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§1: Introduction

In this paper we consider two local properties of analytic maps which are generically one
to one. First we consider holomorphic maps from open sets in C2 which behave locally like
monoidal transformations: Let (z, w) denote coordinates for C2 and D,D′ ⊂ C2 be neighbor-
hoods of (0, 0). We call a holomorphic map f : D → D′ a germ of a blowdown if

(1) f(0, w) = (0, 0),
(2) f is injective on D \ {z = 0}.

We prove the following normal form result for such maps:

Lemma 1. Suppose that f : D → D′ is a germ of a blowdown then there are local coordinates,
(ζ, ξ) on a neighborhood of (0, 0) such that in these coordinates the map is either

(1.1) f(ζ, ξ) = (ζ, ζkξ), k ∈ N or

f(ζ, ξ) = (ζj , ζk1(α1 + ζk2(α2 + . . . ζkp(αp + ξ) . . . )),

αi ∈ C, ki ∈ N, i = 1, . . . , p.
(1.2)

As a consequence of the lemma we obtain the following:
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Corollary 1. If f : D → D′ is a germ of a blowdown then there is a finite sequence of point
blow–ups of

D′ = D′0 ←−−−−
π1

D′1 ←−−−−
π2

. . . ←−−−−
πm

D′m

and lifted maps fi : D → D′i so that

f = π1 ◦ · · · ◦ πi ◦ fi

and fm : D → D′m is a germ of a biholomorphism.

This result shows that Castelnuovo’s classical result characterizing a generically one to one
map between smooth, compact complex surfaces as a composition of monoidal transformations
has a completely satisfactory local analogue, see [GrHa].

The other result we prove is a consequence of the  Lojasiewicz inequality. We let |x| denote
the Euclidean norm in Rm for any m. If F ⊂ Rm we let

d(x, F ) = inf
y∈F
|x− y|.

Let f be a real analytic function in an open neighborhood, Ω ⊂ Rn of 0 and suppose that
f(0) = 0. Let Zf denote the zero locus of f.  Lojasiewicz proved that for each compact subset
K ⊂ Ω there exist positive constants, C, N so that

|f(x)| ≥ C[d(x, Zf )]N ,

see [ Lo]. Hörmander proved a similar result but assuming that f is a polynomial. These results
were originally used to prove division theorems for distributions. Hömander used his result to
prove a tempered version of the Malgrange–Ehrenpreis theorem, see [Hö] and [Eh,Ma].

Now suppose that Dr ⊂ Rn is the ball of radius r and that ψ : D1+ε → RN , ε > 0 is a
real analytic mapping. Let Eψ = {x ∈ D1+ε| rankψ∗ < n}.

Lemma 2. Suppose that ψ is as above and that Eψ is a non–empty proper subvariety of D1+ε.
Suppose further that ψ is one to one on D1+ε \Eψ and ψ(D1+ε \Eψ)∩ψ(Eψ) = ∅. Then there
exist positive constants, C, N so that

(1.3) |ψ(x)− ψ(y)| ≥ C|x− y|[d(x,Eψ) + d(y, Eψ)]N for x, y ∈ D1

We have found this a useful consequence of the  Lojasiewicz inequality. For example we
have the following corollary:

Corollary 2. With ψ as in Theorem 2 there exists an M > 0 such that if f ∈ Lip1(D1) and

|∇f(x)| ≤ C[d(x,Eψ)]M

then ψ∗(f)(y) = f(ψ−1(y)) is a Lipschitz function on the closed set ψ(D1). There is a constant
C′, independent of f such that

‖ψ∗(f)‖Lip1(ψ(D1)) ≤ C
′

(
‖f‖C0(D1) + sup

x∈D1

|∇f(x)|

[d(x,Eψ)]M

)
.

The proof of this corollary can be found in [EpHe].
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§2: Proof of Lemma 1

Proof of Lemma 1. Since f maps {z = 0} to (0, 0) there are positive integers, j, k such that

f(z, w) = (zjϕ1(z, w), zkϕ2(z, w)),

where ϕ1, ϕ2 are holomorphic. We suppose that j, k are the maximal such integers. Define the
varieties:

Vi = {ϕ−1
i (0)}, i = 1, 2.

By assumption Vi ∩ {z = 0} is a finite set for i = 1, 2. We claim that (0, 0) /∈ Vi for at least
one value of i.

Suppose that this is not the case. Each irreducible component of V2 has a local parametriza-
tion of the form t→ (tag(t), tbh(t)). This map is injective in some neighborhood of t = 0 and
a and b are positive integers. In particular there is an ε > 0 such that g(t) 6= 0 for |t| < ε. We
consider the composition

f(tag(t), tbh(t)) = (tjag(t)jϕ1(tag(t), tb(h(t)), 0).

Since ϕ1(0, 0) = 0 there is a c > 0 such that

ϕ1(tag(t), tb(h(t)) = tck(t), where k(0) 6= 0.

By assumption this map is injective in a neighborhood of 0, on the other hand it has the form:

f(tag(t), tbh(t)) = (tja+cg(t)jk(t), 0).

From this we conclude that ja+ c = 1. However this contradicts the assumptions that j, a and
c are all at least 1. From this the claim follows. We therefore assume that ϕ1(0, 0) 6= 0. If we
introduce the new coordinate

ζ = z(ϕ1(z, w))
1
j

then in a neighborhood of (0, 0) the map has the form:

f(ζ, w) = (ζj , ζkϕ2(ζ, w)).

We first dispose of a simple special case. If ϕ2(0, 0) = 0 then using the local parametriza-
tion of V2 from above we conclude that ja = 1. In particular j = 1. Suppose that ϕ2(ζ, 0) = 0
so that ϕ2 = wlϕ′2(ζ, w) for an l > 0; where this is the maximal such l. For sufficiently small
ζ 6= 0 the map

w → wlϕ′2(ζ, w)

must be injective and therefore l = 1. Finally we observe that if ϕ′2(0, 0) = 0 then the set
f−1({(t, 0)}) \ {(0, 0)} would have two distinct components passing through (0, 0). As this
would contradict the injectivity of f on the complement of {z = 0} it follows that ϕ′2(0, 0) 6= 0.
If we introduce, as second coordinate ξ = wϕ′2(ζ, w), then the map takes the form

f(ζ, ξ) = (ζ, ζkξ).
3



Now we treat the general case. There is a fixed ε > 0 such that the maps {w → ϕ2(ζ, w) :
0 < |ζ| < ε} are injective in the set Bε = {|w| < ε}. Hurwitz’s theorem implies that w →
ϕ2(0, w) is either injective in Bε or constant. Let

α1 = ϕ2(0, 0).

In the former case we introduce the new coordinate ξ = ϕ2(ζ, w) − α1 which puts the map
into the normal form (1.2):

f(ζ, ξ) = (ζj, ζk(α1 + ξ)).

Note that if α1 = 0 then j = 1 as follows from the argument above.
In the latter case we set k1 = k and let 0 < k2 be the largest integer such that

ϕ2(ζ, w) = α1 + ζk2ϕ
(1)
2 (ζ, w),

where ϕ
(1)
2 is a holomorphic function. The same observation applies in this case: the maps

{w → ϕ
(1)
2 (ζ, w) : 0 < |ζ| < ε} are injective in the set Bε. This leads to the same dichotomy:

either ϕ
(1)
2 (0, w) is injective on Bε or constant. If we repeat this argument p–times we obtain

sequences of complex numbers, {α1, . . . , αp}, positive integers, {k1, . . . , kp+1} and a holomor-

phic function, ϕ
(p)
2 so that

ϕ2(ζ, w) = ζk1(α1 + ζk2(α2 + ζk3(. . . (αp + ζkp+1ϕ
(p)
2 ) . . . ).

As before the maps w → ϕ
(p)
2 (ζ, w) are injective in Bε for ζ 6= 0. Observe that ∂wϕ2(ζ, w)

is divisible by ζp+1. In order for ϕ2 to depend on w in a non–trivial way there must a finite

value, p such that w → ϕ
(p)
2 (0, w) is injective in Bε. If, for this p we let ξ = ϕ

(p)
2 (ζ, w)− αp+1

then we obtain the normal form, (1.2) for f :

f(ζ, ξ) = (ζj, ζk1(α1 + ζk2(· · ·+ ζkp+1(αp+1 + ξ) . . . )).

Remark. The normal form, (1.2) can be re–expressed as

f(ζ, ξ) = (ζj, q(ζ) + ζNξ)

where q(ζ) is a polynomial of degree at most N = k1 + · · · + kp. The condition that f be
injective in some deleted neighborhood of (0, 0) is: for each jth root of unity, eiω the polynomial
q(ζ)− q(eiωζ) is not divisible by ζN . For example, if αp = 0 so that the degree of q is less than
N this is equivalent to the condition:

gcd(j, k1, k1 + k2, . . . , k1 + . . . kp) = 1.

We now deduce the corollary:
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Proof of Corollary 1. The proof is a simple recursive argument using the normal form and the
fact that a blow–up is locally described by either (z, w) → (z, w

z
) or (z, w) → ( z

w
, w). If the

map takes the normal form (1.1) then blowing up the origin in the target k–times and lifting
the map f each time leads to a space D′k and a map fk : D→ D′k, given by: fk(ζ, ξ) = (ζ, ξ).

If the map takes the normal form, (1.2) then the Jacobian determinant, Jf is easily
computed, it is

Jf = jζj+k1+···+kp−1.

Let ordJf denote the order of vanishing of Jf along {z = 0} ∩D, this is of course invariant
under biholomorphisms. We obtain a sequence of spaces, {D′j} by the prescription: Define
π1 : D′1 → D′ as the blow–up of f({z = 0} ∩D) = (0, 0). The map, f lifts to define a map,

f1 : D −→ D′1

which satisfies f = π1 ◦ f1. It is evident that ord Jf1 < ordJf . If Jf1 is non–vanishing then we
are done as f1 is then the germ of a biholomorphism. Otherwise f1 : D → D′1 is the germ of a
blow–down but f1({ζ = 0} ∩D) may not be (0, 0). The normal form theorem applies mutatis
mutandis to this case as well and so we can define D′2 by blowing up f1({ζ = 0}∩D) to obtain
π2 : D′2 → D′1 and f2 : D → D′2 with f1 = π2 ◦ f2. Apply this process recursively: assume that
we have obtained spaces,

D′k
πk−−−−→ D′k−1

πk−1
−−−−→ . . .

π1−−−−→ D′

and germs of blow–downs

fi : D → D′i with fi = πi ◦ fi−1, i = 1 . . . , k.

The space D′i is obtained by blowing up fi−1({ζ = 0}∩D). At each step we see that ordJfi <
ordJfi−1 . If ordJfk > 0 then fk is the germ of a blow–down and we define (D′k+1, fk+1) as
above otherwise fk is the germ of a biholomorphism. With each blow–up the ordJfk decreases
by at least 1 thus this process must terminate after finitely steps.

§3: Proof of Lemma 2

Proof of Lemma 2. In this argument ψ : D1 → RN is a real analytic map defined and satisfying
the hypotheses of the theorem on a neighborhood of D̄1. We let z and w denote points in D̄1.
First consider the real analytic function:

ρ(z, w) = |ψ(z)− ψ(w)|2.

This function vanishes on Zρ ⊂ ∆ ∪Eψ × Eψ where

∆ = {(p, p)|p ∈ D1} and Eψ = {z ∈ D1| rankψ∗ < n}.

We get containment and not equality whenever Eψ has several connected components. Apply
 Lojasiewicz’ inequality to obtain positive constants C1, N1 so that

(3.2) ρ(z, w) ≥ C1[d((z, w), Zρ)]
N1 .
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Evidently

d((z, w), Zρ) ≥ min{
1

2
|z −w|, [d(z, Eψ)2 + d(w,Eψ)2]

1
2 }.

If d((z, w),∆) ≥ d((z, w), Eψ ×Eψ) then (3.2) implies that

(3.3) ρ(z, w) ≥ C′1|z − w|[d(z, Eψ) + d(w,Eψ)]N1 ,

for some possibly smaller constant. For δ > 0, L ≥ 1 we define the sets:

(3.4) Aδ,L = {(z, w)| d((z, w),∆) ≥ δ[d(z, Eψ) + d(w,Eψ)]L}.

It follows from (3.2) that we have the estimates

(3.5) ρ(z, w) ≥ C′1|z −w|[d(z, Eψ) + d(w,Eψ)]L(N1−1) for (z, w) ∈ Aδ,L.

We are left to consider the set

Bδ,L = {(z, w)| |z − w| < δ[d(z, Eψ) + d(w,Eψ)]L}

for a δ > 0 and L ≥ 1 which are yet to be determined. To that end we express

ψ(z)− ψ(w) = M(z, w)(z − w)

where M(z, w) is the N × n matrix valued real analytic function given by:

M(z, w) =

1∫
0

∇ψ(tz + (1− t)w)dt.

Observe that

(3.6) M(z, z) = ∇ψ(z).

Let In denote set of multi-indices

In = {(i1, . . . , in)| 1 ≤ i1 < . . . , in ≤ N}.

If we let i = (i1, . . . , in) denote an element of In then Mi is the n× n sub-matrix

Mi =

 Mi11 . . . Mi1n

...
...

Min1 . . . Minn
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and ψi the n–vector valued function

ψi(z) =

 ψi1(z)
...

ψin(z)

 .

For each such multi-index we have the identity:

(3.7) ψi(z)− ψi(w) = Mi(z, w)(z − w).

If detMi(z, w) 6= 0 then it follows easily from the fact that ψ is smooth, Cramer’s rule and
the Cauchy–Schwarz inequality that there is a positive constant, C4 such that

(3.8) |ψi(z)− ψi(w)| ≥ C4| detMi(z, w)||z − w|.

Note that C4 > 0 is a fixed constant which is independent of z, w and i.
Define the real analytic function

m(z, w) =
∑
i∈In

| detMi(z, w)|2.

From (3.6) and the hypothesis of the theorem it follows that m(z, z) vanishes exactly on the
set Eψ. Thus we can apply  Lojasiewicz’ inequality to obtain that there exist positive constants,
C5, N2 such that

(3.9) m(z, z) ≥ C5[d(z, Eψ)]N2 .

For an L > N2 and δ > 0, sufficiently small we now show that there exists a constant C′5 > 0
such that

(3.10) m(z, w) > C′5[d(z, Eψ) + d(w,Eψ)]N2 for (z, w) ∈ Bδ,L.

It follows from the smoothness of m(z, w) and the mean value inequality that there exists
a constant, C6 so that

m(z, w) ≥ m(z, z)− C6|z − w|

hence (3.9) implies that

(3.11) m(z, w) ≥ C5[d(z, Eψ)]N2 −C6δ[d(z, Eψ) + d(w,Eψ)]L for (z, w) ∈ Bδ,L.

If (z, w) ∈ Bδ,L then the triangle inequality implies that

d(w,Eψ)− d(z, Eψ) ≤ d(w, z) ≤ δ[d(z, Eψ) + d(w,Eψ)]L.

For sufficiently small δ > 0, this estimate and the binomial theorem imply that there exists a
positive constant C7 so that

(3.12)
1

C7
d(z, Eψ) ≤ d(w,Eψ) ≤ C7d(z, Eψ).

Putting together (3.11) and (3.12) we obtain (3.10). Let K be the cardinality of In. Then
(3.10) implies that for each (z, w) ∈ Bδ,L there exists a i ∈ In for which we have the estimate:

(3.13) | detMi(z, w)|2 ≥
C′5
K

[d(z, Eψ) + d(w,Eψ)]N2 .

Combining this with (3.8) completes the proof of Theorem 2.
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