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he two great themes of smooth manifolds and assembled complexes compete
politely in topology. One locus of synthesis between the two lies in the epony-
mous theory of Morse. This chapter integrates all of the previous chapters into

a suite of perspectives, tools, and applications connecting local behavior to global.

7.1 Critical points

In any homology theory, one counts certain objects with respect to an appropriate
cancelation, usually with some ancillary structure imposed to keep counts finite. Morse
theory uses a height function to facilitate homological counting.

Fix M a compact Riemannian manifold without boundary.
Morse theory operates via a real-valued function and the dynam-
ics of its gradient flow. Fix h: M — R a smooth function and
consider the gradient field —Vh on M. The dynamics of this
vector field are simple: solutions either are fixed points (critical
points of h) or flow downhill from one fixed point to another. Let
Cr(h) denote the set of critical points, and assume for the sake
of simplicity that all such critical points are nondegenerate — the
second derivative (or Hessian) is nondegenerate (has nonzero de-
terminant) at these points. Equivalently, the gradient field —Vh,
thought of as a section of the tangent bundle T, M, is transverse
to the zero section (cf. §1.6), whence it follows that nondegener-
acy is generic. These nondegenerate critical points are the basis
elements of Morse theory.

The critical points have a natural grading — the Morse index, u(p), of p € Cr(h)
— the number of negative eigenvalues of the Hessian of second derivatives of h at p.
This has the more topological interpretation as the dimension of the unstable manifold
of the vector field —Vh at p (recall Example 1.6): u(p) = dim W¥(p). The Morse
index measures how unstable a critical point is: minima have the lowest Morse index;
maxima the highest. Balancing a three-legged stool on k legs leads to an index
= 3 — k equilibrium.

Classical Morse theory begins by observing the (lower)
excursion sets M; := {h < t} of a Morse function h on a
compact manifold M. The story, in brief, is as follows. As
t € R increases, the family M; gives a filtration of spaces
that begins with the empty set and ends with M. In the
beginning, a disc appears ex nihilo and evolves, pinching and
branching as critical points are passed, ultimately capping
at the maximum. The critical observation: M; changes
homeomorphism type only at critical values of h.

The local picture tells all. Morse theory asserts the following:

Lemma 7.1. Consider a small compact ball B about a critical point p € Cr(h) of
Morse index u. Denote by E the lower set E = BN {h < h(p) — €} fore > 0 small,
and consider U, the closure of B — E, the complementary upper set.
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>

1. U is homeomorphic to )" for n = dim M;
2. E is homeomorphic to D" #*1 x S¥1- and
3. ENU is homeomorphic to D" #* x SF1.

One says that there is a surgery in the neighborhood of p that attaches a product
disc U =2 D" # x D* glued along ENU = D" x o*.

7.2 Excursion sets and persistence

The filtration of M by lower excursion sets M; of a Morse function h: M — R fits
perfectly into the picture of persistence sketched in §5.13-5.15. In this setting (some-
times called sublevel set persistence [104]), one considers the persistence barcode
of the filtration of M by subsets M;, where the parameter t, is suitably discretized.
In keeping with the idea of Morse theory,

the sublevel sets change their topological type +:
only at critical points; hence barcodes for sub- s i

level set persistence are tethered to the critical o=n J:.
values. The meanings of the barcodes are as in
§5.13-5.15, in that a long bar connotes signifi-
cance; however, in sublevel set persistence, one —Z

TN

is not trying to find an optimal cut-off ¢ to ap- 5’ 5 \
proximate M; rather, one wants to know which §' 5 ’ ]
topological features of a manifold are important ’
when it is stretched out along a table ruled by h.
Clearly a small bar in a barcode for excursion sets
indicates something like a wrinkle in the Morse function: a transient hole. Long bars
in the sublevel set barcode indicate a large-scale feature as seen by h. In the many
applications of persistence, the lingering problem of noise is pertinent, since a wiggling
of h leads to many small spurious bars. There is a large collection of stability-type
results for persistence: see [70] for the first of these, which concerns sublevel set per-
sistence and asserts an (interleaving) distance on barcodes with continuity guarantees
under addition of noise to h, cf. §10.6.

More salient to the themes of this chapter is the phenomenon of cancellation.
The birth and death implicit in the barcodes for lower excursion sets reveal one of
the great perspectives of Morse theory: critical points and the topological features
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they generate are naturally paired in a cancellative manner. Lemma 7.1 implies the
following:

Corollary 7.2. For a Morse function h on a compact manifold M, births and deaths in
the sublevel set homology barcode of grading k implicate only critical points of Morse
index k and k + 1 respectively.

This cancellation of features foreshadows a self-contained homology theory for
Morse functions.

7.3 Morse homology

Classical Morse theory concerns equivalence up to homeomorphism, based on the
uniform behavior of nondegenerate critical points. By relaxing to a more homological
view, the theory will connect better with the rest of the text and will naturally suggest
extensions to non-Morse functions.

The constructs of the previous sections are perfect for homology. One has a
natural set of objects (Cr(h)) and a grading (). One obtains the Morse complex,
C" = (MC,, d), with MC, the vector space with basis {p € Cr(h): u(p) = k}. The
boundary maps encode the global flow of the gradient field: dx counts (modulo 2
in the case of ¥, coefficients) the number of connecting orbits — flowlines from a
critical point with g = k to a critical point with 4 = kK — 1. One hopes (or assumes)
that this number is well-defined.

The difficult business is to demonstrate that 8 = 0:
this involves careful analysis of the connecting orbits, as in,
e.g., [21, 274]. The use of IF, coefficients is highly rec-
ommended: dis-orientation is a plus. The ensuing Morse
homology, MH,(h), captures information about M.

Theorem 7.3 (Morse Homology Theorem). For M com-
pact and h: M — R Morse, MH4(h; Fy) = He(M;F5), in-
dependent of h.

The conceptually simplest proof involves an isomor-

phism to the cellular (CW) homology of M, where the cell structure is that given
by the W¥(p) for p € Cr(h). The Stable Manifold Theorem from dynamical sys-
tems asserts that these unstable manifolds are all cells homeomorphic to R*(P), and
a transversality argument gives acceptable attaching maps. The proofs are clearest
for Morse-Smale functions, for which all stable and unstable manifolds of critical
points are transverse. Morse-Smale functions, like Morse functions, are generic, and
for such, there is an isomorphism at the level of chain complexes: cf. Example 2.2.

Example 7.4 (Morse homology) ©

For the particularly simple height function h on S? with two maxima, one minimum,
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and (of necessity) one saddle, the Morse complex in [F, coefficients is of the form,

0 ]Fg (1]1] Ty 0

IFQ O;

thus, MH,(h) =2 F,, MH{(h) = 0, and MHq(h) = F»; one notes that in this example
MH.(h) = Hy(S2 ). ®

One efficient means of encoding all the critical point
data of a Morse function is by means of the Morse polyno-
mial of h, defined as M,(t) := 3= ¢, t#(). This polyno-
mial in the abstract variable t has as its coefficients ¢; € N
the number of critical points of A with Morse index /. The-
orem 7.3 implies a relationship between the Morse polyno-
mial and the Poincaré polynomial, P(t) = >, dim H;(M)¢t',
which, recall, encodes the singular homology of the man-
ifold M. At the very least, the /" coefficient of Mj(t)
must be greater than or equal to that of P(t). A stronger
inequality uses the polynomial algebra explicitly.

Corollary 7.5 (Strong Morse Inequalities). For h: M — R Morse,
Mi(t) = P(t) + (1 + £)Q(1), (7.1)

where Q € N[t] is a polynomial with all coefficients in N.

Corollary 7.6 (Euler characteristic). For h: M — R Morse on a compact manifold

M,
X(M)= ) (—1)“P),
p€eCr(h)
Proof. Use Corollary 7.5, Lemma 5.17, and £t = —1. ®

Morse theory offers a painless demonstration of one manifestation of homological
Poincaré duality:

Corollary 7.7 (Poincaré Duality). The Fo-homology of a compact n-manifold M is
symmetric in its grading: Hy(M;F») 2 H,_,(M;F>) forall0 < p < n.

Proof. For h a Morse function, the function —h is also Morse. Changing from h
to —h reverses the direction of the gradient flow, preserving the critical points and
connecting orbits, but exchanging stable and unstable manifolds. At the chain complex

level,

— % MCp(h) —2— MC,_1(h) —2—

% F

—— MC, p(—h) —— MCy pi1(—h) ——
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and thus Hy(M) = MH,(—h) = MH,_,(h) & Hy_p(M). ®

7.4 Definable Euler integration

Corollary 7.6 hints at the role of Morse theory in integration with respect to Euler
characteristic. The integral operator | dx: CF(X) — Z of Chapter 3 does not readily
extend to continuous real-valued integrands: there is an extension of the integral to
real-valued integrands by Rota, then Chen, that vanishes on all continuous integrands
[262, 65]. Recent work [25] has revealed a novel Euler calculus for R-valued integrands,
with interesting Morse-theoretic connections. Fix an o-minimal structure, as in §3.5,
and denote by Def(X) the definable functionals h: X — R — those (compactly
supported) functions whose graphs in X x R are definable sets. Recall, these are not
necessarily continuous functions, as they include the constructible functions CF(X).
Given h € Def(X), define the integral of h as a limit of discretizations:

/Xh[dxj = lim 1/[nm : /Xh[dm = lim l/wﬂ (72)

These limits exist and are well-defined, though
not equalin general. The triangulation theorem
for Def(X) [293] states that to any h € Def(X), o—o
there is a definable triangulation (a definable bi-
jection to a disjoint union of open affine sim-
plices in some Euclidean space) on which h is
affine on each open simplex. From this, one
may reduce all questions about the integrals over
Def(X) to questions of affine integrands over in-
dividual open simplices, using the additivity of the integral. Using this reduction tech-
nique, one proves the following analogue of Equation (3.10):

Proposition 7.8 ([25]). For h € Def(X),

/Xhtde:/:o x{hzs}—x{h<—5}d5=—/x—h[dx1- (7.3)

In its favor, the integral is coordinate-free, in the sense that [, ho ¢ldx] =
[y hldx] for ¢ a homeomorphism of X. Less pleasant is that these integral operators
are not linear; nor even homogeneous with respect to negative coefficients, by (7.3).
The compelling feature of the valuations [dx] and [dx] is their relation to Morse
theory. The following theorem has the effect of concentrating the “measure” |dx] on
the critical points of the integrand.

Proposition 7.9 ([25]). /f h is a Morse function on a compact n-manifold M, then:

n—p(p) . w(p)
[ plaxi= 3 i Ohe) [ pfax) = 30 (-140he

p€eCr(h) p€eCr(h)
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This result does not require having a Morse function: see Theorem 7.12. The
theory of Euler integration on CF is the highly degenerate setting where the entire
domain is critical.

Signal processing — with applications ranging from radar imagery to sensor net-
works — is fueled by integral transforms. The Euler integral of Chapter 3 yields some
interesting novel examples of integral transforms with the limiting feature of being an
integer-valued theory, and thus perhaps not directly applicable to, say, image process-
ing. The extension of the Euler integral to R-valued functions allows for a wider array
of applications thanks to some novel integral transforms [79, 154].

Example 7.10 (Euler-Fourier transforms) ©

There is an integral transform F: CF(R") x (R")" — Def(R") that is best thought of
as an Eulerian version of a Fourier transform. For h € CF(R") and ¢ € (R")”, define
the Euler-Fourier transform of h in the direction £ via

Fh(€) = /_Z /gl(s) hdxds.

It is clear that for A a compact convex subset of R” and [|£|| = 1, (F14)(§) equals
the projected length of A along the &-axis. This points to the following theorem of
[154]. Let A be a tame compact n-dimensional submanifold of R” with boundary 9A,
decomposed into positive YA and negative A components (depending on whether
the oriented normal to OA has positive or negative dot product with £). Then, the
Euler-Fourier transform of A can be reduced to an integral over OA:

T1a(6) = [ ¢lax - [ elo (7.4)

Note the resemblance to Stokes’ theorem: an integral
over the interior equals an integral of an “anti-derivative”
over the boundary. One must be careful with orientations
and signs, as with Stokes' theorem. Since 8A is a manifold
and £: A — R is generically a Morse function, Proposi-
tion 7.9 implies that Fh(§) is an alternating sum of critical
values, graded by Morse index, providing a vast general-
ization of the &-projected width observation for A convex.
A polar version of this integral transform (called an Euler-
Bessel transform) has a similar index formula and is useful
in shape detection from enumerative sensor data [154]. ®

7.5 Stratified Morse theory

The initial emphasis of Morse theory on nondegenerate Morse functions and local
coordinate representations leaves students with the impression that manifolds and
nondegeneracy are a sine qua non. Though it is convenient to assume a Morse func-
tion, nature often interferes, necessitating a degenerate Morse theory. Morse Theory



142 Chapter 7. Morse Theory

can be adapted to settings where the object of interest is not a manifold, but rather a
stratified space, built from manifold pieces, assembled in a sufficiently tame manner.
This leads to some complications, the consequence of increased generality.

The theory of Goresky and MacPherson [163] recre-
ates Morse theory for stratified spaces (see §1.8). This
large and technical body of work cannot be summarized
quickly and accurately: the following is elementary, at the
expense of carefully-stated theorems. Instead of the usual
(Whitney-type) stratified spaces, consider (cf. [272]) a fixed
o-minimal structure. Let Y C R” be tame and h: R" — R
a definable function — the tame analogue of a Morse func-
tion on Y. Stratified Morse theory delineates when the
excursion sets Y; = {h < t} change their topological type.
This occurs by defining a Morse index and classifying at-
tachments in the manner of Lemma 7.1.

In classical Morse theory, the index of a critical point is a natural number, and
attaching is by surgery of a disc along a sphere of dimension w. In this stratified
setting, one defines the local Morse data of Y at a point p € Y under h to be the
homeomorphism type of the space

LMD(p) = LMD(Y, p, h) := 6/<“€T>0+ B(p)NnY Nn{h> h(p)—¢€}.

The limit exists thanks to tameness [293] and is sometimes expressed in terms of a pair
(B, E) of compact spaces: B = B.(p)NY and E = Bn{h < h(p) — €'} (sufficiently
small), and LMD = B—E. What is the appropriate Morse index in this setting?
For a numerical value, it would be appropriate to call the Euler-Morse index of h the
constructible function J, € CF(Y') given by Jx(x) := x(LMD(Y, x, h)) = x(B) —x(E).
Note that one must be careful with open versus closed cells, as in Chapter 3. For a
classical Morse function h, Jj, is zero except at the critical points, at which the index
takes on a value of (—1)*, for u the Morse index. A richer index would be the relative
homology H.(B, E), which, for a nondegenerate critical point of a Morse function on
a manifold, would be concentrated in grading . For more degenerate critical points
or critical sets, this index can capture some local topological behavior.

Stratified Morse theory was developed for applications in algebraic geometry that
lie outside the bounds of this text, and only the very first step — the local Morse data —
has been touched upon. Technical aspects of stratified spaces are numerous and crucial
to the theory. The significant steps lie in a tangential versus normal decomposition
of the local Morse data, with instructions as to how local changes in excursion sets
are controlled by this data. All of this culminates in yet another homology theory —
intersection homology — which requires the constructible sheaves of Chapter 9 to
fully appreciate (but see [34]). Despite its rarefied origins, stratified Morse theory has
found applications in several contexts, including problems in grasping and manipulation
in robotics [249], in which potential functions on the relevant configuration spaces can
lead to interesting critical sets, on which one cannot simply “compute derivatives” to
determine stability.
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Example 7.11 (Euler integration) ©

A blending of the Poincaré-Hopf Theorem 3.5 and Corollary 7.6 yields a link to Euler
integration in that [, J, dx = x(Y). This, Proposition 7.9, and more follow from a
connection between stratified Morse theory and Euler integration over Def(X).

Theorem 7.12 ([25]). For h € Def(X) continuous,

/Xh[de:/Xhﬂhdx ; /xhw)d:/xhjhdx

Thus, the appearance of not one but two valuations, |dx | and [dx], on Def(X),
is not an anomaly, but rather another manifestation of Morse-theoretic Poincaré du-
ality: h < —h. This result, like so much of Morse theory done properly, does not
require either a manifold or a nondegeneracy condition beyond tameness. ©

7.6 Conley index

Stratified Morse theory allows one to relax to non-manifolds and degenerate gradients:
with the proper approach, it is also possible to ignore the Morse function altogether.
One of the best approaches for doing generalized Morse theory is due to Conley
[72], and has enjoyed great success in applications to mathematical biology [44, 181],
rigorous numerics [292, 81, 228], experimental time-series inference [229], and more.
What follows is a simple version of Conley’s theory in the continuous-time setting.

Consider the case of a gradient field —Vh of a Morse
function h: M — R on a manifold M. Choose a fixed point
p € Cr(h) and consider a small ball B about p. The bound-
ary OB is partitioned into an exit set on which the gradient
field —V h points out of B; an entrance set on which the
field points in; and the remaining points of tangency to 9B.
If pis a critical point of Morse index k, then the exit set is
homotopic to a sphere of dimension u(p) —1: Lemma 7.1.
This example prompts a more general index. The Conley
index is not an integer, but a homotopy type of spaces.

One simple approach is as follows. Let X be a com-
plete locally compact metric space with a continuous flow ¢;: X — X (which may
or may not come from a smooth vector field). The Conley index is associated to a
suitable compact subset, B C X. The invariant set S = Inv(B; @) of the flow on
a set B is the set of all points x € B such that ¢;(x) € B for all t. One says a
compact B is an isolating block if Inv(B; ¢) lies strictly in the interior of B, and,
for all x € 0B, the flowline through x exits B either in arbitrarily small forwards or
backwards time or both. No internal “tangencies” are permitted. The isolating block
condition is a loose type of transversality: small perturbations to B remain isolating
blocks.
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The Conley index of an invariant set S with isolating block B collates the topol-
ogy of B relative to how the flow exits 0B. The exit set of B is £ := {x €
OB : w(x) € B, VO < e < 1}. The Conley index of S is the pointed homotopy type
Con(S) := h[B/E,{E}]. The index is the quotient space B/E (up to homotopy) with
E remembered as an abstract basepoint. The homological Conley index of S is the
relative singular homology Cone(B) := H¢(B, E). The index is well-defined in that
any two isolating blocks with the same invariant set have equivalent Conley indices.

Example 7.13 (Morse index) ©

The Conley index of a nondegenerate critical point of a Morse function with Morse
index  is the (homotopy type of the) sphere S* (with basepoint). The basepoint,
which initially seems extraneous, is vital when considering the case u = 0. There, the
fixed point is a sink, and the exit set E is the empty set, which, when remembered
as an abstract basepoint, gives a Conley index of S, the disjoint union of two points.
Notice that (1) the (local) topology of the unstable manifold of the invariant sets
figures prominently in the Conley index; and (2) the Conley index depends only on the
type of critical point B surrounds, not on B itself. ©

Isolating blocks are, unfortunately, not as abundant or flexible as one would like.
The solution is to allow for a larger exit set than simply what lies on the boundary of
B. Consider an invariant set S of the flow . One defines an index pair (B, E) of S
to be compact subsets £ C B of X satisfying:

1. Isolation: S = Inv(B—E; ) lies in the interior of B—E;
2. Invariance: any flowline starting in £ and staying in B lies within £; and
3. Exit: any flowline exiting B does so via E.

This B analogous to an isolating block, and E its exit set. The resulting Conley index
is well-defined in its homotopical Con(S) := h[B/E, { E}] and homological Con(S) :=
H.(B, E) instantiations. Wonderful to tell, the Conley index generalizes the Morse
index greatly:

1. Fixed points need not be nondegenerate, discrete, or stratified.
2. Vector fields need not be smooth or gradient.
3. Domains need not be manifolds or stratified/definable spaces.

Warning: some flows (e.g., integrable Hamiltonian) admit few index pairs, and some
minimal amount of local compactness is convenient. Computation of the Conley index
is aided by the following:

Theorem 7.14 (Conley Index Theorem (see [266])). The Conley index has the
following properties:

1. [Invariance] The Conley index depends only on S, not on the choice of index
pair (B, E) for S.

2. [Continuation] /f (By, E>) is a (Hausdorff-) continuous family of index pairs for
a continuous family of flows, then Cony = Con(B, Ex) is constant.
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3. [Additivity] /f (B, E) and (B', E") are disjoint index pairs for S and S', then
Con(SUS') = Con(S) Vv Con(S").

Example 7.15 (Forcing theory) ©)

The signature application of index theory in
dynamics is forcing the existence of invariant sets.
The Poincaré-Hopf Theorem (Theorem 3.5), the i i
Lefschetz Theorem (Theorem 5.19), and the Morse
inequalities (Corollary 7.5) all can be used to force o>
the existence of fixed points. The Conley index ver- ~
sion is more general still: if h[B/E,{E}] # 0 (i.e., ! !
the pointed homotopy type is not that of a point),
then Inv(B—E; @) # @. This invariant set may or
may not be a fixed point — heteroclinic orbits, periodic orbits and even chaotic invariant
sets are detectable [54, 141].

Consider the simple example of the 3-d system x = x* —x, y = —y, and Zz = z.
This gradient flow has two fixed points, which can be characterized by their Euler-
Poincaré indices (—1 and +1), their Morse indices (1 and 2), or their Conley indices
(S* and S?), each computed using local information from small neighborhoods of the
fixed points. If, instead of small neighborhoods of the fixed points, one chooses a
rectangular prism B surrounding the pair of fixed points, then, clearly, the fixed-point
index on B is J(B) = 1 — 1 = 0; likewise, the Conley index of this isolating block is
zero as well, since E C 9B is contractible. However, Con(B) = 0 # S' Vv S? as would
follow from Theorem 7.14 if there were no other invariant sets in B. One therefore
concludes that there is another invariant set in B besides the fixed points: it is in fact
the heteroclinic orbit connecting the two fixed points.

This simple example of an explicit gradi-
ent field is trivial, but it captures the spirit of
WAARSS =\ deeper applications. One of the earliest uses
of the Conley index was to show the existence
of a traveling wave solution u(x,t) to a class
\/AV/\V’\,"V"V“ of reaction-diffusion partial differential equations

of the form u; = uyy + f(x, u, uy) arising from

mathematical biology (population dynamics [73],
nerve impulses [279], and more). A pair of constant stationary solutions ug(x, t) = up,
ti(x,t) = vy (ie., fixed points of the PDE flow) admits a traveling wave if there is
a solution u(x, t) that approaches u; as t — oo and 1y as t — —oo (i.e., a hete-
roclinic orbit of the PDE flow). Index pairs around each fixed point yield a nonzero
Conley index, but a suitable index pair for the union of the two has trivial Conley
index, as computed by ‘deforming’ the PDE and using continuation. An additivity
argument proves that a travelling wave exists in cases where direct numerical simula-
tion is inconclusive. Further extensions of these ideas have been very useful in finding
stationary, time-periodic, and travelling-wave solutions to very general classes of PDEs
[84, 156, 182, 292]. ©)

2
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Example 7.16 (Attractor-repeller pairs) ©)

Rigorous arguments for the existence of a connecting orbit require a bit more machin-
ery [129, 203, 222, 266]. The simplest example of such is as follows.

Consider an isolated invariant set S C X for the
flow . An attractor-repeller pair is a pair of
disjoint compact sets (A, R) in S such that, for
every x € S—(AU R), the flowline ¢:(x) — A
as t = oo and @;(x) = R as t — —oc. Thus,
S decomposes as A, R, and S—(AUR) the con-
necting orbits. Given any attractor-repeller pair,
there exists an index triple Ny D Ny D N of
compact subsets of X, where (N, N3) is an in-
dex pair for S, (Ny, N») is an index pair for A, and (Ng, Ny) is an index pair for R.
The homological long exact sequence of the triple (Ng, N1, N2) (from the end of §5.3)
becomes an exact sequence relating Conley indices:

RN Conk(A) & Conk(S) & Cong(R) SELEN

This can be used for forcing connecting orbits from R to A.

Lemma 7.17. If the connecting homomorphism § on an index triple is nonvanishing,
then there exists a connecting orbit from R to Ain §.

Proof. Assume that S—(AU R) = @. Then S = AU R and, as per Theorem 7.14,
the Conley index decomposes as a wedge sum. Passing to homology, one obtains
Cone(S) = Cone(A) & Cone(R). Exactness then implies that § = 0. 0JO)

Example 7.18 (Floer homology) ©

One of the great triumphs of the Conley's approach to Morse theory is in an infinite-
dimensional version due to Floer [122] (see also [21, 224, 274]). It has been known
since the original works in Morse theory that the methods are applicable to gradient
flows on certain infinite-dimensional settings' when a Morse index can be defined. Un-
fortunately, those functionals for which Morse index is finite are rare. More common is
the case of functionals whose critical points have Hessians with an infinite number of
positive and negative eigenvalues. The breakthrough of Floer was to mimic the Con-
ley approach in settings where the critical points whose linearizations yield Fredholm
operators: the positive and negative eigenspaces are both infinite-dimensional, but the
difference of their dimensions — the Fredholm index — is finite. By combining these
insights with the pseudoholomorphic curve technology of Gromov [166] and an appro-
priate (nontrivial) array of analytic results, Floer and those who followed construct a
chain complex over [F, freely generated by critical points of the functional and graded
by the Fredholm index. The resulting Floer homology Fl, possesses similar properties
as the Conley homology, including continuation. Most remarkable is the fact that,

LFor example, Banach manifolds — spaces locally modeled on a fixed Banach space.
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since the Fredholm index takes values in Z as opposed to N, Floer homology is graded
over the full integers: it is common to have Fl, # 0 for negative values of k. ©

Example 7.19 (Arnol’d Conjecture) ©

The first achievement of Floer’s theory was a resolution of the Arnol’d Conjecture.
Fix a compact 2n-manifold M with a symplectic form, a closed nondegenerate® 2-
form w € Q2(M). A symplectic manifold allows for Hamiltonian dynamics as follows.
Given a function H: M — R, let Vg be the (unique) vector field satisfying w(Vy, ) =
—dH. This Hamiltonian field V4 is a twisted analogue of the gradient —dH, and
it follows from the Morse inequalities that Vi has at least ), dim Hi(M;R) fixed
points.

Choose a smooth S-parameter family of functions H;, t € S, and let V; = Xy,
be the corresponding t-dependent vector field. Arnold’s conjecture — that the number
of 1-periodic orbits of the family V; is bounded below by >, dim H,(M) —is a decep-
tively simple-sounding analogue of the Strong Morse Inequalities. It was first proved
using Floer-theoretic arguments as follows. Periodic orbits of V; satisfy a variational
principle with respect to action. This action yields a real-valued function on the space
of loops in M, extrema of which correspond to 1-periodic orbits. The action functional
is unbounded and the loop space of M is infinite dimensional, thus necessitating Floer-
theoretic arguments to find critical points of action. An equivalence between the Floer
homology of the action functional and the homology of M — a variant of Theorem
7.3 — provides the key to the Arnol'd Conjecture. Details are beyond the scope of
this text (and are largely analytic), but the theme of counting certain invariant sets by
means of a specialized homology theory and relating it to classical homology is fully
in the spirit of Morse theory. ©

7.7 Lefschetz index, redux

As hinted at in §5.10, there is a way to compute the Lefschetz index of a self-map
f: X — X that is localized at the fixed point set. This turns out to have a deep
connection to both stratified Morse theory and the Conley index. The number and
types of Lefschetz theorems are difficult to keep track of. Let the reader keep in
mind that the utility of fixed-point theorems in economics, game theory, differential
equations, and dynamical systems justifies the sometimes prickly technical machinery
that arises.

Example 7.20 (Degree-theoretic Lefschetz) ®

The fixed point index J of a vector field (from §3.4) is intimately related to the Euler
characteristic, thanks to Poincaré-Hopf (Theorem 3.5). It is also easily computed as
a degree, as per Example 4.23. This perspective lifts to the Lefschetz theorem as well
[98]. Consider first the case where U C R is open and f: U — R" has compact fixed

?Nondegenerate means that w” = w A --- Aw # 0 is a volume form.
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point set F = Fix(f). Then the fixed point index, J+(F), is defined to be the degree
of Ild —f:
9:(F) := deg ((U, U—F) 9t (R”,R”—O)) . (7.5)

The domain and codomain local homologies (in Z-
coefficients) have rank one in dimension n; thus the degree
is well-defined and has the usual properties, including ho-
motopy invariance and additivity. Thus, the index can be
computed as the sum J¢ = > £ J¢(F), where the sum is
over all F disjoint connected components of Fix(f). When
f: X — X is not defined on open neighborhoods in R”,
but only on X a neighborhood retract (suitably small open
neighborhoods of X in R” retract to X), then, given a
neighborhood U of a fixed point component F, Js(F) can
be computed as deg(ld — f o r), where r : U — X is the
retraction. In either setting, each term is determined by
the local behavior near F. The deep result is that this sum
of local fixed point indices is equal to the global Lefschetz
index:

Theorem 7.21 (Lefschetz-Hopf Theorem). For X C R” a neighborhood retract and
f: X = K C X amap to a compact subset K, the Lefschetz index (on He(X;R))
equals the fixed point index:

Jf=1T¢ = Z(—l)ktrace(H(f): HkX = HieX).
k

The proof is beyond what can be reasonably done briefly: see, e.g., [49, 98].
It is very instructive to draw some pictures of neighborhoods of fixed point sets and
compute the degrees by hand. It is the best way to see the connection to Morse theory,
since some fixed point components are attracting, some are repelling, and some have
mixed behavior. ©

Example 7.22 (Stratified Morse-theoretic Lefschetz) ®

Equation (7.5) is at best of limited use given the requirement that X have an explicit
embedding in R": at the very least, it is poor form to work extrinsically. An intrinsic
approach works with a Morse-type assumption on f, as pointed out in [164]. What
follows is a slight reformulation. Assume that f: X — X is definable. Then Fix(f) is
automatically compact and decomposed into connected components.

Following the index pair construction of §7.6, one could define for each con-
nected component F of Fix(f) an index pair (B, E) of compact subsets £ C B of X
satisfying:

1. Isolation: F = Fix(f|B — E) lies in the interior of B — E;
2. Invariance: f(E)N (B — E) = @, and
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3. Exit: if x € Band f(x) € B, then x € E.

For any such index pair, there is an induced map f : (B/E,{E}) — (B/E,{E})
since points in B — E either remain in B — E or are sent to E. The choice of an
index pair is by no means unique; nor is the pointed homotopy type of (B/E,{E}),
in contradistinction to the Conley index. However, remarkably, the analogue of a
localized relative Lefschetz index is well-defined:

7(F) = > (~1)*trace (H(f): Hx(B, E) = Hi(B. E)). (7.6)
k

In this setting, the Lefschetz-Hopf theorem becomes a theorem about the action of
f on the local homologies of the fixed point components, relative to the appropriate
exit sets:

I(F)=7(F) = Je=> 7¢(F)
F

There is yet a better version of the theorem that uses the tools of stratified Morse
theory. For X compact and f: X — X definable, the fixed point set not only splits
into a finite number of compact components; each of these is further stratified into
disjoint open simplices on which the local behavior of f is well-defined and ‘constant’
in the sense that for each stratum F,, of Fix(f), there is a well-defined local Lefschetz
index T¢(Fy) € Z. The definition of this index is similar in spirit to Equation (7.6),
but for a localized index pair. By defining the local Lefschetz index to be zero off of
Fix(f), one can interpret 7 as a constructible function on X. It was shown by Goresky
and MacPherson [164] that

T :/ ’TN'f dX.
X

This beautiful result is sadly under-appreciated, in part because the construction of
7 (general enough to apply to multivalued mappings F: X = X) requires techniques
from the theory of sheaves that will only be hinted at in Chapters 9 and 10. ©®

7.8 Discrete Morse theory

An idea as deep as Morse theory has emanations throughout all of Mathematics.
This chapter has focused primarily on the smooth or continuous theory; however,
there is a discrete version of Morse theory that has of late yielded powerful results
in combinatorics [197, 198], braid groups [118], computational homology [230] and
certain problems in computer science. The original papers of Forman [123, 126] are
complemented by the recent book of Kozlov [198] and a growing literature.
Consider for concreteness a simplicial or cell complex X. The critical ingredient
for Morse theory is not the Morse function but rather its gradient flow. A discrete
vector field is a pairing V which partitions the cells of X (graded by dimension) into
pairs V, = (0,<7y) where g, is a codimension-1 face of 7,. All leftover cells of X
not paired by V are the critical cells of V, Cr(V). A discrete flowline is a sequence
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(V}) of distinct paired cells with codimension-1 faces, arranged so that

Vi Vo Vi
— — —
o171 B 0odT B - B oydTy .

A flowline is periodic if TyZo; for N > 1. A
discrete gradient field is a discrete vector field
devoid of periodic flowlines.
~ It is best to lift everything to algebraic ac-
P \ tions on the chain complex € = (C®", 8) associ-
/ ated to the cell complex X. By linearity, the vec-
i tor field V induces a chain map V: Cy — Cyi1
‘ induced by the pairs o<{T — one visualizes an ar-
row from the face ¢ to the cell 7. As with classi-
cal Morse homology, F5 coefficients is simplest;
when oriented, one specifies V: ¢ — [o: T|T using incidence numbers. The discrete
flow of V is generated by the degree-zero chain map ® given by

¢ :=Id+ 0V + Vo,

with iterations of ® describing how cells descend along the gradient field V. Unlike
continuous time flows, the discrete flow has a limit: ®*° = lim,_ ., " is constant
for n sufficiently large. To every discrete gradient field is associated a discrete Morse
complex, €Y = (MC,, 3) with MC the vector space (or module) with basis the critical
cells {o € Cr(V); dim(c) = k}. Note that dimension plays the role of Morse index.

The boundary maps 8, count (modulo 2 in the
case of 5 coefficients; with a complicated induced
orientation else) the number of discrete flowlines
from a critical simplex of dimension k to a critical
simplex of dimension k — 1. Specifically, given T a
critical k-simplex and ¢ a critical (k — 1)-simplex,
the contribution of 8,(7) to ¢ is the number of gra-
dient paths from a face of T to a coface of o. In
the case that o<{7, then this number is 1, ensuring that the trivial V for which all
cells are critical yields " the usual cellular chain complex. It is not too hard to show
that 82 = 0 and that, therefore, the homology MH.(V) = H.(€Y) is well-defined. As
usual, the difficulty lies in getting orientations right for Z coefficients.

Theorem 7.23 ([123]). For any discrete gradient field V, MH,(V) = HS'(X).

It follows from the proof that the strong Morse inequalities, Equation (7.1),
hold with Morse polynomial My (t) = >, cc,n) t™. Discrete Morse theory, like
the Conley index theory, shows that the classical constraints — manifolds, smooth
dynamics, nondegenerate critical points — are not necessary. Applications of discrete
Morse theory are numerous and expansive, including to combinatorics [198], mesh
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simplification [208], image processing [252], configuration spaces of graphs [117, 118],
and, most strikingly, efficient computation of homology of cell complexes [230].

Example 7.24 (20 questions) ©

One of the early applications by Forman was to a problem in decision theory related
to evasiveness [124]. Let A be an abstract n-simplex on the vertex set {v;}{ and let
K C A be a known subcomplex. There is a hidden (i.e., unknown) simplex o of A,
and the goal of the 20 questions game is to determine whether ¢ C K by asking
questions of the form “Is v; in 67" Clearly, one can win the game with n+ 1 questions
by interrogating each vertex. One says that K is nonevasive if there is a strategy
for determining whether ¢ C K in strictly less than n + 1 questions, independent of
o; else, K is evasive. For example, if K = 0A, then determining if 0 C K is clearly
evasive, since one must check that all v; € o. However, there is only one evader —
only one simplex T of A has the property that all n 4+ 1 questions must be asked in
order to determine if 7 C K.

The insight of discrete Morse theory is that a guessing algorithm for determining
if o C K induces a discrete gradient field on A, with the twist that one of the vertices
is paired with the formal basepoint &, leading to reduced homology. This yields
Morse-theoretic proofs of the following [124]:

1. If #f is nonevasive, K collapses to a point.
2. If Ho(K) # 0, then K is evasive. 3
3. The number of evaders is > 2> . dim H;(K).

One clever application of this result is to independence tests for random variables.
Let X = {X;} be a collection of random variables and recall from Example 2.1 the
independence complex Jx C A” of X. Given an unknown subcollection ¢ C X of the
random variables, how many trials of the form “Is X; a member of " are required to
determine if the collection is statistically independent? According to the results cited
above, statistical independence is evasive if Jx is not acyclic: any nontrivial homology
classin I:I.(ﬂx) is an obstruction to evasiveness of statistical independence. How many
such evasive collections of random variables are there? It is at least twice the total
dimension of He(Jx). ®

7.9 LS category

Given a space, how complicated is it? One means of characterizing topological com-
plexity is co/homology. Another approach might involve critical points and other
Morse-theoretic constructs. There is a more primal measure of topological complexity
dating back to the work of Lusternik and Schnirelmann in the 1930s that goes under
the (suboptimal) name of category. This classical measure of complexity for spaces,
living in the shadow of Morse theory, informs various contemporary problems ranging
from statistics to motion-planning in robotics.

Given X, the LS category of X, LScat(X), is the minimal number #a of ele-
ments in an open cover {U,} of X by sets which are nullhomotopic in X, meaning that
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Uy is contractible in X, not that U, is necessarily a contractible (or even connected)
set. If a finite cover does not suffice, one sets LScat = co. The geometric category
of X, gcat(X), is the minimal such number #a where each U, is a contractible set.
Invariance of LScat and gcat under, respectively, homotopy type and homeomorphism
type, follows from standard results: see [74] for a comprehensive introduction.

Example 7.25 (LS category) ©
A sphere has LScat(S") = gcat(S”) = 2 for all n. A compact surface S, of genus
g > 0 has LScat(S,) = gcat(Sy) = 3. It is a nontrivial exercise to find a space on
which LScat and gcat differ. One simple example is the space X = S?V S obtained
by gluing together S? and S? at a single point: gcat(X) = 3, but LScat(X) =2. ®

The original motivation for investigating LS category was (in modern parlance)
degenerate Morse theory. The Morse inequalities (Corollary 7.5) give a lower bound on
the number of critical points of a smooth non-degenerate functional on a manifold M.
In the case where the functional is not necessarily non-degenerate or M not necessarily
a manifold, the LS category gives the correct lower bound.

Theorem 7.26 ([74]). Any C? function h: M — R on a compact manifold M must
have at least LScat(M) critical points.

For example, any smooth functional on the 2-torus
T? must have at least three critical points. For a Morse
function, the smallest number of critical points is

D dim He(TZR)=1+2+1=4.
k

Given a space X, it is typically difficult to compute the cate-
gory of X, either geometric or LS. For example, the Ganea
conjecture, open from 1971 until its disproval in 1998, was
the deceptively simple statement that LScat(X x S") =
LScat(X) + 1 for n > 0 and X a smooth closed manifold.
Given such subtleties, one adopts a strategy of estimation, which, fortunately, has
some reasonable steps.

Theorem 7.27 ([74]). The LS category of a path-connected CW complex X is
bounded by
cup(X) < LScat(X) — 1 < dim X.

The cup length, cup, is the smallest N such that there are N cohomology classes
a; € H*(X) with nonzero grading and nonzero cup product a; ~ --- ~— ay # 0.
Cup length may depend on the coefficient ring used; the bound above does not.
The theorem holds for more general (locally-contractible paracompact) spaces, at the
cost of using covering dimension in the upper bound. These elementary bounds are
the beginning of a rich theory of complexity for topological spaces. It complements
(classical) Morse theory in its insensitivity to nondegeneracy.
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7.10 Unimodal decomposition in statistics

LS category inspires definitions of topological complexity in several settings. Distri-
butions on R” form one excellent example relevant to statistics and mode-counting.
Let ® = D(R") denote the set of all compactly supported continuous functions
f: R" — [0,00) and consider the statistical problem of mode counting. Given
f € ®, assume it is the result of a sum of basis Gaussian distributions, or modes,
of unknown mean, variance, and height. How many modes are there? This is an
ill-defined question, but the minimal number of such modes is a reasonable measure
of the distribution’s complexity.

The problem becomes more topological in the coordinate-free setting where the
distribution f is not known in terms of a fixed coordinate system, as might occur if the
function values are sampled over a network of non-localized sensors. In this context,
the following coordinate-free notion of a mode is relevant: v € ® is unimodal if the
non-empty upper excursion sets u¢ = v 1([c, oc)) are contractible.

All Gaussians and other typical basis
modes are, as the name connotes, unimodal.
Following [26], define the unimodal cate-
gory of a distribution f € © to be the min-
imal number ucat of unimodal distributions
uy, fora =1,..., ucat such that f is a com-
bination of unimodals:

Fx) =Y ta(x).

a

Unimodal category is invariant under changes of coordinates, as follows. For u €
® unimodal and ¢: R" — R" a homeomorphism, (u o ¢)¢ = ¢(u°), which, being
the homeomorphic image of a contractible set, is contractible. Thus, ucat(f) is a
topological invariant of . In the same way that one lifts the Euler characteristic from
subsets of a space to distributions over subsets (integer or real valued) via the Euler
integral, one lifts gcat from subsets of a space to distributions thereon. The unimodal
category of the constant distribution 1 is, simply, gcat(U).

In general, the computation of unimodal
category is, as with LScat or gcat, difficult.
There is a simple algorithm [26] for the case
of a univariate distribution: a greedy sweep
of the distribution from left to right (or, via
topological invariance, right to left) suffices.
The correctness of this algorithm is based on
the following result:

Proposition 7.28 ([26]). For any f € ©(R), ucat(f) is equal to the maximal number
of closed intervals I, covering the support of f such that

/kadeJ <0
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for all k.

From Theorem 7.12, this criterion can be translated to critical value data. For

distributions over R”, an algorithmic solution is unknown and appears difficult.

Notes

1.

One of the lessons of discrete Morse theory, Conley index theory, and nearly all modern
variants of Morse theory is that it is not the function but the dynamics that matters.
The initial emphasis on the Morse Lemma in classical texts was, in this author’s opinion,
an unfortunate distraction.

. The subject of topological signal processing is embryonic. The Euler-Fourier transform

of Example 7.4, the book of Robinson [256] and a few papers [27, 79, 154, 257, 253]
are the starting points of deriving qualitative features of environments via low-fidelity
signals. Already, Morse theory seems to play a prominent role (but this may be the
author's bias).

The intrinsic volumes ux of §3.10 are likewise liftable to measures dux on CF(E™) and
then to [ dux] and [du«] on Def(E") via procedures analogous to those given here for
Ldx] and [dx]. This requires extensive use of currents [28].

The definitions involved in the Conley index require more care than is given in the brief
overview of §7.6, particularly in defining index pairs, as there are multiple formulations
in the literature, with subtle differences in applicability. In the definition of an attractor-
repeller pair, it is more proper to use the omega-limit set of the flow, see [167, 258].
The definition as given here is suitable for intuition only, and is but the beginning of a
more refined Morse decomposition of the flow.

Conley index has been defined for maps (discrete-time dynamics) as well as flows. An
index pair for f is a pair (B, E) of compact sets satisfying the three properties as listed
in Example 7.22, with the exception that the isolation property requires Inv(B—E; f) to
be in the interior of B—E; invariance and exit properties are the same. The homotopy
type of (B/E,{E}) is not unique. However, one can obtain a well-defined class by
looking at the action on this homotopy type up to a certain equivalence [128, 286].
The work of Vandervorst et al. [155, 156] has adapted Conley and Floer indices to
braids (see Example 1.8 and §8.3), using, in some cases, the flow of a parabolic PDE
on S?! to set up a stratified Morse theory on the spaces of braids. This leads to some
novel examples of forcing, where a single stationary solution to a PDE can force chaotic
dynamics, complete with an infinite collection of forced stationary braided solutions.
Floer theory is at the moment multifarious, bubbling into many branches of topology,
(symplectic, contact, and knot-theoretic). Though the perspective of this chapter is
dynamical, much of the current work in Floer theory is symplectic in nature. Among
topologists, Floer homology tends to be spoken of as a black box, unfortunately. It
remains to incarnate Floer theory into a computational toolset for more directly applied
problems. Several authors are progressing to this end [10, 90, 188, 261], but much
work remains.

Stronger results on discrete Morse theory than presented here are proved in, e.g.,
[197, 123]. In particular, homotopy-theoretic results about CW complexes are given.
The analogue of Forman's discrete Morse theory for differential forms and cohomology
is presented in [125]. Forman derived Morse inequalities for arbitrary (non-gradient)
discrete fields by counting periodic flowlines properly. A discrete-Morse-theoretic ana-
logue for the Conley index theory appears in the recent monograph of Nicaolescu [240]
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10.

11.

12.

(which is also an excellent source for Conley index theory).

Farley and Sabalka [117, 118] use discrete Morse theory to explicitly compute the
cohomology ring of the (discretized) configuration space UC"(T) of unlabeled points
on a tree (a cycle-free graph). Their insight was to find a well-suited gradient flow
which illuminates a small number of critical cells, the identification of which reveals
not merely the homology, but the full cohomology product structure.

Mischaikow and Nanda have recently implemented a discrete Morse theory algorithm
for computing homology and persistent homology quickly [230].

LS category is an abbreviation of Lusternik and Schnirelmann. The abbreviation is
convenient vis-a-vis parsimony and frequent variations in spelling past the first letters.
The tragic story of these two mathematicians present at the discovery of this invariant
is told in [74]. The author apologizes for not using the normalization convention of
[74]: the LS category there is one less than that here. The (excellent) motivations
for normalizing in this way do not enter the picture in the elementary applications
presented here.

One can generalize ucat to the unimodal p-category of f — the minimal number
ucat” of unimodal distributions us, @ = 1,.. ., ucat’ such that f is pointwise an £°
combination of the unimodals:

ol

f(x) = <Z(ua(x))”> or  f(x) = max {ux(x)} when p = cc.

(e}

The unimodal category ucat = ucat' adopts a simple additive model of interference be-
tween modes; ucat’ measures something akin to an energy of a distribution; and ucat®
is a natural ‘tropical’ measure for problems in which mode interference is negligible and
the strongest mode wins.



