots, k
$$

The space D_{i}^{\prime} is obtained by blowing up $f_{i-1}(\{\zeta=0\} \cap D)$. At each step we see that ord $J_{f_{i}}<$ ord $J_{f_{i-1}}$. If ord $J_{f_{k}}>0$ then f_{k} is the germ of a blow-down and we define $\left(D_{k+1}^{\prime}, f_{k+1}\right)$ as above otherwise f_{k} is the germ of a biholomorphism. With each blow-up the ord $J_{f_{k}}$ decreases by at least 1 thus this process must terminate after finitely steps.

§3: Proof of Lemma 2

Proof of Lemma 2. In this argument $\psi: D_{1} \rightarrow \mathbb{R}^{N}$ is a real analytic map defined and satisfying the hypotheses of the theorem on a neighborhood of \bar{D}_{1}. We let z and w denote points in \bar{D}_{1}. First consider the real analytic function:

$$
\rho(z, w)=|\psi(z)-\psi(w)|^{2}
$$

This function vanishes on $Z_{\rho} \subset \Delta \cup E_{\psi} \times E_{\psi}$ where

$$
\Delta=\left\{(p, p) \mid p \in D_{1}\right\} \text { and } E_{\psi}=\left\{z \in D_{1} \mid \operatorname{rank} \psi_{*}<n\right\} .
$$

We get containment and not equality whenever E_{ψ} has several connected components. Apply Łojasiewicz' inequality to obtain positive constants C_{1}, N_{1} so that

$$
\begin{equation*}
\rho(z, w) \geq C_{1}\left[d\left((z, w), Z_{\rho}\right)\right]^{N_{1}} . \tag{3.2}
\end{equation*}
$$

Evidently

$$
d\left((z, w), Z_{\rho}\right) \geq \min \left\{\frac{1}{2}|z-w|,\left[d\left(z, E_{\psi}\right)^{2}+d\left(w, E_{\psi}\right)^{2}\right]^{\frac{1}{2}}\right\}
$$

If $d((z, w), \Delta) \geq d\left((z, w), E_{\psi} \times E_{\psi}\right)$ then (3.2) implies that

$$
\begin{equation*}
\rho(z, w) \geq C_{1}^{\prime}|z-w|\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{N_{1}}, \tag{3.3}
\end{equation*}
$$

for some possibly smaller constant. For $\delta>0, L \geq 1$ we define the sets:

$$
\begin{equation*}
A_{\delta, L}=\left\{(z, w) \mid \quad d((z, w), \Delta) \geq \delta\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{L}\right\} \tag{3.4}
\end{equation*}
$$

It follows from (3.2) that we have the estimates

$$
\begin{equation*}
\rho(z, w) \geq C_{1}^{\prime}|z-w|\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{L\left(N_{1}-1\right)} \text { for }(z, w) \in A_{\delta, L} \tag{3.5}
\end{equation*}
$$

We are left to consider the set

$$
B_{\delta, L}=\left\{(z, w)|\quad| z-w \mid<\delta\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{L}\right\}
$$

for a $\delta>0$ and $L \geq 1$ which are yet to be determined. To that end we express

$$
\psi(z)-\psi(w)=M(z, w)(z-w)
$$

where $M(z, w)$ is the $N \times n$ matrix valued real analytic function given by:

$$
M(z, w)=\int_{0}^{1} \nabla \psi(t z+(1-t) w) d t
$$

Observe that

$$
\begin{equation*}
M(z, z)=\nabla \psi(z) \tag{3.6}
\end{equation*}
$$

Let \mathcal{I}_{n} denote set of multi-indices

$$
\mathcal{I}_{n}=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid \quad 1 \leq i_{1}<\ldots, i_{n} \leq N\right\} .
$$

If we let $\underline{i}=\left(i_{1}, \ldots, i_{n}\right)$ denote an element of \mathcal{I}_{n} then $M_{\underline{i}}$ is the $n \times n$ sub-matrix

$$
M_{\underline{i}}=\left(\begin{array}{ccc}
M_{i_{1} 1} & \ldots & M_{i_{1} n} \\
\vdots & & \vdots \\
M_{i_{n} 1} & \ldots & M_{i_{n} n}
\end{array}\right)
$$

and $\psi_{\underline{i}}$ the n-vector valued function

$$
\psi_{\underline{i}}(z)=\left(\begin{array}{c}
\psi_{i_{1}}(z) \\
\vdots \\
\psi_{i_{n}}(z)
\end{array}\right)
$$

For each such multi-index we have the identity:

$$
\begin{equation*}
\psi_{\underline{i}}(z)-\psi_{\underline{i}}(w)=M_{\underline{i}}(z, w)(z-w) . \tag{3.7}
\end{equation*}
$$

If $\operatorname{det} M_{\underline{i}}(z, w) \neq 0$ then it follows easily from the fact that ψ is smooth, Cramer's rule and the Cauchy-Schwarz inequality that there is a positive constant, C_{4} such that

$$
\begin{equation*}
\left|\psi_{\underline{i}}(z)-\psi_{\underline{i}}(w)\right| \geq C_{4}\left|\operatorname{det} M_{\underline{i}}(z, w)\right||z-w| . \tag{3.8}
\end{equation*}
$$

Note that $C_{4}>0$ is a fixed constant which is independent of z, w and \underline{i}.
Define the real analytic function

$$
m(z, w)=\sum_{\underline{i} \in \mathcal{I}_{n}}\left|\operatorname{det} M_{\underline{i}}(z, w)\right|^{2}
$$

From (3.6) and the hypothesis of the theorem it follows that $m(z, z)$ vanishes exactly on the set E_{ψ}. Thus we can apply Lojasiewicz' inequality to obtain that there exist positive constants, C_{5}, N_{2} such that

$$
\begin{equation*}
m(z, z) \geq C_{5}\left[d\left(z, E_{\psi}\right)\right]^{N_{2}} \tag{3.9}
\end{equation*}
$$

For an $L>N_{2}$ and $\delta>0$, sufficiently small we now show that there exists a constant $C_{5}^{\prime}>0$ such that

$$
\begin{equation*}
m(z, w)>C_{5}^{\prime}\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{N_{2}} \text { for }(z, w) \in B_{\delta, L} \tag{3.10}
\end{equation*}
$$

It follows from the smoothness of $m(z, w)$ and the mean value inequality that there exists a constant, C_{6} so that

$$
m(z, w) \geq m(z, z)-C_{6}|z-w|
$$

hence (3.9) implies that

$$
\begin{equation*}
m(z, w) \geq C_{5}\left[d\left(z, E_{\psi}\right)\right]^{N_{2}}-C_{6} \delta\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{L} \text { for }(z, w) \in B_{\delta, L} \tag{3.11}
\end{equation*}
$$

If $(z, w) \in B_{\delta, L}$ then the triangle inequality implies that

$$
d\left(w, E_{\psi}\right)-d\left(z, E_{\psi}\right) \leq d(w, z) \leq \delta\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{L}
$$

For sufficiently small $\delta>0$, this estimate and the binomial theorem imply that there exists a positive constant C_{7} so that

$$
\begin{equation*}
\frac{1}{C_{7}} d\left(z, E_{\psi}\right) \leq d\left(w, E_{\psi}\right) \leq C_{7} d\left(z, E_{\psi}\right) \tag{3.12}
\end{equation*}
$$

Putting together (3.11) and (3.12) we obtain (3.10). Let K be the cardinality of \mathcal{I}_{n}. Then (3.10) implies that for each $(z, w) \in B_{\delta, L}$ there exists a $\underline{i} \in \mathcal{I}_{n}$ for which we have the estimate:

$$
\begin{equation*}
\left|\operatorname{det} M_{\underline{i}}(z, w)\right|^{2} \geq \frac{C_{5}^{\prime}}{K}\left[d\left(z, E_{\psi}\right)+d\left(w, E_{\psi}\right)\right]^{N_{2}} \tag{3.13}
\end{equation*}
$$

Combining this with (3.8) completes the proof of Theorem 2.

References

[Eh] Leon Ehrenpreis, Solutions of some division problems I, American Journal of Mathematics 76 (1954), 883-903.
[EpHe] Charles L. Epstein and Gennadi M. Henkin, Stability of embeddings of 3-dimensional CR-manifolds, $I I$, in preparation (1998).
[GrHa] Phillip Griffiths and Joe Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
[Hö] Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
[Ło] Stanislaw Łojasiewicz, Sur le problème de division, Studia Math. 18 (1959), 87-136.
[Ma] B. Malgrange, Existence et Approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier Grenoble 6 (1955-6), 271-355.

