Homology Computations via Acyclic Subspace

Piotr Brendel!, Pawel Dlotko!*, Marian Mrozek!, and Natalia Zelazna?

! Institute of Computer Science, Jagiellonian University
{piotr.brendel,pawel.dlotko,marian.mrozek}@ii.uj.edu.pl
2 Motorola Solutions
natalia.zelazna@motorolasolutions.com

Abstract. Homology computations recently gain vivid attention in sci-
ence. New methods, enabling fast and memory efficient computations are
needed in order to process large simplicial complexes. In this paper we
present the acyclic subspace reduction algorithm adapted to simplicial
complexes. It provides fast and memory efficient preprocessing of the
given data. A variant of the method for distributed computations is also
presented. As a result, Betti numbers can be effectively computed.

Keywords: Homology algorithms, reduction algorithms, acyclic sub-
space method.

1 Introduction

The classical way of computing homology consists in finding the Smith Normal
Form of the matrix of the boundary map [9]. The complexity of the Smith Nor-
mal Form algorithm is supercubical. This is prohibitive in applications where the
size of the boundary map matrix is large, in particular in rigorous numerics of dy-
namical systems, problems in image recognition, data analysis, material science,
electromagnetism, robotics, theoretical computer science, ecology, molecular bi-
ology and other areas. Therefore, in recent years several methods have been
proposed to speed up homology computations, particularly computations of the
homology of sets in various representations. Among such methods are geomet-
ric reduction algorithms. They aim at finding a smaller representation with the
same homology as the original set. A method of this type, recently proposed in
[8], is based on the construction of an acyclic subset. We recall that a simplicial
complex A is acyclic iff the homology of A is isomorphic to the homology of a
point. In this paper a component-wise acyclic subcomplex A of a simplicial com-
plex § is a simplicial complex whose connected components are acyclic subsets
of corresponding connected components of S. The acyclic subspace algorithm is
based on the simple observation that if A is an acyclic subcomplex of a simplicial
complex S, then:

H,(S,A) forn>1

orn=20

* Corresponding author.

M. Ferri et al. (Eds.): CTIC 2012, LNCS 7309, pp. 117-127, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

118 P. Brendel et al.

Note that due to the excision theorem [9] the relative homology H,(S,.A) de-
pends only on the neighborhood of § \ A in §. Therefore, if a large acyclic
subcomplex A of S may be constructed quickly, the problem of finding the ho-
mology of § is reduced to a relatively small set and consequently may be found
quickly. The aim of [8] was to show that in the case of cubical complexes a
relatively large acyclic subcomplex may be found in linear time.

The goal of the presented paper is to extend the ideas of [8] to the case of
simplicial complexes. In particular, we propose two fast algorithms constructing a
possibly large acyclic subcomplex A of every connected component of a simplicial
complex S. Moreover, we show how to extend this algorithms for the purposes
of distributed computations.

Acyclic subset reduction leads to more efficient computation of Betti numbers,
useful in image recognition.

2 Preliminaries

For the purposes of this paper a finite family of finite sets S is called an abstract
simplicial complex if for every P € S and for every Q C P we have Q € S. An
element P € Siscalled a simpler. If P € S and) C Pthen Q iscalled a faceof P. A
simplex P € § is said to be mazimalif there is no simplex @) € S such that P C Q.
Throughout this paper Sy,q.(S) denotes the set of maximal simplices of S. The
algebraic closure of a simplex P, denoted by cl(P) is a family of simplices consisting
of P and all its faces. The closure of a family of simplices Kis cl(K) = Jpic cl(P).
For a simplex) € S its neighborhood consists of all maximal simplices in § whose
intersection with () is nonempty . We denote this set by

n(Q)={P eS| QNP +#0 and P is a maximal in S}.

By the dimension of a simplex P we mean dim/(P) := card(P)—1. For a simplicial
complex S by Sy(S) we denote the set of all the vertices of S, i.e. its 0-dimensional
simplices, and we make a technical assumption that every vertex in Sy has a
unique label. In the sequel, we use a hash table [1], denoted H, whose keys are
labels of vertices and for each key the value is the list of all maximal simplices
containing the vertex labeled with the given key.

The main homological tools used in the paper are the exact sequence of a
pair and the Mayer-Vietoris sequence [9]. The exact sequence of a pair is used to
conclude that a subcomplex with trivial reduced homology can be removed from
the initial complex without changing its reduced homology. From the Mayer-
Vietoris sequence it follows, that a simplex can be added to the constructed
acyclic subcomplex if and only if its intersection with the acyclic subcomplex
has trivial reduced homology.

3 Incidence Graph

We say that a graph G = (V, E) is an incidence graph of a simplicial complex
S if V is the set of maximal simplices of S and (S1,S52) € E iff Sy NSy # 0.

Homology Computations via Acyclic Subspace 119

An augmented incidence graph is a triple (V, E, C') where (V, E) is the incidence
graph and C' is the list of connected components of incidence graph, in which
each connected component is represented by a single maximal simplex from this
component. We will use augmented incidence graphs to retrieve all the informa-
tion about neighborhoods in a simplicial complex, necessary in the process of
constructing an acyclic subset.

In this section we show an algorithm constructing such a graph for a given
simplicial complex. The input data for this algorithm is the list of maximal
simplices Syaz(S) and VertexHash H, described in Section 2. For each vertex v
we consider the list H[v] storing the maximal simplices that contain v. Q denotes
the queue used to store simplices which have not yet been added to the incidence
graph and whose neighbors are already there. Functions Enqueue and Dequeue
are standard operations on queues and their description can be found in [1].

Algorithm 3.1. IncidenceGraph(MaximalSimplexList Sy,q4(S), VertexHash H)

1: V:i=0; E:=0; C:=0; Q := EmptyQueue;
2: for all Simplex P € Syq2(S) do

3 if P ¢V then

4 C:=CU{P}

5: Enqueue(Q, P);

6: while Q # () do

7: Simplex current := Dequeue(Q);

8 V =V U{current};

9: for all Vertex v € current do

10: for all Simplex neighbour € H|[v], neighbour # current do
11: if neighbour ¢ V then

12: e := (current,neighbour); E := EU{e};
13: if neighbour ¢ Q then

14: Enqueue(Q, neighbour);

15: return Graph(V, E, C);

Theorem 3.1. Algorithm 3.1 stops and constructs the augmented incidence
graph G = (V, E, C) for simplicial complex S in O(card(V') - dim(S) - deg(H))
where dim(S) = max p g{dim(P)} and deg(H) = maxveso(s){length(H[v])}.
Moreover, for each connected component G’ C G its set of nodes V(G') equals to
the set of maximal simplices in the corresponding connected component S’ C S.

Proof. Obviously V contains all maximal simplices in Sy,..(S). Pair
(S1,52) € E iff S; NSy #), therefore augmented incidence graph is obtained.
Simplex P is added to C in line 4 only if P ¢ V which means PN S =) for all
S € V and P represents a new connected component, since in while loop at line
6 BFS procedure, which finds connected components, is implemented. Simplex
P is added to Q only once, hence the while loop in line 6 always completes after
adding to V' all elements from connected component of P.

120 P. Brendel et al.

The internal for all loop in line 9 is performed for every d-dimensional simplex
at most dim(S) - deg(H) times. Since the while loop in line 6 is performed at
most card(V) times, the complexity of the algorithm is O(card(V') - dim(S) -
deg(H)). O

4 Constructing Acyclic Subset

Since the homology of a disconnected complex is a direct sum of homologies of
its connected components, later in this paper we will construct component-wise
acyclic subcomplexes. In this section we present two approaches to construc-
tion of such complexes using the incidence graph as well as a function named
AcyclicityTest. The purpose of this function is to decide whether a simplex
may be added to the constructed acyclic set without loosing acyclicity. How to
obtain such a function is the purpose of Section 6.

The first algorithm, referenced in the following sections as AccST, is an adap-
tation of the algorithm presented in [8] to the case of simplicial complexes. The
adaptation is not straightforward, because, unlike the case of cubical sets, in the
simplicial case it is not obvious how to efficiently determine the neighborhood of
a simplex. For this, we use the incidence graph presented in Section 3. Another
difference is that, instead of one, we construct several acyclic subsets in each con-
nected component of S and then join them by a spanning tree. It allows us to
construct larger acyclic subsets for certain kinds of data. To do this we need two
auxiliary functions: FindSimplexNotInAccSub and CreateSpanningTree. Both
are based on standard graph algorithms [1]. The first finds a simplex that has no
intersection with the acyclic subset. It uses breadth-first search algorithm. If no
such simplex can be found, it returns NULL. The other takes as an input a list of
simplices, one per each constructed acyclic subset. It first constructs the shortest
paths connecting the acyclic subsets. Each path is a list of one-dimensional sim-
plices. The paths are used to build a graph in which nodes are the constructed
disjoint acyclic subsets and edges are the constructed paths. Then, Kruskal al-
gorithm [1] is applied to create a spanning tree joining the constructed acyclic
subsets.

Theorem 4.1. Algorithm 4.1 always stops. Given a simplicial complex S on
input, represented by the incidence graph G = (V, E, ('), it returns a component-
wise acyclic complex A on output.

Proof. In lines 11 and 12 a simplex P is added simultaneously to Q@ and to
the acyclic subset A. Since P may be added to A only once and the num-
ber of simplices is finite, the inner while loop in line 7 always finishes. Func-
tions FindSimplexNotInAccSub and CreateSpanningTree are respectively BFS
and Kruskal algorithms [1], hence they both complete. Every simplex found by
FindSimplexNotInAccSub in line 13 is added to the acyclic subset. Hence, the
finiteness of V implies that the while loop in line 4 completes. Thus, since the
number of simplices in C'is also finite, we know that the algorithm always stops.

Homology Computations via Acyclic Subspace 121

Algorithm 4.1. AccST(IncidenceGraph (V, E, C))

1: A:=0; Q := EmptyQueue;
2: for all Simplex P € C do

3 L :=EmptyList;

4 while P # () do

5: A:= AU{P};

6: Enqueue(Q, P);

7 while O # () do

8: Simplex @ := Dequeue(Q);

9: for all Simplex S € n(Q) \ A do

10: if AcyclicityTest(A, S) = true then
11: A:=AU{S}

12: Enqueue(Q, 5);

13: P :=FindSimplexNotInAccSub(V, E, P, A);
14: if P # NULL then

15: L:=LU{P};

16: A := AU CreateSpanningTree(L);

17: return A;

Since each simplex is acyclic, we begin the construction of the acyclic subsets
of the components of S with the representants of the connected components of
the incidence graph described in Section 3. As long as we can find a simplex
acyclically intersecting A, by Mayer-Vietoris Theorem we may add it to A with-
out losing its acyclicity. If we cannot find such a simplex, we look in the same
connected component for another one that has no intersection with A and we
build acyclic subset around it as described above. We stop this procedure when
there are no simplices that do not intersect A. Due to Mayer-Vietoris Theorem
acyclic subsets constructed that way cannot intersect each other. Now let us as-
sume, we have a number of disjoint acyclic subsets of A and we want to connect
them in order to form a larger acyclic subset. First, we need to find paths, i.e.
lists of one-dimensional simplices, joining the subsets. Since all components of
the constructed set A are contained in the same connected component of S, we
can always find a path joining any two of them. Unfortunately, the constructed
paths can intersect each other or even other parts of A creating unwanted cycles.
Nevertheless, is is not difficult to avoid this problem by joining acyclic parts
step by step and adding only parts of the connecting paths so as not to lose
acyclicity. U

Algorithm 4.2, referenced in the following sections as AccIG, constructs simulta-
neously the incidence graph and a component-wise acyclic complex. For
certain kinds of data it provides faster and more memory efficient way of con-
structing component-wise acyclic subcomplex than Algorithm 4.1. The nodes
of the resulting graph G are these simplices in Sy,q:(S) which are not in the
acyclic subset. The algorithm uses the general graph functions AddToGraph and
RemoveFromGraph, respectively adding a simplex to or removing a simplex from

122 P. Brendel et al.

Algorithm 4.2. AcclG(MaximalSimplexList Sy,q.(S), VertexHash H)

1: V:i=0; E:=0; A:=0; Q:= EmptyQueue;
2: for all Simplex P € Sy42(S) do

3 if P¢ Vand P ¢ A then

4 A:= AU{P};

5: EngNeighb(P, H, Q);

6: while O # () do

7 Simplex current := Dequeue(Q);

8: if AcyclicityTest(A, current) = true then
9: A = AU {current};

10: EngNeighb(current, H, Q);

11: if current € V then

12: RemoveFromGraph(current,V, E);
13: else if current ¢ V then

14: AddToGraph(current,V, E, H);

15: EngNeighb(current, H, Q);

16: return Graph(V, E), A;

a given graph. It also uses function EngNeighb, which enqueues all neighbors of
given simplex that are not yet in the queue nor in the acyclic subset.

Theorem 4.2. Algorithm 4.2 stops and returns a component-wise acyclic com-
plex A and the incidence graph G = (V, E') whose nodes are the maximal sim-
plices in Spa:(S) \ A.

Proof. A simplex may be added to Q only if it does not belong to the acyclic
subset and its neighbor has been added to the incidence graph or the acyclic
subset. Since each simplex can be added to the graph or the acyclic subset at
most once, the algorithm stops.

We start building a new acyclic component of the set A by finding a simplex
that has not been added yet neither to the graph nor to the acyclic subset. Thus,
it is not a neighbor of any simplex already processed. It means it represents new
connected component of § in which we can start build new acyclic subset A. We
extend it only by adding those maximal simplices that have acyclic intersection
with A. For every simplex in Q we either add it to the acyclic subset or to the
incidence graph, which means that nodes of the created incidence graph are all
maximal simplices of 5,4, (S) that have not been added to .A. O

5 Distributed Computations

In this section we show how the algorithms that compute a component-wise
acyclic subcomplex for a given simplicial complex can be used in distributed
computations. The idea is to divide the initial complex into small parts, then
construct a component-wise acyclic subcomplex and an incidence graph for each
part and finally combine the results into a component-wise acyclic subcomplex
and incidence graph for the initial complex. However, we need to ensure that

Homology Computations via Acyclic Subspace 123

after combining the results from the individual computations the obtained space
is component-wise acyclic, i.e. we do not make cycles while connecting the acyclic
subsets from the different parts. Moreover, we need a way to connect individual
incidence graphs into the incidence graph of the initial complex. The whole
procedure is very technical and resembles what we do in Algorithm 4.1 but in a
more global scale. Let us emphasize that distributed computations involve only
the construction of the incidence graph and the acyclic subset for each part. After
combining the results from the individual reductions we create one complex for
which we can perform homology computations just like in the non-distributed
case.

<

JAVAVANVANN IRV 7AW L \WANNIVA7A /i) VANN
(a) (b) (c)

AT TN WA A VAV

A
-

.

i

S X > R b B
ey N B eV

B WAR A AR I Aaam
(d) (e) (f)

Fig. 1. (a) the initial simplicial complex, (b) the initial complex splitted into smaller,
partial complexes, (c) the boundary simplices in the partial complexes, (d) the acyclic
subsets in the partial complexes (black), (e) the combined results, (f) the acyclic subsets
joined with a spanning forest (black)

y

The first step is to split the initial list of maximal simplices of S (Figure 1a)
into lists P;, i € {1,2,...,n} in such a way that |J, P; = Smaz(S) (Figure 1b)
and P,NP,; = 0 if i # j. For every P; we define two sets: BV; := U#j{So(Pi) N
So(Pj)} and BS; = {Q1|Q € P; N So(Q) N BV; # 0}. The elements of BS;
are referred to as the boundary simplices - simplices which have neighborhood
contained in other packages. (Figure 1lc). In the process of constructing the

124 P. Brendel et al.

acyclic subset A; for each P; we consider only those simplices that are not
boundary simplices (Figure 1d). To do so, we need to change a little Algorithms
4.1 and 4.2 so they include such restriction. We will not present them here, but it
is easy for the reader to do such modification. In our example (Figure 1d) acyclic
subset is constructed from all simplices that are not boundary simplices, but in
general case this is not true. Computations of lists of both incidence graphs G;
and acyclic subsets A; may be performed sequentially or in a distributed manner.
In both cases we gain profits from lower memory usage, because list of simplices
for which computations are performed are much smaller than the initial one.
In the second case computations are performed much faster. Moreover, after
constructing the acyclic subsets A; we can discard all simplices contained in
A; from the incidence graph and construct a new acyclic subset which is the
intersection of A; with the lower dimensional faces of simplices which are left
in the incidence graph. In the latter case, we save additional memory needed to
store redundant simplices. Finally, after combining the results (Figure le) into
one incidence graph we obtain a structure analogous to the one in Algorithm
4.1. We then create a spanning forest in which nodes are disjoint parts of the
acyclic subset and edges are lists of one-dimensional simplices connecting them
(Figure 1f).

Theorem 5.1. The family of simplices A constructed as above is a component-
wise acyclic subcomplex of the initial simplicial complex S.

Proof. By restricting the acyclic subset algorithm to these simplices that are not
boundary simplices we are sure that the acyclic subsets in the respective parts
do not create cycles after combining them. The rest of the proof is analogous to
the proof of Theorem 4.1. O

6 Acyclicity Tests

The AcyclicityTest function is a tool allowing to decide whether we can add
a simplex to the constructed acyclic subset. The function takes two arguments:
the already constructed acyclic subset A and a simplex P. We distinguish two
types of acyclicity tests:

— a full test — it returns true if and only if A N cl(P) is acyclic
— a partial test — if it returns true, then A N ¢l(P) is acyclic but false on
output denotes a failure to prove that .4 N cl(P) is acyclic.

Acyclicity tests in the setting of cubical sets, both full and partial, are proposed
in [8].

The main limitation for quick acyclicity tests is the dimension of the complex.
The full tests both in the cubical [8] and in the simplicial case are based on the
idea of tabulated configurations for boundary elements. The number of configu-
rations is 23"~ for a d-dimensional cube and 22**" for a d-dimensional simplex.
This makes the method prohibitive for d > 3 in the case of cubical sets [8] and for

Homology Computations via Acyclic Subspace 125

d > 4 in the case of simplicial complexes [3]. The universal full test that works for
every dimension is the computation of the homology of A Ncl(P). However, this
method is computationally very expensive. Therefore, in the dimensions where
the tabulated configurations cannot be used, the use of quick partial tests is of
interest. An acyclic subset algorithm based on partial acyclicity tests remains
correct and often provides acyclic subsets which are not substantially smaller or
even the same size as the algorithms based on full tests.

In the rest of this section we introduce few partial tests for the simpli-
cial case. Given an acyclic subspace A and a d-dimensional simplex P we set
T := AnNcl(P). The first test is based on the investigation of the maximal sim-
plices of Z. It is straightforward to check that if the number of maximal simplices
of dimension d — 1 in 7 is less than or equal to d and there are no maximal sim-
plices of other dimensions in Z, then 7 is acyclic. This proves the following
theorem.

Algorithm 6.1. AccTestCoDim1(Set A, Simplex P)
1: 7 := MaximalSimplices(A N cl(P));

2: d :=Dim(P); i := 0;

3: for all Simplex @Q € Z do

4 if Dim(Q) =d — 1 then
5: i+

6: else

7 return false;

8: if i >0 and i <=d then

9: return true;

10: else

11: return false;

Theorem 6.1. Given a set A and simplex P on input, if Algorithm 6.1 returns
true, then AN cl(P) is acyclic. However, false on output denotes a failure to
decide whether A N cl(P) is acyclic.

Algorithm 6.2 tries to find a vertex of P which is a common face of all maximal
simplices in Z. If it is able to do so, it means that Z forms a topology of a star
and therefore is acyclic. Analogous theorem as for Algorithm 6.1 can be stated
for Algorithm 6.2.

Two more partial tests will be introduced without presenting suitable algo-
rithms and theorems. First of them uses the list of maximal simplices Z for
construction of an acyclic subcomplex Z’ of Z. The whole procedure is exactly
the same as presented in this paper. For testing acyclicity it uses itself recur-
sively. At the bottom of recursion we only need to determine if the intersection of
two one dimensional simplices is acyclic. In fact it is true if and only if simplices
share common vertex, which is trivial to check. If constructed acyclic subcomplex
T’ is the same as the initial complex Z, then Z is acyclic.

The last test constructs simplicial complex from Z and performs coreductions
[7] on it. If the resulted complex is fully reduced, it means that Z is acyclic.

126 P. Brendel et al.

Algorithm 6.2. AccTestStar(Set A, Simplex P)

1: 7 := MaximalSimplices(A N cl(P));
2: for all Vertex v € P do

3: ok := true;

4: for all Simplex @ € Z do
o: if v C @ then

6: ok := false;

7 break;

8: if ok then

9: return true;

10: return false;

7 Numerical Experiments

All algorithms presented in this paper have been implemented in C++. The code
will be available as a part of RedHom [11] library. To provide a communication
between processes during distributed computation MPI [4] was used. Both local
and distributed approaches were compared with the coreduction homology al-
gorithm [7], denoted in the following table by CoRed. AccIG and AccST are the
algorithms introduced in Section 4. DAccIG and DAccST denote the outcome of
distributed computations using AccIG and AccST algorithms respectively for a
local construction of an acyclic subspace. Column size denotes the number of
maximal simplices used as input. Value in column s is the total time in seconds
needed for building the incidence graph, performing reductions (which could
be either removal of acyclic subset or coreductions [7]), creating the simplicial
complex from the list of maximal simplices and computing Betti numbers for
the complex [5]. Column MB contains the total amount of memory in megabytes
needed for performing computations. Distributed computations were performed
on 4 nodes (1 master and 3 slaves) simultaneously and values in this case denotes
the maximum running time in seconds over all nodes and maximum amount of
memory that single node needs. Computing generators after reduction of acyclic
subset is still an open problem.

CoRed | AcclG | AccST |DAcclG| AccST
Space name| Size | s |[MB| s |MB| s |MB| s [MB| s | MB

Bjorner |3079k|174(2330(203|1035|375/2968|154|568|229|1008
Dunce Hat |4758k|273(3603|327|1647|598|4525|224 (821 |390|1527
Proj. Plane|2799k|158(2180(189| 943 1323|2638|14:3| 437 {190| 900

The second table contains comparison of efficiency of acyclicity test algorithms
presented in Section 6. Algorithm denoted as Tab is acyclicity test that uses
tabulated configurations. CoDim1 and Star are respectively Algorithms 6.1 and
6.2. Rec is recursive test, Hom is full test that uses homology computations and
Cored is test based on coreductions. For each algorithm column s denotes total

Homology Computations via Acyclic Subspace 127

Space name| Size |s| # |s| # |[s| # |s| # S # S #

Tab CoDim1 Star Rec Hom Cored

Bjorner |513216|33|513215(49|513215(34|513215|39|513215(166(513215|{124|513215

Dunce Hat |793152|53|789279|73|789060(50|789279|55|789279|253|789279|192|789279

Proj. Plane [466560|29(464511|42|464609|31|464511|32|464511|150|464511|111|464511

running time in seconds needed for performing computations, just as described
above, using AccIG algorithm and selected acyclicity test. Column # denotes
number of maximal simplices in constructed acyclic subcomplex.

Acknowledgments. P.B. and M.M. are partially supported by Polish MNSzW,
Grant N N201 419639. P.D. is partially supported by grant Nr IP 2010 046370.

References

10.
11.

. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT

Press and McGraw-Hill (1990)

. Dlotko, P., Specogna, R.: Efficient Cohomology Computation for Electromagnetic

Modeling. Computer Modeling in Engineering & Sciences 60(3), 247-277 (2010)

. Diotko, P.: Acyclic configurations for boundary elements of 3 and 4 dimensional

simplices, http://www.ii.uj.edu.pl/~dlotko/accconf.html

. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press (1990)

. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology, Appl. Math.

Sci., vol. 157. Springer, New York (2004)

. Kaczynski, T., Mrozek, M., élusarek, M.: Homology computation by reduction of

chain complexes. Computers and Math. Appl. 35, 59-70 (1998)
Mrozek, M., Batko, B.: Coreduction Homology Algorithm. Discrete and Compu-
tational Geometry 41, 96-118 (2009)

. Mrozek, M., Pilarczyk, P., Zelazna, N.: Homology algorithm based on acyclic sub-

space. Computers and Mathematics with Applications 55, 23952412 (2008)

. Munkres, J.R.: Elements of Algebraic Topology. Perseus Publishing, Cambridge

(1984)
Computer Assisted Proofs in Dynamics, http://capd.wsb-nlu.edu.pl
The RedHom homology algorithms library, http://redhom.ii.uj.edu.pl

