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ABSTRACT. We prove that the group Aut1(ξ) of strict contactomorphisms,
also known as quantomorphisms, of the standard tight contact structure ξ
on S3 is the total space of a fiber bundle S1→Aut1(ξ)→SDiff (S2) over the
group of area-preserving C∞-diffeomorphisms of S2, and that it deforma-
tion retracts to its finite-dimensional sub-bundle S1→U(2)∪cU(2)→O(3),
where U(2) is the unitary group and c is complex conjugation.

FIGURE 1. The Hopf fibration of the three-sphere consists of the unit
circles on the complex lines through the origin in �2, which lie
mostly on a family of tori as shown above. The standard tight contact
structure on S3 is the field of tangent two-planes orthogonal to these
great circles. The strict contactomorphisms are the diffeomorphisms
of the three-sphere which preserve both the Hopf fibration and the
standard tight contact structure.
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1. INTRODUCTION

We consider here the groups Diff (M) of diffeomorphisms of smooth manifolds
M, give them the C∞ topology and regard them as Fréchet Lie groups. The study of
their homotopy types has a rich history. By a result of Smale, the diffeomorphism
group Diff (S2) is homotopy equivalent to the orthogonal group O(3), and by the
celebrated Smale Conjecture proved by Hatcher in [Hat83], the diffeomorphism
group Diff (S3) is homotopy equivalent to the orthogonal group O(4). It is natural
to consider diffeomorphisms of S3 which preserve extra structure there and the
interplay and homotopy types of resulting moduli spaces. The main players in this
paper are subgroups of the group Diff (S3) of smooth diffeomorphisms of S3 which
preserve Hopf fibers and tight contact structure.

The Hopf fibration H discovered by Hopf in 1931 and pictured in Figure 1 is
a fiber bundle S1 ⊂ S3 p

−→ S2 whose projection p provided the first example
of a homotopically nontrivial map from a higher-dimensional sphere to a lower-
dimensional one, signaling the birth of homotopy theory. Let Aut(H) be the sub-
group of Diff (S3) consisting of diffeomorphisms which permute the great circle
fibers of H , not necessarily rigidly. These will be called automorphisms of H .
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The standard tight contact structure ξ on S3 is the field of tangent 2-planes which
are everywhere orthogonal to the great circle fibers of the Hopf fibration, as pictured
in Figure 1. Let Aut(ξ) denote the subgroup of Diff(S3) consisting of diffeomor-
phisms whose differentials permute the tangent 2-planes of ξ. These will be called
automorphisms of ξ.

In this paper we study the diffeomorphisms of S3 which are simultaneously au-
tomorphisms of the Hopf fibration H and of the standard tight contact structure ξ.
First, we show in Proposition 3.1 that

Aut(H) ∩ Aut(ξ) � Aut1(ξ),

where Aut1(ξ) is the group of all strict contactomorphisms (see Definition 2.9), also
known as the quantomorphism group, of ξ. Our main result is the following, which
appears as Theorem 6.1 and Theorem 6.18.

Theorem A. The group Aut1(ξ) is the total space of an S1-bundle

(1.2) S1 → Aut1(ξ) → SDiff (S2)

in the category of Fréchet Lie groups and C∞ maps, where the S1 fiber is the subgroup of
diffeomorphisms of S3 which rotate all Hopf fibers within themselves by the same angle,
and where the base space SDiff (S2) is the group of area-preserving C∞ diffeomorphisms
of the unit two-sphere S2. This bundle deformation retracts to its finite-dimensional
subbundle

S1 → U(2) ∪ cU(2) → O(3),
where U(2) is the unitary group, c denotes complex conjugation and O(3) is the or-
thogonal group.

We give some historical context. The fiber bundle result was proved by Ratiu
and Schmid in 1981 in the Sobolev category [RS81], building on work of Kostant
[Kos70], Souriau [Sou70], Ebin and Marsden [EM70], Omori [Omo74], and Banyaga
[Ban78b], [Ban78a]; see also [EP15]. The deformation retraction result above
is based on the theorem of Mu-Tao Wang [Wan01], which shows that the group
SDiff (S2) deformation retracts to its subgroup O(3) via mean curvature flow of
graphs in S2 × S2. We will show how to lift this to a deformation retraction of
Aut1(ξ) to U(2) ∪ cU(2).

Theorem A is the first in a continuing study of the homotopy types of the auto-
morphism groups Aut(H) and Aut(ξ) and some of their subgroups which preserve
structure more strictly, and of the homotopy types of the moduli space of fibrations
of the three-sphere by simple closed curves and the moduli space of tight contact
structures on the three-sphere. These moduli spaces are the quotients of Diff (S3) by
Aut(H), and Aut(ξ), respectively.
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Organization of the paper. In Section 2, we begin by regarding S3 as the group
of unit quaternions, and quickly review left-invariant vector fields and differential
forms on S3, which we will use throughout the paper. In Section 3 we will examine
the behavior of diffeomorphisms which lie in the group Aut1(ξ) of strict contac-
tomorphisms, and show that this group is the intersection of the groups Aut(H)
and Aut(ξ). After that, we work up to the main theorem through several levels, as
follows.

(1) Fréchet Lie algebras, equivalently, tangent spaces at the identity. In Section 4 we
show exactness of the sequence

0→ TidS
1 −→ TidAut1(ξ) −→ TidSDiff (S2) → 0

of Lie algebras.

(2) Fréchet Lie groups. In Section 5 we show exactness of the sequence

{1} → S1 −→ Aut1(ξ) −→ SDiff (S2) → {1}
of Lie groups.

(3) Fréchet fiber bundles. In Section 6 we prove the fiber bundle structure of

S1 −→ Aut1(ξ) −→ SDiff (S2).

(4) Homotopy type. Also in Section 6 we prove that the above bundle deformation
retracts to its finite-dimensional sub-bundle

S1 −→ U(2) ∪ cU(2) −→ O(3).

The first three levels above are patterned after the approach of Ratiu and Schmid
who proved analogous results in the Sobolev category [RS81].

We include two appendices. The computation of the tangent spaces at the identity
used in Section 4 is postponed to Appendix A. Lastly, we give some background on
Fréchet manifolds in Appendix B.

Acknowledgements. It is a pleasure to acknowledge the contributions to this project
arising from conversations with Alexander Kupers and Jim Stasheff. We thank Ziqi
Fang for perceptive comments on a draft of this paper. Merling acknowledges par-
tial support from NSF DMS grants CAREER 1943925 and FRG 2052988. Wang
acknowledges partial support from NSF GRFP 1650114.
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2. PRELIMINARIES

We start with some preliminaries and notation on left-invariant vector fields and
differential forms, which will be used throughout the paper. We view the 3-sphere
S3 as the space of unit quaternions and make the following definitions. Let

(2.1) A(x) � xi, B(x) � xj, C(x) � xk,

be the standard left invariant vector fields given by right multiplication by i, j, k.
Their Lie brackets satisfy

(2.2) [A, B] � 2C, [B, C] � 2A, [C, A] � 2B.

With respect to the standard metric, we let α,β and Υ be the 1-forms dual to A, B
and C, respectively. Their exterior derivatives are given by

(2.3) dα � −2β ∧ Υ, dβ � −2Υ ∧ α, ,dΥ � −2α ∧ β.

Any smooth vector field X on S3 can be written in the basis from Equation 2.1 as

(2.4) X � fA + gB + hC

where f,g and h are smooth functions on S3. Viewing A, B and C as directional
derivative operators, the differential operators div and curl, acting on a vector field
X as above, are

(2.5) div(X) � Af + Bg + Ch and

(2.6) curl(X) � (Bh − Cg)A + (Cf −Ah)B + (Ag − Bf)C − 2X.

The gradient of a smooth function φ : S3 → � is

(2.7) grad(φ) � (Aφ)A + (Bφ)B + (Cφ)C
The formula for curl is derived from the identities curlA � −2A, curlB � −2B,
curlC � −2C, which can be verified directly, together with the Leibniz rule

curl(φX) � grad(φ) × X + φcurl(X).

We now introduce the various groups of diffeomorphisms which will be of interest
to us. Let Diff (S3) denote the group of C∞ diffeomorphisms of S3 equipped with the
C∞ topology. We regard it as a smooth Fréchet Lie group modeled on the Fréchet
vector space of C∞ vector fields on S3. For more details on Fréchet spaces, manifolds
and smooth maps between them, we refer the reader to Appendix B.

Let H be the Hopf fibration of S3 by the oriented great circles which lie on the
complex lines through the origin in complex 2-space �2. The fibers of the Hopf fibra-
tion are precisely the integral curves of the vector field A defined in Equation 2.1.
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Definition 2.8. We associate the following subgroups with the Hopf fibration H .

• The subgroup Aut(H) of automorphisms of H is the subgroup of Diff (S3)
permuting oriented Hopf fibers,

Aut(H) � {F ∈ Diff (S3) | F∗A � λA for some smooth λ > 0}.
• The subgroup Aut1(H) of strict automorphisms of H is the subgroup of

Aut(H) permuting Hopf fibers rigidly,

Aut1(H) � {F ∈ Diff (S3) | F∗A � A}.
• The subgroup Aut0(H) of stationary automorphisms of H is the subgroup of

Aut(H) taking each Hopf fiber to itself, not necessarily rigidly.

We denote by ξ the standard tight contact structure on S3, which consists of
the oriented tangent 2-planes orthogonal to the fibers of H . Since A is the vector
field tangent to the fibers of H and α the 1-form dual to A, we have ξ � kerα.
Furthermore, A is the Reeb vector field of ξ, i.e., α(A) � 1 and dα(A,−) � 0.

Definition 2.9. We associate the following subgroups with the contact structure ξ.

• The contactomorphism group Aut(ξ) is the subgroup of Diff (S3) permuting
the oriented tangent 2-planes of ξ,

Aut(ξ) � {F ∈ Diff (S3) | F∗α � λα for some smooth λ > 0}.
• The strict contactomorphism group or quantomorphism group Aut1(ξ) is the

subgroup of Aut(ξ) which preserves the 1-form α,

Aut1(ξ) � {F ∈ Diff (S3) | F∗α � α}.

The Lie algebras of each of the subgroups above are described in detail in Appen-
dix A. As in the case of Diff(S3), we regard these subgroups as Fréchet Lie groups in
the C∞ topology.

In the remainder of this section, we discuss two families of maps on the 3-sphere
which will be useful to us later on in the paper.

2.1. Nearest neighbor maps. Let C and C′ be two Hopf fibers on S3 which are
not orthogonal to one another, or equivalently, whose projections to S2 are not
antipodal. These two Hopf fibers are a constant distance, say δ < π/2 apart on S3.

Thus, each point x on C has a unique nearest neighbor x′ on C′, which is the point
that minimizes the distance between x and C′. Similarly, x′ on C′ has x on C as its
nearest neighbor there. Furthermore, the correspondence between x on C and x′ on
C′ is an isometry between these two circles.
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The nearest neighbor map between the Hopf fibers C′ and C takes the point

x′ � (cos δ cos θ, cos δ sin θ, sin δ cosφ, sin δ sinφ) on C′

to the point x � (cos θ, sinθ, 0, 0) on C, as depicted in Figure 2.

FIGURE 2. The points x and x′ are nearest neighbors on the great
circles C and C′

The composition of nearest neighbor maps C → C′ → C′′ is not necessarily
the nearest neighbor map C → C′′, and if we move along a succession of nearest
neighbor maps out from C and eventually back again to C, the composition will be
some rotation of C. In related settings, a similar phenomenon is called holonomy,
so we will use that term here as well.

2.2. Horizontal lifts. Consider the Hopf projection p : S3 → S2 and a smooth curve
γ : [0, 1] → S2. Given a point x on the Hopf fiber p−1(y), there exists a smooth curve
γ : [0, 1] → S3 which is unique and runs always orthogonal to Hopf fibers, covers γ
in the sense that p ◦ γ � γ and satisfies γ(0) � x. We refer to γ as a horizontal lift
of γ because we think of Hopf fibers as being “vertical” and the orthogonal tangent
2-planes as being “horizontal”. In fact, viewing S3 as a principal U(1)-bundle over
S2, the horizontal lift is parallel transport with respect to the connection defined by
the 1-form α. If γ is a geodesic in S2 between the non-antipodal points y1 and y2,
then the horizontal lifts of γ give us the nearest neighbor map between the Hopf
fibers p−1(y1) and p−1(y2) .
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2.3. Quantitative holonomy. In the Hopf fibration H , choose radius 1/2 for the
base 2-sphere, so that the projection map p : S3 → S2(12 ) is a Riemannian submer-
sion, meaning that its differential takes tangent 2-planes orthogonal to the Hopf
fibers isometrically to their images in S2(12 ) .

FIGURE 3. Holonomy

In Figure 3 we consider a loop γ in S2(12 ) based at the point y, and the region Σ
of S2(12 ) that it bounds. We pick a point x1 ∈ p−1(y), and consider the horizontal lift
γ of γ beginning at x1.1

The holonomy here is illustrated by the fact that when the lift γ returns to the
fiber p−1(y), it does so at a point x2 of that fiber, displaced by an angle θ from the
starting point x1. So γ followed by the arc on p−1(y) from x2 to x1 is a loop in S3.
This loop bounds a region Σ∗ in S3, which projects down via p to the region Σ on
S2(12 ).

We claim that the holonomy angle θ is given by

θ � 2(area of Σ) on S2(12 ),

1We warn the reader about the very similar notation for paths, which are denoted by γ and the
dual form to C, which is denoted by Υ, since they both appear in this subsection.
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and confirm this as follows:

area of Σ on S2(12 ) �
∫
Σ

d(area) �
∫
Σ∗
p∗d(area) �

∫
Σ∗
β ∧ Υ,

using the fact that the Hopf projection p : S3 → S2(12 ) is a Riemannian submersion,
and so is area-preserving on the 2-form β∧Υ, down to the usual area form on S2(12 ).
From Equation 2.3 we have that dα � −2β ∧ Υ, and hence d(−1

2α) � β ∧ Υ.

Using Stokes’ theorem, we get∫
Σ∗
β ∧ Υ �

∫
Σ∗
d(−1

2
α) � −1

2

∫
∂Σ∗

α.

Now ∂Σ∗ consists of two pieces, the arc γ followed by the arc on p−1(y) from x2

to x1. Since the arc γ is horizontal, the one-form α is identically zero along it, so we
get no contribution to the last integral above. And since the angle along the Hopf
great circle p−1(y) measured from x1 to x2 is θ , the integral of α along this arc in
the opposite direction is −θ.

Putting all this together, we have

area of Σ on S2(12 ) �
∫
Σ∗
β ∧ Υ � −1

2

∫
∂Σ∗

α � −1
2
(−θ) � 1

2
θ.

Hence the holonomy of horizontal transport in S3 induced by the loop γ on S2(12 )
is given by the

holonomy angle θ � 2 area of Σ on S2(12 ),
as claimed above.

Example 2.10. The equator γ on S2(12 ) bounds a hemisphere Σ of area π
2 . The

inverse image p−1(γ) of γ is a Clifford torus in S3, filled with Hopf fibers. The or-
thogonal trajectories are Hopf fibers of the opposite handedness and are horizontal
with respect to the original Hopf fibration. Starting at any location along any origi-
nal Hopf fiber on this Clifford torus and then following a horizontal circle will bring
us back to the antipodal point on the starting fiber. So the holonomy angle in this
case is θ � π, which is twice the area of Σ.

3. THE GROUP OF STRICT CONTACTOMORPHISMS

In this section we show that the strict contactomorphisms of the standard tight
contact structure ξ are precisely the simultaneous automorphisms of H and ξ.

Proposition 3.1. The group of strict contactomorphisms is the intersection of the con-
tactomorphism group with the automorphism group of the Hopf fibration, i.e.,

Aut1(ξ) � Aut(H) ∩ Aut(ξ).
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Proof. We begin by showing that Aut1(ξ) ⊆ Aut(H) ∩ Aut(ξ). Suppose F ∈ Aut1(ξ),
so by definition F is a diffeomorphism of S3 that satisfies F∗α � α. Recall that the
1-form α with Reeb vector field A is uniquely characterized by

α(A) � 1 and dα(A,−) � 0.

We consider the pushforward F∗A of the vector field A by the diffeomorphism F,
and note that

α(F∗A) � F∗α(A) � α(A) � 1,

and

dα(F∗A,−) � F∗(dα)(A,−) � d(F∗α)(A,−) � dα(A,−) � 0.

By uniqueness of Reeb vector fields, we have F∗A � A, so F ∈ Aut1(H) ⊆ Aut(H).
Thus F ∈ Aut(H) ∩ Aut(ξ).

Next, suppose that F ∈ Aut(H) ∩ Aut(ξ), so that

F∗A � λA and F∗α � µα,

where λ and µ are smooth real-valued, positive functions on S3. This gives us that

(F∗α)(A) � α(F∗A) � α(λA) � λα(A) � λ,

while at the same time

(F∗α)(A) � (µα)(A) � µ(α(A)) � µ,

so it follows that λ � µ. We now show that λ � 1, so that F∗α � α, which will imply
F ∈ Aut1(ξ).

Recall that A,B,C is the left-invariant orthonormal frame field on S3. Note that

(dα)(F∗A, F∗B) � (dα)(λA, F∗B) � λ(dα)(A, F∗B) � 0,

while at the same time

(dα)(F∗A, F∗B) � F∗(dα)(A,B) � d(F∗α)(A,B) � d(λα)(A,B)
� (dλ ∧ α − λdα)(A,B) � (dλ ∧ α)(A,B)
� (dλ)(A)α(B) − (dλ)(B)α(A) � −(dλ)(B) � −B(λ).

Thus B(λ) � 0. Similarly, we can show C(λ) � 0. Lastly,

A(λ) � 1
2 [B,C]λ �

1
2 (BC − CB)λ � 0,

and hence the function λ : S3 → � must be constant. But since Hopf fibers are
taken to Hopf fibers with F∗A � λA for constant λ, then λ must be identically 1.
Thus µ � 1, and so F ∈ Aut1(ξ). �
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We collect a few more useful properties of strict contactomorphisms. Note that
the following proposition falls out of the proof of Proposition 3.1, where we showed
that for diffeomorphisms F ∈ Aut1(ξ) � Aut(H) ∩ Aut(ξ), we must have F∗A � A,
namely they permute Hopf fibers rigidly.

Proposition 3.2. The strict contactomorphism group Aut1(ξ) is a subgroup of the strict
automorphism group Aut1(H) of the Hopf fibration.

Lastly, we record how elements in the simultaneous automorphism group of the
Hopf fibration and the standard tight contact structure behave with respect to vol-
ume on S3 and area on S2.

Proposition 3.3. The diffeomorphisms of S3 inAut(H)∩Aut(ξ) are volume-preserving
on S3 and project to area-preserving diffeomorphisms of S2 under the Hopf fibration
map p.

Proof. Let F ∈ Aut(H) ∩ Aut(ξ). By Proposition 3.1 F∗α � α. So F takes the contact
tangent 2-plane distribution ξ to itself. We show that F∗ takes these tangent 2-planes
to one another in an area-preserving way, as follows.

Recall the formulas that the dual forms to A,B,C satisfy from Equation 2.3 and
note that the area form on the tangent 2-planes in the distribution ξ is β ∧ Υ. We
compute

(β ∧ Υ)(F∗B, F∗C) � −1
2dα(F∗B, F∗C) � −1

2 (F∗dα)(B,C)
� −1

2d(F∗α)(B,C) � −1
2dα(B,C)

� (β ∧ Υ)(B,C) � 1.

Thus indeed F∗ takes the 2-planes in the distribution ξ to one another in an area
preserving way.

We finish as follows. By Proposition 3.2, F∗(A) � A, telling us that F permutes
Hopf fibers rigidly. And as we just saw above, F∗ is area-preserving on the tangent
2-planes orthogonal to the Hopf fibers. So it follows that F is volume-preserving
on S3. Finally, since the differential of the Hopf projection p : S3 → S2 maps the
tangent 2-planes orthogonal to the Hopf fibers isometrically to the tangent 2-planes
of S2(12 ), it follows that the diffeomorphism F of S3 projects to an area-preserving
diffeomorphism of S2, as claimed.

�
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4. THE EXACT SEQUENCE OF LIE ALGEBRAS

In this section we establish the exactness of the sequence from Equation 1.2 in
Theorem A on the level of Lie algebras. More precisely we prove the following
proposition.

Proposition 4.1. The sequence of tangent spaces

0→ TidS
1 J−→ TidAut1(ξ)

P−→ TidSDiff (S2) → 0

is an exact sequence of Lie algebras.

We note that this result also appears in [RS81], where Ratiu and Schmid attribute
it to [Kos70], but give their own proof. For completeness, we include a proof here.

Before turning to the proof, we give explicit descriptions of the tangent spaces in
play, which are computed in detail in Appendix A. Writing a smooth vector field on
S3 as X � fA+gB+hC as in Section 2, the conditions on the coefficients f,g and h,
which describe membership in the tangent spaces in question are as follows:

(1) X ∈ TidS
1 if and only if

f � constant, g � 0, h � 0,

(2) X ∈ TidAut1(ξ) if and only if

Af � 0, g �
1
2Cf, h � −1

2Bf.

We view TidSDiff (S2) as horizontal vector fields on S3, which push forward consis-
tently along Hopf fibers to divergence-free vector fields on S2, where “consistently"
means p∗(X)|x � p∗(X)|y for all x,y in the same Hopf fiber. With this interpretation,
we get the following description.

(3) X ∈ TidSDiff (S2) if and only if

f � 0, g � −1
2Ah, h �

1
2Ag, Bg + Ch � 0.

It is easy to see (1), whereas (2) is proved as part (c) of Proposition A.1 and (3)
is Proposition A.7.

Proof of Proposition 4.1. We start by showing that the maps J and P do restrict
to maps between tangent spaces. First, for fA ∈ TidS

1, f is constant, so we have
J(fA) � fA ∈ TidAut1(ξ).

For fA + gB + hC ∈ TidAut1(ξ), we have P(fA + gB + hC) � 0A + gB + hC. To
show that this lives in TidSDiff (S2), we need to verify that if f,g, and h satisfy the
conditions in (2), then g,h satisfy the conditions in (3). Using the description of



STRICT CONTACTOMORPHISMS 13

g and h from (2), note that the condition g � −1
2Ah is equivalent to 2Cf � ABf.

This equality can be seen to be true using the bracket formula 2C � AB − BA and
the fact that Af is also assumed to be 0. In a similar fashion, we can show that
h �

1
2Ag. Lastly, again using the description of g and h from (2), we get that

Bg + Ch �
1
2 (BC − CB)f � Af � 0.

Now we turn to exactness of the sequence. The map J is injective, so we have
exactness at TidS

1. To see exactness at TidAut1(ξ), first note that by definition it
follows immediately that im(J) ⊆ ker(P). To see the reverse inclusion, suppose
X � fA + gB + hC and suppose P(X) � gB + hC � 0. Then g �

1
2Cf � 0 and

h � −1
2Bf � 0. But then Af �

1
2 (BC − CB)f � 0. Thus f is constant on S3, and

X � fA ∈ im(J).

Lastly, for exactness at TidSDiff (S2) we need to check that P is surjective. Let
Y � gB+hC ∈ TidSDiff (S2), so the coefficients satisfy the conditions in (3). We need
to find a smooth function f : S3 → � such that the vector field X � fA + gB + hC

lies in TidAut1(ξ), i.e., so that f,g and h satisfy the equations in (2). Combining
the conditions on f,g and h from (2) and (3), we have Af � 0, Bf � −Ag and
Cf � −Ah.

Plugging this into the gradient formula from Equation 2.7, we are seeking f so
that

grad(f) � (Af)A + (Bf)B + (Cf)C � −(Ag)B − (Ah)C.

On S3 we can solve for f if and only if curl
(
(−Ag)B + (−Ah)C

)
� 0. From Equa-

tion 2.6, after simplifying, we get

curl
(
(−Ag)B + (−Ah)C

)
� (CAg − BAh)A + (2Ag +A2h)B + (2Ah −A2g)C.

Differentiating the equations g � −1
2Ah and h �

1
2Ag with respect to A, we get

A2h � −2Ag and A2g � 2Ah, thus our equation reduces to

curl
(
(−Ag)B + (−Ah)C

)
� (CAg − BAh)A.

Furthermore, using the equations Ag � 2h, Ah � −2g and Ch + Bg � 0, we get
curl

(
(−Ag)B+ (−Ah)C

)
� 0, and thus (−Ag)B+ (−Ah)C � grad(f) for some smooth

function f : S3 → �, as desired. This completes the proof of the proposition, namely
that our sequence of tangent spaces is exact. �

5. THE EXACT SEQUENCE OF FRÉCHET LIE GROUPS

In this section we establish the exactness of the sequence from Equation 1.2 in The-
orem A on the level of Lie groups. More precisely, we prove the following theorem.
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Theorem 5.1. The sequence of Fréchet Lie groups

(5.2) {1} → S1 J−→ Aut1(ξ)
P−→ SDiff(S2) → {1}

is exact.

The circle subgroup S1 in the above exact sequence is the set of diffeomorphisms
which rotate all the Hopf fibers within themselves by the same angle. The projection
map P : Aut1(ξ) → SDiff(S2) starts with a diffeomorphism F in Aut1(ξ) and then
records the resulting permutation of the Hopf fibers. We can write

(5.3) P(F)(y) � p ◦ F ◦ p−1(y)

where p : S3 → S2 is the Hopf map.

The proof of Theorem 5.1 is broken down into two lemmas, corresponding to the
two main challenges: proving that the kernel of P is no larger than the subgroup S1,
and proving that the map P is onto SDiff(S2). The map from S1 into Aut1(ξ) is just
the inclusion, so exactness there is automatic.

Lemma 5.4. The sequence from Equation 5.2 is exact at Aut1(ξ).

Proof. The map P takes the subgroup S1 of Aut1(ξ) to the identity of SDiff(S2),
because the elements of this subgroup just rotate the fibers within themselves, and
so induce the identity map of S2 to itself. Thus, to confirm exactness at Aut1(ξ), the
challenge is to show that the kernel of P is no larger than this subgroup.

We start with an element F ∈ Aut1(ξ) which takes each Hopf fiber rigidly to itself,
and show that it rotates each fiber within itself by the same amount.

We consider two Hopf fibers p−1(y1) and p−1(y2), and connect the points y1 and
y2 of S2 by a geodesic arc γ there. We can assume these points y1 and y2 are not
antipodal, since we only need to show that the amount each Hopf fiber is rotated
by F is locally constant. With this choice, the geodesic arc γ connecting y1 and y2

is unique, and we have a well-defined nearest neighbor map between p−1(y1) and
p−1(y2).

Then we choose two points x1 and x′1 on the fiber p−1(y1), and consider the two
horizontal lifts γ and γ′ of γ which begin at x1 and x′1. These horizontal lifts are
geodesics in S3, and they end on the fiber p−1(y2) at the points x2 and x′2 which are
the nearest neighbors there to the points x1 and x′1, respectively, on p−1(y1).

Since the nearest neighbor map from p−1(y1) to p−1(y2) is an isometry between
Hopf fibers, the angle θ between x1 and x′1 on the first fiber is the same as the angle
θ between x2 and x′2 on the second fiber.
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FIGURE 4. Exactness at Aut1(ξ)

Now given x1 ∈ p−1(y1), we choose x′1 to be F(x1). Since F is a contactomorphism,
it permutes the contact tangent 2-planes ξ � ker(α) among themselves, and so in
particular takes horizontal curves to horizontal curves in S3.

It follows that F(γ) � γ′, and in particular F(x2) � x′2. This means that the angle
θ between the points x1 and x′1 � F(x1) on the Hopf fiber p−1(y1) is the same as the
angle θ between the points x2 and x′2 � F(x2) on the Hopf fiber p−1(y2). Thus, F
rotates all fibers by the same amount, which means that F ∈ S1, which is what we
wanted to prove. This confirms exactness of our sequence of Fréchet Lie groups at
Aut1(ξ). �

We turn now to exactness at SDiff(S2), following the approach introduced by
Ratiu and Schmid in [RS81]. Given the Hopf projection p : S3 → S2 and a path γ in
S2, we denote by

(5.5) Hγ : p−1(γ(0)) → p−1(γ(1))

the horizontal transport along γ, in which each point of the first fiber moves along
the horizontal lift of γ to a point on the second fiber, as introduced in Section 2.2.
This rigid motion between great circle fibers is the continuous analog of our nearest
neighbor maps. Recall from Section 2.2 that if the path γ in S2 is a geodesic arc,
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then the map in Equation 5.5 is precisely the nearest neighbor map between these
two Hopf fibers.

The following lemma characterizes the rigid automorphisms of the Hopf fibration
which commute with horizontal transport.

Lemma 5.6. Let F ∈ Aut1(H) induce f ∈ SDiff(S2) through f(y) � p◦ F◦p−1(y). Then
F ∈ Aut1(ξ) if and only if

(5.7) F ◦Hγ � Hfγ ◦ F
for all smooth curves γ in S2.

FIGURE 5. Horizontal transport

Proof. If F ∈ Aut1(ξ), then F takes horizontal curves in S3 to horizontal curves. In
particular, in Figure 5, F takes the horizontal curve labeled Hγ, which runs from x0

to x1, to the horizontal curve labeled Hfγ, which runs from F(x0) to F(x1). Thus,
F ◦Hγ � Hfγ ◦ F.

Conversely, suppose that F◦Hγ � Hfγ◦F for all smooth curves γ in S2. Then given
any point x ∈ S3, choose two horizontal curves through x whose tangent vectors at
x span the tangent 2-plane ξx. Since F takes horizontal curves in S3 to horizontal
curves, its differential dF(x) must take ξx to ξF(x), which means F ∈ Aut(ξ). Since
we started out with F ∈ Aut1(H), we have F ∈ Aut1(H) ∩ Aut(ξ) � Aut1(ξ). �
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Lemma 5.8. The sequence of Fréchet Lie groups

{1} → S1 → Aut1(ξ)
P−→ SDiff(S2) → {1}

from Equation 5.2 is exact at SDiff(S2). That is, the map P : Aut1(ξ) → SDiff (S2) is
onto.

Proof. We start out with a diffeomorphism f ∈ SDiff(S2), which we want to lift to
an automorphism F ∈ Aut1(S3).

FIGURE 6. Path lifting

We fix a point y0 ∈ S2 to serve as our base point throughout the proof and then
begin the definition of the diffeomorphism F of S3 by requiring that it take the Hopf
fiber p−1(y0) rigidly to the Hopf fiber p−1(f(y0)) in an orientation-preserving but
otherwise arbitrary way. We let

(5.9) F0 : p−1(y0) → p−1(f(y0))
be this map, which is determined up to a rigid rotation.

Next, consider an arbitrary point x ∈ S3 and its projection y � p(x) in S2. We
connect y0 and y with an arbitrary smooth path γ in S2, so that γ(0) � y0 and
γ(1) � y, and let γ denote its unique horizontal lift to a path in S3 which ends at x,
meaning γ(1) � x, as in Figure 6.
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Let x0 � γ(0) be the beginning point of this lifted path, so that x0 lies somewhere
on the Hopf fiber p−1(y0). In the notation of horizontal transport, we can write
x0 � H−1

γ (x). The diffeomorphism F0 has already been defined on this “base” Hopf
fiber, so we know the point F0(x0).

Now consider the smooth path f(γ) in S2, which runs from f(y0) to f(y). The
unique horizontal lift of this path which begins at F0(x0) is shown in the figure.
Horizontal transport in S3 along this horizontal lift takes the point F0(x0) to the
point that we will define to be F(x), that is,

(5.10) F(x) � Hfγ ◦ F0 ◦H−1
γ (x)

We will show that the definition of F does not depend on the choice of the path γ
from y0 to y in S2, and this will follow from the fact that the diffeomorphism f of
S2 is area-preserving. To that end, let γ′ be another smooth path in S2 from y0 to y,
shown in Figure 6.

We must show that

(5.11) Hfγ′ ◦ F0 ◦H−1
γ′ � Hfγ ◦ F0 ◦H−1

γ

Consider the loop σ � γ(γ′)−1 in S2 based at y0 that runs through γ and then γ′

backwards. The image under f of this loop is the loop fσ � (fγ)(fγ′)−1 based at
f(y0). Then a little transposing of terms in Equation 5.11 gives us

(5.12) F0 ◦Hσ � Hfσ ◦ F0

Since f is area-preserving, the areas enclosed by the loops σ and fσ are the same.
Hence, by the results of Section 2.3, the holonomy experienced by the horizontal
lifts of these loops are equal, and preserved by the rigid motion F0 between the
fibers. This confirms Equation 5.12, and hence that F does not depend on the choice
of the path γ in S2 running from y0 to y. A different choice of basepoint y∗0 in S2

in this construction would result in a new map F∗ which differs from F by a uniform
rotation on all Hopf fibers.

We note that by construction F covers f, i.e., P ◦ F � f ◦ P. Equation 5.10, which
defines F, together with Lemma 5.6 show that F is in Aut1(ξ). Since F takes Hopf
fibers rigidly to Hopf fibers and covers the diffeomorphism f, its differential dF(x)
at each point x ∈ S3 cannot have a nontrivial kernel. Hence F is a submersion
from S3 to itself, thus a covering map, and since S3 is simply connected, F is a
diffeomorphism. We leave the proof of smoothness of F for Appendix B. �

This concludes the proof of exactness of the sequence of Fréchet Lie groups stated
in Theorem 5.1.
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6. THE FIBER BUNDLE STRUCTURE

The goal of this section is to prove the following theorem.

Theorem 6.1. The sequence

(6.2) S1 ↪→ Aut1(ξ)
P−→ SDiff(S2)

is a fiber bundle in the Fréchet category.

Proof. This amounts to constructing slices over small open sets in SDiff(S2), and
then using the action of the subgroup S1 to promote these slices to the product
neighborhood needed to confirm the bundle structure.

First, we note that F, which was defined by the formula

(6.3) F(x) � Hfγ ◦ F0 ◦H−1
γ (x)

depends smoothly on f ∈ SDiff(S2). This follows from the fact that the composition
map

◦ : SDiff(S2) × Path(S2) → Path(S2)
(f,γ) 7→ f ◦ γ

(6.4)

is smooth in the Fréchet category, together with the fact that F is smooth as a func-
tion of x ∈ S3, γ ∈ Path(S2) and f ∈ SDiff(S2) (see Proposition B.14 and Proposi-
tion B.22).

Second, we restrict attention to a small neighborhood of the identity id ∈ SDiff(S2),
for example the set

(6.5) U �
{
f ∈ SDiff(S2) : d(y, f(y)) < π/4, ∀y ∈ S2},

where we regard S2 as the sphere of radius 1
2 so that the Hopf projection p : S3 → S2

is a Riemannian submersion. Restricting f to this open set U will let us uniquely
define the nearest neighbor map from p−1(y0) to p−1(f(y0)) to serve as the map F0.

To construct our slice, define ϕ : U→ Aut1(ξ) by

(6.6) ϕ(f) � F, where F is the map F(x) � Hfγ ◦ F0 ◦H−1
γ .

Note that the nearest neighbor map F0 : p−1(y0) → p−1(f(y0)) between Hopf fibers
depends smoothly on f [Eel66], and γ is chosen as the (unique) shortest geodesic
connecting y0 and f(y0), which is possible since f ∈ U.

Hence ϕ : U→ Aut1(ξ) is a smooth map of Fréchet manifolds, with

(6.7) P ◦ϕ � idU : U→ U.
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This is the slice over U for the proposed bundle (6.2). We now promote this slice to
a product neighborhood in Aut1(ξ) over U by using the action of the circle group S1

as follows. Let

Φ : S1 ×U→ Aut1(ξ)
(θ, f) 7→ eiθϕ(f) � eiθF

(6.8)

where the right hand side takes the element ϕ(f) of Aut1(ξ) and either follows or
precedes it (same result) by uniformly rotating all Hopf fibers through the angle
θ. Since multiplication in the Fréchet Lie group Aut1(ξ) is smooth, it follows that
(6.8) is a smooth map of Fréchet manifolds. To check that it gives the local product
structure required to confirm that (6.2) is a Fréchet fiber bundle, we write down its
inverse Φ−1 explicitly and check that it is also smooth.

FIGURE 7. Local product structure

To define Φ−1 : P−1(U) → S1 × U, let G be any diffeomorphism of S3 lying in
the tube P−1(U) ⊆ Aut1(ξ) and let f � P(G) ∈ U. Then define F � ϕ(f), and since
P(F) � f, the diffeomorphismsG and F lie in the same circular fiber P−1(f), separated
by some angle θ. We identify this angle by θ � GF−1. Define

Φ−1 : P−1(U) → S1 ×U
G 7→ (G ◦ F−1, P(G))

(6.9)

where F � ϕ
(
P(G)

)
. Since f depends smoothly on G and F depends smoothly on f,

and since inversion and multiplication in the Fréchet Lie group Aut1(ξ) are smooth
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maps, we see that GF−1 � θ also depends smoothly on G. The equations

Φ ◦Φ−1(G) � Φ(G ◦ F−1, f) � G ◦ F−1 ◦ F � G
Φ−1 ◦Φ(θ, f) � Φ−1(eiθF) � (θ, f)

(6.10)

confirm that Φ and Φ−1 are indeed inverses of each other, and this proves that Φ is
a diffeomorphism, so that we have a bundle structure over the open neighborhood
U of the identity in SDiff(S2).

Finally, the fact that the map P : Aut1(ξ) → SDiff(S2) is a smooth homomorphism
of Fréchet Lie groups provides the homogeneity needed to transfer the above ar-
gument to small open sets throughout SDiff(S2). This completes our proof that

S1 → Aut1(ξ)
P−→ SDiff (S2) is a fiber bundle in the world of Fréchet manifolds and

smooth maps between them. �

We now finish the proof of our main theorem by showing that the bundle

(6.11) S1 ↪→ Aut1(ξ) → SDiff(S2)
deformation retracts to its finite dimensional subbundle

(6.12) S1 ↪→ U(2) ∪ cU(2) → O(3)

We will prove this by starting with Wang’s deformation retraction [Wan01] of
the bigger base space SDiff(S2) to the smaller base space O(3) and lifting it to the
desired deformation retraction of the bigger total space Aut1(ξ) to the smaller one,
U(2) ∪ cU(2).

To facilitate this lifting, we equip Aut1(ξ) with the Riemannian L2 metric, which
is given at the identity by

〈X, Y〉L2 �

∫
S3

〈X, Y〉 dV(6.13)

for X, Y ∈ TidAut1(ξ), and at other points F ∈ Aut1(ξ) by right translation,

〈X ◦ F, Y ◦ F〉L2 �

∫
S3

〈X, Y〉 dV(6.14)

This is a smooth, weak Riemannian metric on Aut1(ξ), since the topology induced
on Aut1(ξ) by the L2 norm has fewer open sets than the C∞ topology there.

Lifting paths in SDiff(S2) to horizontal paths in Aut1(ξ) will play a key role in the
proof of our main theorem, so we need the following lemma.
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Lemma 6.15 (Lifting Lemma). Let γ : [0, 1] → SDiff(S2) be a smooth path in SDiff(S2),
and let F0 be an element of Aut1(ξ) such that P(F0) � γ(0). Then there exists a unique
horizontal path γ : [0, 1] → Aut1(ξ) such that γ(0) � F0 and P(γ) � γ. The path γ
depends smoothly on t, on γ and on F0, and we will sometimes denote it by γ(F0,γ, t).

Proof. We start with the quantomorphism bundle

(6.16) Q : S1 ↪→ Aut1(ξ)
P−→ SDiff(S2)

and then use the map γ : [0, 1] → SDiff(S2) to construct the pullback bundle

(6.17) γ∗Q : S1 ↪→ E→ [0, 1]
over the interval [0, 1]. The points of the total space E are, as usual, the pairs (t,y),
where t ∈ [0, 1] and y ∈ P−1(γ(t)). Of course, this total space E is trivial, that is, an
annulus diffeomorphic to the product [0, 1] × S1. The bundle map G : γ∗Q→ Q is
defined by G(t,y) � y.

FIGURE 8. The path γ in SDiff (S2) lifts to the horizontal path γ in Aut1(ξ)

The Riemannian L2 metric on Aut1(ξ) (Equation 6.14) pulls back to a smooth
Riemannian metric on E. The horizontal tangent hyperplane distribution on Aut1(ξ)
is by definition the L2 orthogonal complement to the one-dimensional vertical fiber
direction there. It pulls back to a smooth tangent line field on the annulus E which
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is transverse to the vertical fiber direction there. Though it may not look horizontal
to Euclidean eyes, we will say that this line field is “horizontal” on E.

Since E is finite-dimensional, by the usual existence and uniqueness theorems for
ordinary differential equations we get a horizontal path t 7→ g(t) on E which begins
at the point (0, F0). In particular, it is a cross-section of the pullback bundle γ∗Q.
Furthermore, since g is the solution of an ordinary differential equation which has
F0 and γ as parameters, g depends smoothly on F0 and γ.

Pushing this horizontal path g in E forward by the bundle map G : γ∗Q→ Q, we
get the desired lift γ(t) � G(g(t)) of γ to a horizontal path in Aut1(ξ) which begins
at the given point F0 in the fiber P−1(γ(0)). Since g depends smoothly on t, F0 and
γ, so does γ, as we wanted. �

With this lemma, we have all the ingredients we need to complete the proof of
our main theorem.

Theorem 6.18. The group of strict contactomorphisms Aut1(ξ) deformation retracts
to its finite dimensional subgroup U(2) ∪ cU(2).

FIGURE 9. Deformation retraction of Aut1(ξ) onto U(2) ∪ cU(2)
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Proof. LetΦ : SDiff(S2)×[0, 1] → SDiff(S2) be the deformation retraction of SDiff(S2)
to the orthogonal group O(3) given by Mu-Tao Wang’s theorem. We lift Φ to a de-
formation retraction

(6.19) Φ̂ : Aut1(ξ) × [0, 1] → Aut1(ξ)
of Aut1(ξ) to its subgroup U(2) ∪ cU(2) by defining

(6.20) Φ̂(F0, t) � γ
(
F0, f, t

)
where f0 � P(F0) ∈ SDiff(S2) is the starting point of the path f � Φ(f0,−) in SDiff(S2)
and the function γ was defined in the Lifting Lemma 6.15 above. The deformation
retraction Φ̂ of Aut1(ξ) moves along horizontal curves which cover the correspond-
ing curves of the deformation retraction Φ of SDiff(S2).

At the end of the deformation retraction, Φ has compressed SDiff(S2) × {1} to
the orthogonal group O(3), and Φ̂ has compressed Aut1(ξ) × {1} to two copies
U(2) ∪ cU(2) of the unitary group.

A point f0 in SDiff(S2)which starts out in the subgroupO(3) does not move during
this process, and likewise a point F0 in Aut1(ξ) which starts out in the subgroup
U(2) ∪ cU(2) does not move. �

APPENDIX A. COMPUTATION OF THE LIE ALGEBRAS

In this appendix, we give an explicit description of the Lie algebras, or equiv-
alently, the tangent spaces at the identity, of the various Fréchet Lie groups we
consider.

Proposition A.1. The tangent spaces at the identity to our various subgroups of Diff (S3)
are as follows.

(a) The tangent space TidAut(H) consists of vector fields X � fA + gB + hC such
that

f � any smooth function on S3, g � −1
2Ah, and h �

1
2Ag.

(b) The tangent space TidAut(ξ) consists of vector fields X � fA + gB + hC such that

f � any smooth function on S3, g �
1
2Cf, and h � −1

2Bf.

(c) The tangent space TidAut1(ξ) consists of vector fields X � fA + gB + hC such that

Af � 0, and hence f is constant along fibers of H , g �
1
2Cf, and h � −1

2Bf,

and these vector fields are divergence-free.
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Remark A.2. In view of Proposition 3.1, it is natural to ask whether the Lie algebra
Tid(Aut(H) ∩ Aut(ξ)) agrees with TidAut(H) ∩ TidAut(ξ). The left side is certainly
contained in the right side, and we leave it to the reader to establish the reverse
inclusion by manipulating the conditions in parts (a) and (b) of Proposition A.1.

We start with an intermediary proposition that gives conditions on the vector
fields which are in the tangent spaces of interest.

Proposition A.3. The tangent spaces at the identity to our various subgroups of Diff (S3)
admit the following descriptions.

(a) TidAut(H) � {X ∈ VF(S3) | LXA � λA for smooth λ : S3 → �},

(b) TidAut(ξ) � {X ∈ VF(S3) | LXα � λα for smooth λ : S3 → �},

(c) TidAut1(ξ) � {X ∈ VF(S3) | LXα � 0}.

We will see from the proof of Proposition A.1 that the functions λ : S3 → � ap-
pearing in parts (a) and (b) of this proposition have the property that they integrate
to zero over each Hopf fiber. Furthermore, for any such function λ, there exists a
vector field X on S3 for which LXA � λA, and similarly there exists a vector field X
on S3 for which LXα � λα.

We prove part (a) here. Parts (b) and (c) can be found in [Gei08, Lemma 1.5.8].
Before we delve into the proof, we make some remarks about the definition of Lie
derivatives. Let V and W be smooth vector fields on the smooth manifold M, let
x ∈M and let {ft} be the local one-parameter group generated by V, meaning that

(A.4) f0 � id and for each x ∈M we have
dft(x)
dt

����
t�0

� V(x).

Then, the Lie derivative is traditionally defined as

(LVW)(x) � lim
t→0

(f−1
t )∗W(ft(x)) −W(x)

t
�
d

dt

����
t�0
(f−1
t )∗W(ft(x)).

In this definition, the one-parameter group {ft} of diffeomorphisms provides the
service of pulling the tangent vector W(ft(x)) in the tangent space to M at ft(x)
back to a vector in the tangent space to M at x, so that one can subtract from it
the tangent vector W(x) living there. But it is easy to check that any smooth curve
ft ∈ Diff (M) satisfying Equation A.4 can be used to define the Lie derivative LVW as
above, and that requiring {ft} to be a one-parameter subgroup is just a convention,
but not essential. Of course, when {ft} is not a one-parameter group, the pullback
of W(ft(x)) would be defined to be (f−1

t )∗W(ft(x)).
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Proof of Proposition A.3(a). Let X be a smooth vector field which lies in TidAut(H).
By definition, this means that there is a smooth curve ft in Aut(H) with f0 � id and
such that X(x) � d

dt |t�0ft(x) for all x ∈ S3. Then, as discussed above, the Lie
derivative LXA is defined as

(LXA)(x) � lim
t→0

(f−1
t )∗A(ft(x)) −A(x)

t
.

But note that here {ft} is a path in Aut(H) with f0 � id, so we can write

(ft)∗A(x) � λ(x, t)A(ft(x)),

since each ft takes Hopf fibers to Hopf fibers. Therefore in the definition of LXA(x),
for any given t, both terms in the numerator are multiples of A(x), so we can factor
A(x) out of the limit, and we get that LXA � λA for a smooth λ : S3 → �.

Conversely, suppose X is a smooth vector field on S3 with LXA � λA for some
smooth function λ : S3 → �. Let {ft} be the one-parameter group of diffeomor-
phisms of S3 generated by the vector field X, i.e., f0 � id and for each x ∈ S3

we have dft(x)
dt

���
t�0

� X(x). Using the group property of this flow, which says that

fs+t(x) � fs(ft(x)), we compute

d

dt

����
t

ft(x) �
d

ds

����
s�0

fs+t(x) �
d

ds

����
s�0

fs(ft(x)) � X(ft(x)).

Thus dft(x)dt � X(ft(x)) holds for all t not just t � 0.

We need to show that the one-parameter group {ft} lies entirely in Aut(H). Let
us use local coordinates (x,y, θ) in a tubular neighborhood of a Hopf fiber, with
(x,y) ∈ �2 and θ ∈ S1 and with ∂

∂θ as the unit vector field along the Hopf fibers.

We write the vector field X in local coordinates as

X � u(x,y, θ) ∂
∂x

+ v(x,y, θ) ∂
∂y

+w(x,y, θ) ∂
∂θ

.

Then we can compute the Lie derivative

LXA � [X,A] � −[A,X] � −
[
∂

∂θ
, X

]
� −

[
∂

∂θ
, u

∂

∂x
+ v

∂

∂y
+w

∂

∂θ

]
� −∂u

∂θ

∂

∂x
− ∂v
∂θ

∂

∂y
− ∂w
∂θ

∂

∂θ

� λA � λ
∂

∂θ
.
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From this we see that ∂u∂θ � 0 and ∂v
∂θ � 0, so the functions u and v only depend on

x and y and not on θ. We incorporate this by writing

X � u(x,y) ∂
∂x

+ v(x,y) ∂
∂y

+w(x,y, z) ∂
∂θ

.

We also note from above that ∂w∂θ � −λ, which integrates to zero around Hopf
circles, and hence

w(x,y, θ) � w(x,y, θ + 2π).
Thus locally the flow {ft} covers a flow on the xy-plane and takes vertical circles
to vertical circles, which tells us that each diffeomorphism ft takes Hopf circles to
Hopf circles, and hence X ∈ TidAut(H), as desired. �

Now we turn to the proof of Proposition A.1, and prove each of its parts sepa-
rately.

Proof of Proposition A.1(a). Let X � fA + gB + hC be a smooth vector field on S3,
written in terms of the orthonormal basis of left-invariant vector fields A,B and C
on S3, following the conventions introduced in Section 2. By Proposition A.3(a),
X lies in TidAut(H) if and only if LXA � λA for some smooth real-valued function
λ on S3. We compute LXA to see what constraints this conditions imposes on the
coefficients f,g and h.

Notationally, we switch from Lie derivatives to Lie brackets and compute

LXA � [X,A] � [fA + gB + hC,A] � [fA,A] + [gB,A] + [hC,A]
� −[A, fA] − [A,gB] − [A,hC]
� −(Af)A − f[A,A] − (Ag)B − g[A,B] − (Ah)C − h[A,C]
� −(Af)A − (Ag)B − g(2C) − (Ah)C − h(−2B)
� −(Af)A + (2h −Ag)B − (2g +Ah)C,

using the bracket relations from Equation 2.2.

Therefore, X ∈ TidAut(H) if and only if −Af � λ for some smooth real-valued
function λ, and 2h −Ag � 0 and 2g +Ah � 0. This completes the proof of Proposi-
tion A.1(a).

�

Note in this proof that since λ � −Af is the negative of the directional derivative
of the coefficient f around a Hopf circle, we see why λmust integrate to zero around
the Hopf fibers.
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Proof of Proposition A.1(b). Again, let X � fA + gB + hC be a smooth vector field
on S3. By Proposition A.3(b), X lies in TidAut(ξ) if and only if LXα � λα for some
smooth λ.

Suppose X lies in TidAut(ξ) so that LXα � λα for some λ. Rewrite α(A) � 1 as
〈α,A〉 � 1 and then differentiate to get

0 � LX〈α,A〉 � 〈LXα,A〉 + 〈α,LXA〉 � 〈λα,A〉 + 〈α,LXA〉.

Thus

〈α,LXA〉 � −〈λα,A〉 � −λ〈α,A〉 � −λ.

Using the computation for LXA from part (a), we get

〈α,LXA〉 � −Af,

thus Af � λ.

Analogously to the computation of LXA in part (a), we can compute

LXB � −(Bf + 2h)A − (Bg)B + (2f − Bh)C
LXC � (−Cf + 2g)A − (2f + Cg)B − (Ch)C.

Proceeding as before with rewriting the equations α(B) � 0 and α(C) � 0 as
〈α,B〉 � 0 and 〈α,C〉 � 0, and differentiating, we get

(A.5) 〈α,LXB〉 � 0 and 〈α,LXC〉 � 0.

Combining with the computations of LXB and LXC above, we get that

h � −1
2Bf and g �

1
2Cf,

as desired.

Conversely, assuming the coefficients of X satisfy the conditions in Proposition A.1(b),
using the computations of LXA, LXB and LXC, and working backwards from the
computations of the differentiation of the brackets we get

〈LXα,A〉 � Af, 〈LXα,B〉 � 0 and 〈LXα,C〉 � 0,

so LXα � (Af)α � λα.

�

Note again that λ is the directional derivative of the coefficient f around Hopf
circles, so we reaffirm the observation made after part (a) that λ must integrate to
zero around Hopf fibers.
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Proof of Proposition A.1(c). Let X � fA + gB + hC be a smooth vector field on S3.
By Proposition A.3(c), X lies in TidAut1(ξ) if and only if LXα � 0.

Suppose X lies in TidAut1(ξ) so that LXα � 0. Just as in Proposition A.1(b),
rewriting α(A) � 1 as 〈α,A〉 � 1 and then differentiating, we get

0 � LX〈α,A〉 � 〈LXα,A〉 + 〈α,LXA〉 � 〈α,LXA〉.

But again, by the computation for LXA from part (a), we have 〈α,LXA〉 � −Af,
thus Af � 0. Just as in part (b), combining the computations for LXB and LXC from
part (b) with Equation A.5, we get

h � −1
2Bf and g �

1
2Cf,

as desired.

Conversely, if we assume that the conditions in Proposition A.1(c) hold, as we
saw in the proof of (b), we get that LXα � (Af)α. Thus if Af � 0, we immediately
get LXα � 0, so by Proposition A.3(c), X lies in TidAut1(ξ).

Lastly, we check that any X ∈ TidAut1(ξ) is divergence free. We have

divX � Af + Bg + Ch � 0 + B(12Cf) + C(−1
2Bf)

�
1
2 (BC − CB)f � 1

2 [B,C]f � 1
2 (2A)f � Af � 0.

�

Remark A.6. The conditions on the coefficients of X � fA + gB + hC in Proposi-
tion A.1 may seem mysterious at first glance, and it is a rewarding exercise to try to
decode their geometric meaning. We give some hints. In part (a), you can take the
conditions on the coefficients g and h and differentiate again in the A-direction to
show that as the flow of Amoves a Hopf fiber off itself, it assumes a coiling shape so
as to approximate a nearby Hopf fiber. In part (b), another approach to describing
TidAut(ξ) is to observe that a vector field X is in this space if and only if LXB and LXC
both lie in the 2-plane spanned by B and C, and then compute with Lie brackets.

Having given in Proposition A.1 a description of the tangent space at the iden-
tity to our various subgroups of Diff (S3), we end Appendix A now with a similar
description of the tangent spaces TidDiff (S2) and TidSDiff (S2).

We can doubly appreciate our ability to write vector fields on S3 in terms of left-
invariant vector fields A,B, and C when we turn to S2 and seek a similar description
there. But we can use the Hopf projection p : S3 → S2 to uniquely lift smooth
vector fields on S2 to smooth horizontal fields on S3, that is, vector fields which
are orthogonal to the Hopf fibers and, by virtue of lifting from S2, twist around
each Hopf fiber so they lie in TidAut(H). This allows us to think of TidDiff (S2) and
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TidSDiff (S2) as subspaces of TidAut(H), and therefore rely on expressions in terms
of A,B and C to describe the vector fields therein. With this identification in mind,
we prove the following proposition.

Proposition A.7. The tangent spaces TidDiff (S2) and TidSDiff (S2) have the following
descriptions.

(a) The tangent space TidDiff (S2) consists of vector fields X � fA + gB + hC such
that

f � 0, g � −1
2Ah, and h �

1
2Ag.

(b) The tangent space TidSDiff (S2) consists of vector fields X � fA+ gB+hC such that

f � 0, g � −1
2Ah, h �

1
2Ag, and Bg + Ch � 0.

Proof. For part (a), note that we know from Proposition A.1(a) that the tangent
space TidAut(H) consists of vector fields X � fA+gB+hC such that f is any smooth
function on S3, g � −1

2Ah, and h �
1
2Ag. If X is horizontal, then f � 0. Thus

the conditions in part (a) are certainly necessary for X to be the horizontal lift of a
vector field in TidDiff (S2).

Conversely, suppose that a vector field X on S3 satisfies the conditions in part (a),
and since f � 0, write X � gB + hC.

We claim that the horizontal vector field X � gB+hC is the lift of a vector field X′

on S2 if and only if LAX � 0. To see this, note that the left-invariant vector fieldA on
S3 is the infinitesimal generator of the one parameter subgroup of Aut(H) consisting
of diffeomorphisms of S3, rotθ : x 7→ xeiθ for 0 ≤ θ ≤ 2π, which uniformly rotate
all Hopf fibers by the same amount. Then the horizontal vector field X is the lift
of a vector field on S2 if and only if (rotθ)∗X(x) � X(xeiθ), which is equivalent to
LAX � 0.

From our computation of LAX in the proof of Proposition A.1(a), and setting
f � 0, we have

LAX � (Ag − 2h)B + (Ah + 2g)C,

which is equal to 0 by our conditions in part (a). Thus X is the lift of a vector field
on S2. So the stated conditions are both necessary and sufficient for X to lie in
TidDiff (S2).

For part (b) of our current proposition, it is easy to check that TidSDiff (S2) consists
of all divergence-free vector fields on S2. We claim that a vector field X′ ∈ TidDiff (S2)
is divergence-free if and only if its horizontal lift to X � gB + hC ∈ TidAut(H) is
divergence-free, which in turn is equivalent to the condition that Bg + Ch=0. This



STRICT CONTACTOMORPHISMS 31

will show that the extra condition in part (b) is both necessary and sufficient for a
vector field X from part (a) to actually lie in the subspace TidSDiff (S2).

To prove the claim, let {ϕ′t} be the one-parameter group of diffeomorphisms of
S2 generated by the vector field X′, and let {ϕt} be their lifts to a one-parameter
group of diffeomorphisms of S3 generated by the lifted vector field X.

If we assume that the lifted field X is divergence-free, then the diffeomorphisms
ϕt are volume-preserving on S3. Moreover, since X is orthogonal to the Hopf fibers,
the diffeomorphisms ϕt take Hopf fibers rigidly to Hopf fibers. It then follows that
the diffeomorphisms ϕ′t must be area-preserving on S2 and their generating vector
field X′ must be divergence-free on S2.

Conversely, if we assume that the vector field X′ on S2 is divergence-free, it follows
that the diffeomorphisms ϕ′t are area-preserving there. Then, since the horizontally
lifted vector field X on S3 is the infinitesimal generator of a one-parameter subgroup
of diffeomorphisms ϕt of S3 which take Hopf fibers rigidly to one another, and
which cover the area-preserving diffeomorphisms ϕ′t of S2, the diffeomorphisms ϕt
must be volume-preserving on S3 and hence the vector field X must be divergence-
free there.

This proves the claim, and completes the proof of Proposition A.7.

�

APPENDIX B. FRÉCHET SPACES AND MANIFOLDS

For convenience, we give a brief introduction to Fréchet spaces and manifolds in this
appendix. After that, we prove some technical results which are used in the proof
of the main theorem. For more on this subject, we refer the reader to [Ham82] and
[Omo74].

B.1. Fréchet Spaces. Let � be a vector space. A seminorm on � is a function
ρ : �→ [0,∞) satisfying the following properties:

(1) ρ(λv) � |λ|ρ(v),∀v ∈ �, λ ∈ �;
(2) ρ(v +w) ≤ ρ(v) + ρ(w),∀v,w ∈ �.

If ρ(v) � 0 implies v � 0, then ρ is called a norm.

An arbitrary collection {ρα} of seminorms on � induces a unique topology T
on � by declaring that a sequence {vn} in � converges to v ∈ � if and only if
ρα(vn − v) → 0 for all α. From this, we declare that a subset F ⊆ � is closed if it
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contains its limit points. This topology makes� into a topological vector space, in the
sense that the operations of addition and multiplication by scalars are continuous.

Fix a collection {ρα} of seminorms on � and let T be the topology generated by
them. We say that two collections of seminorms are equivalent if they generate the
same topology. Then T is metrizable if and only if it admits an equivalent countable
family of seminorms, {ρj}j∈�. In this case, we can define an explicit metric by

(B.1) d(u, v) �
∞∑
j�1

2−j
ρj(u − v)

1 + ρj(u − v)

In this paper, we are interested in the metrizable case, so we work under this as-
sumption from now on. The topology T is Hausdorff if and only if ρj(v) � 0 for all
j implies v � 0, and it is complete if every Cauchy sequence converges. A sequence
{vn} in � is Cauchy if, for each fixed j, we have ρj(vn − vm) → 0 as n,m→∞.

A vector space � equipped with a countable family of seminorms {ρj}j∈� is a
Fréchet space provided that the topology induced by {ρj}j∈�, as described above, is
Hausdorff and complete.

Let � and � be Fréchet spaces and U ⊆ � be an open set. We say that a
continuous map F : U ⊆ � → � is differentiable at p ∈ � in the direction v ∈ �
provided that the limit

(B.2) DF(p)v � lim
t→0

F(p + tv) − F(p)
t

exists. If this limit exists for all p ∈ U and all v ∈ �, we can form the map

dF : U ×�→�
(p, v) 7→ dF(p)v(B.3)

If dF is continuous, as a map from U ×� with the product topology into�, then
we say F is C1 or continuously differentiable. We avoid thinking of F as a map into
L(�,�), since this is usually not a Fréchet space in a natural way. This definition is
weaker than the one usually given for maps between Banach spaces.

Proceeding inductively, we define the second derivative of F as

(B.4) d2F(p)(v1, v2) � lim
t→0

dF(p + tv1)(v2) − dF(p)(v2)
t

and say that F is C2 provided that the map

d2F : U ×� ×�→�
(p, v1, v2) 7→ d2F(p)(v1, v2)

(B.5)

exists and is continuous, and likewise for Ck.
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We say that F is smooth provided it is Ck for all k. This notion of smoothness
agrees with the standard one in the case where � and� are finite dimensional.

A standard example of a Fréchet space is C∞[a,b], the set of all smooth functions
from [a,b] to �, equipped with the family of seminorms given by

(B.6) ρj(f) � sup
x∈[a,b]

|Djf(x)|

for j ≥ 0, with the convention that D0f � f. One can readily check the Hausdorff
and completeness conditions.

B.2. Fréchet Manifolds. A Fréchet manifold modeled on� is a Hausdorff topolog-
ical spaceM with an atlas A � {ϕi} of homeomorphisms ϕi : Ui ⊆ M → Vi ⊆ �
between open sets Ui ofM and Vi of � such that the transition maps

ϕ−1
j ◦ϕi : Ui ∩Uj → Ui ∩Uj

are smooth maps between Fréchet spaces.

Let M be a Fréchet manifold and N a closed subset of M. We say that N is a
Fréchet submanifold ofM if for every point p of N , there exists a coordinate chart
ϕ : U ⊆ M → V ⊆ � ofM with p ∈ U and a subspace� of � such that

(B.7) ϕ
(
U ∩N

)
�

(
{0} ×�

)
∩ V

We say that ϕ is a coordinate chart adapted to N .

At any point p ∈ M, the tangent space TpM can be defined as follows. First,
consider the set of all triples (U ,ϕ, v), where ϕ is a local chart at p and v ∈ �. We
say that two triples (Ui,ϕi, vi), i � 1, 2, are equivalent if

d(ϕ2 ◦ϕ−1
1 )v1 � v2

Then TpM is the set of all such equivalence classes. Although this is a rather cum-
bersome description of the tangent space, in many situations a much more concrete
one is available, as we shall see below. In what follows, we describe in detail a
number of Fréchet manifolds that are used throughout the paper.

B.3. Examples. Let M be a smooth, closed, finite-dimensional manifold. Then the
group Diff(M) of all diffeomorphisms from M to itself, equipped with the C∞ topol-
ogy, is a Fréchet manifold. Following [Eel66], we describe an atlas for Diff(M),
modeled on Fréchet spaces of vector fields.

Let C∞(TM) be the space of all smooth vector fields on M. Choose a Riemannian
metric g on M and let ∇ denote its Levi-Civita connection. For each n ∈ �, let

(B.8) ‖v‖n � sup
x∈M



(∇nv)(x)
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where

(B.9)


(∇nv)(x)

 � sup

‖ei‖�1
i�1,...,n



∇e1 · · · ∇env(x)




The vector space C∞(TM) equipped with the collection of seminorms {‖ ‖n} is a
Fréchet space (cf [Ham82]). More generally, given f ∈ Diff(M), we let

(B.10) C∞(f∗TM) � {v ◦ f : v ∈ C∞(TM)}

The set C∞(f∗TM) of vector fields along f is again a Fréchet space, and the map
v 7→ v ◦ f is a linear isomorphism between C∞(TM) and C∞(f∗TM).

Let expp : TpM → M be the exponential map associated with the Riemannian
metric g on M. Given a diffeomorphism f ∈ Diff(M), there exists an open neigh-
borhood Uf ⊆ C∞(f∗TM) containing the zero section, and an open neighborhood
Vf ⊆ Diff(M) containing f such that

Expf : Uf ⊆ C∞(f∗TM) → Vf ⊆ Diff(M)
v ◦ f 7→ exp

(
v ◦ f

)(B.11)

is a homeomorphism ([Les67], [Omo74], [KM97]). We see from the definition that
the transition maps are smooth. The collection of maps {Expf : f ∈ Diff(M)} cover
Diff(M), and the maximal atlas compatible with this collection defines the manifold
structure on Diff(M). Furthermore, this manifold structure makes Diff(M) a Fréchet-
Lie group, in the sense that the natural operations of multiplication

◦ : Diff(M) × Diff(M) → Diff(M)
(f, g) 7→ f ◦ g(B.12)

and inversion

inv : Diff(M) → Diff(M)
f 7→ f−1(B.13)

are smooth. We remark that it is possible to model Diff(M) as a Banach manifold,
if we choose to work with the Ck topology, or a Hilbert manifold, using L2 Sobolev
topologies. In this case, we could construct coordinate charts in the same way as
(B.11). However, the resulting Banach or Hilbert manifold would not be a Lie group:
both the composition and the inversion maps above would be continuous but not
differentiable.

On the other hand, a disadvantage of working in the Fréchet category, as opposed
to the Banach or Hilbert category, is that the classical Inverse Function Theorem is
no longer true. Instead, it must be replaced by the celebrated Nash-Moser Inverse
Function Theorem; see [Ham82] for a detailed account of this. We will not need this
theorem here.
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The propositions to follow, Proposition B.14 through Proposition B.22, are there
to help us prove that the diffeomorphism F ∈ Aut1(ξ) from Lemma 5.8 and Theo-
rem 6.1 depends smoothly on the point x ∈ S3, on the path γ ∈ Path(S2) and on the
diffeomorphism f ∈ SDiff(S2), the ingredients which went into its construction.

Proposition B.14. The space Path(Sn) of C∞ maps from the interval [0, 1] into Sn is
a Fréchet manifold.

Proof. Fix a curve γ ∈ Path(Sn). Then we can parametrize nearby curves in Path(Sn)
by the Fréchet space

TγPath(Sn) � {V : [0, 1] → TSn : π ◦ V � γ}
of vector fields on Sn along γ, where π : TSn → Sn is the projection from the
tangent bundle of Sn to Sn. The correspondence between these vector fields and
curves near γ is given by the Riemannian exponential map

Exp: U ⊂ TγPath(Sn) → Path(Sn)
V 7→ Expγ(V)

whereU is the subset of vector fields along γ with magnitude less than π/2.

The inverse of this map is given as follows. If β ∈ Path(Sn) is a curve close to γ,
meaning that the spherical distance dSn(β(t),γ(t)) < π/2 for all t, then there exists
a unique geodesic from γ(t) to β(t) with initial velocity V(t). By construction,

Expγ(t)(V(t)) � β(t), ∀t ∈ [0, 1]
This proves that Path(Sn) is a Fréchet manifold (cf [Ham82, Example 4.2.3]).

FIGURE 10. β � Expγ(V)
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�

Proposition B.15. The set

Path∗ � {(γ, x) : γ ∈ Path(S2) and x ∈ S3 with γ(0) � p(x) ∈ S2 }
is a Fréchet manifold, and a smooth submanifold of Path(S2) × S3.

Proof. Fix a point (γ, x) ∈ Path∗. We will show that points in Path∗ near (γ, x) can
be parametrized by vectors in the Fréchet space

T(γ,x)Path∗ �
{
(V,w) : V ∈ TγPath(S2), w ∈ TxS3 and V(0) � dp(x)w

}
Choose a local trivialization of the Hopf fibration

Ψ : U0 × S1 → p−1(U0)
containing p(x) ∈ U0. Using this trivialization, for each y ∈ p−1(U0) we write

(B.16) TyS
3
� Tp(y)S

2 ⊕ �.

FIGURE 11. Path∗ is a Fréchet manifold

Now, given (V,w) ∈ T(γ,x)Path∗ with V and w sufficiently small, we first let

β(t) � Expγ(t)
(
V(t)

)
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as before, so β is a curve in S2 near the original γ. Then write w � (w0, r) according
to the decomposition Equation B.16, and set

y � Ψ
(
Exp(w0), eir

)
where in the above equation Exp means the exponential map in S3. The geodesic
s 7→ Exp(sw0) is horizontal to the Hopf fibers, since it starts that way and p is a
Riemannian submersion. The map

(B.17) Ẽxp(V,w) � (β,y)

is our coordinate chart for Path∗. It is clear that any pair (β,y) ∈ Path∗ sufficiently
close to (γ, x) can be obtained in this way as the image of some (V,w) under Ẽxp.

�

Proposition B.18. The map Lift : Path∗ → Path(S3), which takes a pair (γ, x) to the
unique horizontal lift γ of γ starting at x, is smooth.

Proof. Let γ(t) � Lift(γ, x)(t). By definition, γ is the unique solution of the system

〈γ ′,A〉 � 0

p ◦ γ(t) � γ(t)
γ(0) � x

(B.19)

which depends smoothly on the initial condition x and the parameter γ. We will
compute this dependence explicitly when lifting curves from SDiff(S2) to Aut1(ξ).

�

Borrowing notation from the proof of Proposition B.18, we let Eval : Path∗ → S3

be the map that sends (γ, x) to the endpoint γ(1) of its lift. Then this is also a smooth
map.

Proposition B.20. The map Eval : Path∗ → S3 is smooth.

Proof. Note that Eval(γ, x) � E1 ◦ Lift(γ, x), where

E1 : Path(S3) → S3

c 7→ c(1)

The map E1 is smooth: its first derivative at any α is

dE1(α) : TαPath(S3) → Tα(1)S
3

V 7→ V(1)
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FIGURE 12. The path γ in S2 lifts to the horizontal path γ in S3

which is a bounded map between Fréchet spaces. The same remark applies for
higher derivatives. Since Eval is a composition of smooth maps, it is also smooth by
the Chain rule. �

We now turn to our main goal in this appendix, which is to prove explicitly that
the map F : S3 → S3 defined in Equation 5.10 is smooth. Recall that to define this
map, we first fix a point y0 ∈ S2 and a rigid motion

F0 : p−1(y0) → p−1(f(y0))

between the Hopf fibers p−1(y0) and p−1(f(y0)), where f : S2 → S2 is a given area-
preserving diffeomorphism. Then, F is given by the composition

(B.21) F(x) � Hfγ ◦ F0 ◦H−1
γ (x)

where γ is any path in S2 between y0 and y � p(x).

Proposition B.22. The map F is smooth as a function of the point x ∈ S3, of the path
γ ∈ Path(S2) and of the diffeomorphism f ∈ SDiff(S2).

Proof. It suffices to check that each of the factors in Equation B.21 is smooth. To
do that, we first focus on the points x ∈ S3 with y � p(x) close to the base point y0.
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Given such an x, choose γy to be the unique shortest geodesic between y and y0.
Then γy depends smoothly on y and

(B.23) H−1
γy
(x) � Eval(γ−1

y , x)

in turn depends smoothly on x, by Proposition B.18 and Proposition B.20. Similarly,

(B.24) Hfy � Eval(f ◦ γ, F0(x0))

and since F0 is a fixed rigid motion, it follows that F is smooth, at least on a neigh-
borhood of the fiber p−1(y0). To treat the case where x is far away from this fiber,
it suffices to note that we can choose a different base point y0 whose fiber p−1(y0)
is close to x, since this new choice of base point will yield the same map F up to a
uniform rotation of all fibers. Thus, F is everywhere smooth. �
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