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Abstract. Following the pioneering work of Schapira, we consider
topological Radon-type integral transforms on constructible Z-valued
functions using the Euler characteristic as a measure. Contributions
include: (1) application of the Schapira inversion formula to target
localization and classification problems in sensor networks; (2) extension
and application of the inversion formula to weighted Radon transforms;
and (3) pseudo-inversion formulae for inverting annuli (sets of Euler
measure zero).
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1. Introduction

This paper considers problems of extracting information about a collection
U = {U,} of subsets of R" conglomerated and compressed as a sum of
indicator functions h = ) _ 1y,. Given h : R® — N, what about the
decomposition can be recovered? We consider problems of enumeration
(determine the cardinality #a of U), localization (determine the locations
of the components U,), and identification (determine the shapes of the
components U,).

This is motivated by problems in sensor networks. Consider a large, dense
network of sensors which fill a domain. Each sensor (using whatever
sensing modality is applicable) detects the number of nearby targets, but
cannot determine location, distance, bearing, or even identity of the sensed
targets. In a continuum limit, a dense network returns such a function
h : D — N of the form h = ) 1y,, where each U, is the domain of a
target’s impact, or TARGET SUPPORT.

We address these problems via EULER CALCULUS — an ingenious
integration theory first explored by Schapira [22, 23] and Viro [26], both
of these being based on results in sheaf theory, particularly [18, 15]. There
are historical antecedents in the theory of valuations for polynomials, as
in the work of Blaschke [6], Groemer [12], and Hadwiger [14]. These
methods are currently of great interest in algebraic geometry, forming a
simple example of a MOTIVIC INTEGRATION, a topic of great impact in
algebraic geometry [10]. These methods have projected shadows in the
literature on combinatorics [8, 19, 21], probability [1, 2, 11], computational
geometry [20, 13], and integral geometry and geometric probability [17].

The Euler calculus is recalled in §2, with integral transforms outlined in
3. It is there noted that the act of anonymous sensing — of converting
targets into a counting function » : D — N — is an Euler-calculus integral
transform of Radon-type, where the kernel is a relation encoding sensor-
target visibility. In order to reconstruct target locations and geometries,
we consider the problem of inverting the integral transform. This, also,
is foreshadowed in the prescient paper of Schapira [23], which contains a
general inversion formula: see §4. The contributions of this paper are:

(i) generation of new examples of sensor-target systems to which the
Schapira inversion formula applies (§5);

(ii) aninversion formula for weighted Radon transforms (§6); and

(iii) new pseudo-inversion methods built specifically to detect sets of Euler
measure zero, such as annuli (§8).
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In this paper, we focus on the inversion aspects of the problem: we
do not here address the many issues surrounding implementation in
discrete sensor networks, with the attendant challenges in signal protocols,
communication complexity, and numerical implementation.

2. Euler calculus

The Euler calculus is an integral calculus based on Euler characteristic as a
scale-invariant measure.

2.1. Euler integration

Given a set A C R" and a decomposition of A into a finite number of CELLS
A =[], 04, where each k-cell o, is homeomorphic to R*, the (GEOMETRIC)
EULER CHARACTERISTIC of A is defined as

V(A) = (1)t 1)

[0}

This quantity is well-defined for finite cellular objects and is both indepen-
dent of the decomposition of A into cells and of the homeomorphism type of
A, since x(A) has a (co)homological formulation. The geometric Euler char-
acteristic is not a homotopy invariant, as, e.., it distinguishes x((0,1)) = —1
from x ([0, 1]) = 1. Nevertheless, it is ideally suited for an integration theory,
since

X(AU B) = x(A4) + x(B) — x(AN B), (2)

for subsets of R” on which all the above quantities make sense. One
focuses attention on “tame” or DEFINABLE subsets of R", for which finite
cell decompositions hold, and for which the operations of union and
intersection do not cause mischief. The axiomatization of these properties
leads to the notion of an O-MINIMAL STRUCTURE. For brevity, we fix an
o-minimal structure — a system of definable subsets and mappings — of
globally subanalytic sets and analytic mappings. Narrower classes, such as
semialgebraic or piecewise-linear, are possible, as are broader classes [25].

We briefly recall the theory of Euler integration, established as an
integration theory in the constructible setting in [18, 22, 23, 26] and
anticipated by a combinatorial version in [6, 12, 14, 21]. Having fixed a
suitable class of tame subsets and mappings on a space X C R", define the
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integral over characteristic functions in the obvious manner:

/X L dy = X(A).

Extend by linearity to the class of CONSTRUCTIBLE FUNCTIONS, CF(X),
all finite Z-linear combinations of functions 14 for A C X compact and
definable. It follows from Eqn. (2) that the integral [, -dy : CF(X) — Z
is well-defined and independent of how the integrand is partitioned into
characteristic functions.

2.2. Euler calculus

This explicit definition has an implicit formulation in terms of canonical
operations: the integral is a direct image functor on the sheaf of
constructible functions [22]. More concretely, the Euler integral possesses
the following properties. Given P : X — Y a tame mapping between tame
spaces, the PULLBACK is the induced mapping P* : CF(Y) — CF(X) given

by
(P*g)(z) = g(P(x)). 3)

Correspondingly, the PUSHFORWARD is the induced mapping F, : CF(X) —
CF(Y) given by

e = [ nix @

The functoriality of these operations is expressed in the PROJECTION
FORMULA,

P.(g(P*h)) = P.(g)h, (5)

and, respectively, the FUBINI THEOREM:

/thxz/yP*th. (6)

The Euler integral is thus properly named, as it forms a consistent calculus.
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3. Integral transforms

3.1. Convolution

On a vector space V/, a convolution operator with respect to Euler
characteristic is straightforward. Given f, g € CF(V'), one defines

(f % g)(z) = / f(Hg(x — 1) dy. )

Convolution behaves as expected. In particular,

/Vf*ngZ/vfdx/ngx- (8)

There is a close relationship between convolution and the MINKOWSKI SUM,
as observed in [12]: for A and B convex, 14 x 15 = 14, . See [26, 22, 5] for
more on the relationship to | dy. Convolution is a commutative, associative
operator and provides C'F (V') with the structure of an algebra [7].

3.2. Duality

There is an integral transform on C'F'(X) that is the analogue of Poincaré(-
Verdier) duality [24]. Define the DUAL of h € C'F(X) to be:

Dh(z) = lim [ hlpgeqdx, )
e—0t X
where B(x,¢) denotes an open ball of radius € about z. This limit is well-
defined thanks to the Conic Theorem in o-minimal geometry [25]. Duality
provides a de-convolution.

Lemma 3.1 ([23]). For any convex closed A C V with non-empty interior
14« D1_4 = 0o, where 0 is the indicator function of the origin and — A denotes
the reflection of A through the origin.

3.3. Radon transforms

The following general construction comes from [23], see also [7, 9]. Given a
locally closed definable set S C W x X, let Py and Py denote the projection
maps of W x X to their factors.

Definition 3.2. The RADON TRANSFORM is the map Rg : CF(W) — CF(X)
given by

Rsh = (Px)«((Pyh)1s). (10)
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Example 3.3. Duality on C'F(X) is the Radon transform associated to
the relation S C X x X where S is a sufficiently small open tubular
neighborhood of the diagonal A = {(z,z) : = € X}.

In the context of sensor networks, the Radon transform is entirely natural.
Let W denote the WORKSPACE, a topological space where the targets reside;
and let X denote the SENSOR SPACE, a topological space modeling the field
of sensors (for a finite sensor network, X is, say, a simplicial complex
determined by nodes and communication edges between nodes). The
SENSOR RELATION is & = {(w,x) : the sensor at = senses a target at w}.
This lies in the product space W x X as a relation whose ‘vertical” fibers
Sw = Px(Py'(w) N S) are TARGET SUPPORTS and whose “horizontal’ fibers
S, = Pw(Px'(z) N S) are SENSOR SUPPORTS.

Consider the sensor relation S C W x X, and a finite set of targets
T C W as defining an atomic function 17 € CF(WW). Observe that the
‘counting function” which the sensor field on X returns is precisely the
Radon transform Rsly. In this language, the target enumeration theorem
of [3] is implied by the following;:

Lemma 3.4. Assume that S C W x X has vertical fibers Py;' (w)NS with constant
Euler characteristic N. Then, Rs : CF(W) — CF(X) scales integration by a

factor of N:
/ ORSZN/ .
X W

4. Schapira’s inversion formula

The construction of the inverse Radon transform was proved by Schapira
[23]. This inversion formula uses a pair of relations S and S’ and assumes a
strict regularity of Euler characteristics of fibers.

Theorem 4.1 (Schapira). Assume that S C W x X and &' C X x W have
fibers S, and S, in X satisfying (1) x(S, N'S,,) = p for all w € W; and (2)
X(SwNS.,)) = Aforall w' # w € W. Then forall h € CF(W),

(R 0 Rs)h = (jt — \)h + A (/W h) 1w (1)

Recall that the sensor counting function & : X — Z is, in the context of this
paper, equal to Rsly, where T' C W is the set of targets. If the conditions
of Theorem 4.1 are met and A\ # p, then the inverse Radon transform
Rsh = Rg¢Rgly is equal to a multiple of 17 plus a multiple of 1. Thus,
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one can localize and identify the targets — determine the exact shape of T’
— by performing the inverse transform.

5. Examples of Radon inversion

It can be difficult to find concrete examples which satisty the conditions
of Theorem 4.1: the relevant sensor and target supports need to be, in a
sense, global, to ensure the independence with respect to w # w'. Schapira’s
original paper contained a class of examples based on Grassmannians, with
an eye towards reconstruction in imaging.

Example 5.1 (hyperplanes). Let W = R" and X = Gr, the Grassmannian of

hyperplanes in W with S correlating points in X to points in W contained in

the associated hyperplanes. The inverse kernel S’ is the reflection of S that

associates points and hyperplanes via membership. In this case, the fiber S,,
1

is a projective (n — 1)-space with p = x(RP"™") = (1 4 (—=1)""!), whereas

S, NS, is a projective (n — 2)-space with A = x(RP" %) = 1(1+ (-1)"2).

Subsequent papers using Schapira’s formula [7, 9] seem to mention only
this one example. We introduce some additional families of examples with
an eye towards applications to sensor networks.

Example 5.2 (rays). Let the targets 7" be a finite disjoint collection of points
or convex balls in W = D", the open unit disc in R". Assume that the
boundary OW is lined with sensors, each of which sweeps a ray over W
and counts, as a function of bearing, the number of targets intersected by the
beam. The sensor space X is homeomorphic to 7,5"*, the tangent bundle
of OW. (Note that the bearing of a ray at a point p € W lies in the open
hemisphere of the unit tangent bundle 7, W. This open hemisphere projects
to the open unit disc in 7,0WV.)

Any point in W is seen by any sensor in 91V along a unique bearing angle.
Thus, the sensor relation S has vertical fibers (target supports) which are
sections of 7,.S""! and hence spheres of Euler measure 1 + (—1)". The
horizontal fibers (sensor supports) are intervals of Euler characteristic 1.
Any two disjoint vertical fibers intersect along the subset of rays from oW
that pass through both points in IV: this is a discrete set of cardinality (hence
of Euler measure) 2. Theorem 4.1 indicates that the inverse Radon transform
of this system is well-defined only for n even. (This obstruction can be
visualized easily in the case n = 1, where it is clear that you cannot localize
the target along a bounded line segment given sensor readings from the
two boundary points!) For n even, one has full invertibility with A = 2 and

w=0.
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O—

Figure 1. A collection of convex targets in W = D? is surrounded by
beam counting sensors which sweep through the domain [left]. The sensor
space X is homeomorphic to an annulus. Target supports are circles with
pairwise intersection number 2 [right].

Example 5.3 (distance-based sensing). Non-self-dual examples of Radon
inversion can be generated easily with complementary supports. For
example, let X = W = R" with S,, a closed ball about w and S, the
closure of the complement in R”. Physically, this means that the sensor
relation detects proximity-within-range, and the inverse sensor relation
counts targets out-of-range. The inversion formula applies, because of
the singular nature of the “eclipse” that occurs when targets coalesce.
Specifically: (1) x(Sw» N S;,4,) = 1;and (2) x(Sw N S,,) = x(S"") # 0.

There are technicalities in applying the inversion formula in settings where
the supports are non-compact, since we have defined CF in terms of
compactly supported functions. This does not interfere with inversion
in this example: all non-compact integrands are still tame. In addition,
this example may be easily modified so that the supports (and the
corresponding complements) change smoothly from point-to-point within
the domain. So long as S, is, say, always compact and contractible and
varies slowly, so that x(S, N S,,,) = 1, the inversion formula will apply
(see §7 for more about varying supports).

Example 5.4 (discrete distance). Using discrete distances can lead to
inversions. Let W = R?" = X and define S, as the unit sphere about w:
sensors count targets at a fixed distance. The inverse kernel S’ has fibers
equal to concentric spheres about the basepoint of radius » = 1,2,3,....
Distinct fibers of S and &’ always intersect in a set homeomorphic either
to S5*"7% or, if the points line up at integer distances, S": either way,
X(Sw N S,2,) = 2. In the instance when the basepoints coincide, the
intersection is precisely the unit sphere S"~! with y = 0: full invertibility
follows.
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6. Weighted Radon inversion

It is possible to perform Radon inversion with weights, as indicated by the
following example.

Example 6.1 (weighted kernels). Consider the case of Example 5.4, modified
so that W = X = R**!. On odd-dimensional spaces, the spheres of
intersection have dimension 2n — 1 or 0, depending on position. Thus A is
not a constant, preventing invertibility. However, if we weight the inverse
kernel S’ so that concentric spheres of radius r = 1,2,3,... have weight
(—=1)"*1, then x(S, N S},.,,) = 0, independent of position. Full inversion is
therefore possible, once a weighted version of Schapira’s theorem is proved.

Using a weighted kernel is not explicitly covered by Schapira’s formula;
however, it is a simple matter to generalize from Radon transforms to
Fredholm transforms with arbitrary constructible kernels having an Euler
regularity in the fibers. Given a kernel K € CF(W x X), one defines the
weighted Radon transform as Rxh = (Px).((Pjh)K). Inversion requires
an inverse kernel K’ as follows:

Theorem 6.2. Fix K € CF(W x X)and K" € CF(X xW). If there exist constants
pand X such that [ K(w,z)K'(x,w')dx = (1t — X\)dy—w + X for all w,w' € W,
then for all h € CF(W),

(Rir o R )h = (1 — ANh + A (/ hdx) . (12)
w

Proof. For any w' € W,

Raco Rh)(w) = [ | [ w)itw,) ax| Kooty d

/ {/wa u/)czx] dx
:/WW AVA(w)B—r -+ Nh(w)] dx
—(u—)\)h(w')—i-)\/wtha

where the Fubini theorem is used in line two. O]

A more general proof uses the following COCYCLE CONDITION. Let X;, i =
1,...,3 be spaces. Supposing the constructible kernels K; € CF (H i X j>
and the projection maps F; : [[; X; — [[,; X; satisty the cocycle condition

K3 = (P3).(P/ Ky - Py K>). (13)
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Then, consider the diagram

X1 X X3 . (14)

X1XX2XX3

X1XX2 XQXX3

\/

Xo

It follows from commutativity and Eqn. (5) that Rk, o Rk, = Rk, (see [23]
for a version of this argument).

7. Inversion with slowly varying supports

Schapira’s inversion formula is by no means the end of the story with
regards to Euler integral transforms. The geometric rigidity implicit in all
the examples of Section 3.3 can in some cases be relaxed. We consider first
the simple situation in which the vertical fibers S,, are all contractible. In
this case, to obtain a generalization of deconvolution (Lemma 3.1), we need
that the slices of the support S satisfy the following assumptions :

Definition 7.1. The support S is CONTRACTIBLE if it is the closure of an
open set in V x V; and all vertical fibers S,, are contractible. It is called
SLOWLY VARYING if all intersections of target supports in V' are either
contractible or empty, and the intersection of the boundary of any target
support with any other target support is either empty or contractible.

The last condition seems to be most restrictive — even if the fibers are all
convex, it is not necessarily satisfied. This is an assumption on the rate of
change of the fibers as the basepoint varies.

Example 72. If S = {|z — w| < R(w)} (i.e., a target w € W is seen at a
distance R(w) around it), then the corresponding kernel is slowly varying if
R is 1-Lipshitz.

Lemma 3.1 can be generalized as follows.

Lemma 7.3. For a contractible, slowly varying support S, let K = 15 denote the
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kernel. Then:
/ K(z,w)DK (x,w")dx(z) = dp—uw- (15)
1%

The proof is a simple exercise for the reader. This gives a reconstruction
algorithm for the (constructible) signal h from readings with contractible
slowly varying sensing kernels.

8. Pseudo-inversion for annuli

In some cases, inversion is not possible, yet a pseudo-inverse can be
constructed. We illustrate a particular pseudo-inverse construction which
deals with annular supports in R". On even-dimensional spaces, annuli are
devilishly difficult to track, since they are sets of x-measure zero. Figure
2 shows a constructible function in R? composed of embedded annuli for
which Euler integration fails to enumerate the annuli — rightly so, as the
number is not well-defined.

Figure 2. The height function of a collection of an unknown number of
annuli. Three? [left] Seven? [right] Even with annuli defined by convex
discs, it is ambiguous, since an annulus has x = 0..

We give a pseudo-inverse for Euclidean combinations of a geometrically-
tixed annular set.

Lemma 8.1. Suppose J C O C V are compact, convex, and contain the ball B¢(0)
for some C > 0. Then for any integer k > 0, the function 1}y x 1** is equal to 1 on
the ball Barc(0).

Proof. On convex sets, convolution corresponds to Minkowski sum. O

Using techniques as in §7, convexity of O can be relaxed to star-convexity
with respect to J.
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Theorem 8.2. Let I C O C V be convex sets containing 0, such that I is open, O
is closed and compact, and the closure of I is contained in the interior of O. Let A
denote the annular region O \ I. Then the formal sum

oo

U =—-D1_;x* 2(10 «D1_;)* (16)
k=0

is a pseudo-inverse to 1 4.

Proof. For any N > 0, let ¥y denote the N partial sum of ¥:

N-1
Uy =-DLl_;*» (1o*Dl_)™
k=0
Note that 14 = 1o — 1;. Bylemma 3.1, 1; * D1_; = §,. Then

N-1

14xUy= —1,4+%D1_; % Z(lo * D1_p)*

N— N-1
Z 1o0+D1_; 2(10 « D1_p) kD)
k= k=0

(5 (10 * Dl_[)
Let J denote the closure of —I. Then D1_; = (—1)4™(")1;, s0

1A*‘IJN—6O ( )NdunV(l *1])

By lemma 8.1, the function (10 * 1;)*" is eventually equal to 1 on any fixed
compact set. This implies that the sum in ¥ is divergent; however, on any
fixed compact set, for N sufficiently large, we have 1, * Uy = 6y £ 1y.
In particular, if h € CF(V) is supported on the ball of radius R, then for
N > R/2C and |z| < R,

(h* 1% Uy)(z) = h(z) — (—1)Ndm®) (/V hdx> .

]

Example 8.3 (beacon counting). In the context of sensor networks, one may
have target supports consisting of annuli in the plane. For example, targets
may be beacons that can be seen only when the sensor is close-but-not-
too-close to the beacon; simple optical sensors perform anonymous beacon
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counts and return h € CF(R?) of the form 1,4 * 17, where A is the annular
support about each beacon, and 7' is the discrete set of beacon locations. The
convolution h * ¥ reveals the exact locations of the beacons, even though
Jg2 h = 0. This pseudo-inversion does not eliminate the ambiguity implied
in Figure 2, since the shape of the annulus A must be selected to construct
the pseudo-inverse.

9. Conclusions

The limited goals of this short paper include exposition of the Schapira
inversion formula and generation of new examples and applications.
Several open problems and avenues for exploration remain, including the
following;:

(i) To what extent can inversion be performed at the hardware level in a
sensor network? At the very least, inversion appears to require giving
to sensors the ability to emulate targets in order to construct an inverse
kernel.

(ii)) Can inverse transforms be computed numerically over a discrete
network?  There appears to be several interesting algorithmic
challenges to efficient computation.

(iii) To what extent can real-valued weighted kernels be employed? The
measures |[dx| and [dy]| of [4] seem appropriate. However, the
weighted inversion formula proved here relies on the Fubini Theorem,
and this does not hold over real-valued continuous integrands.
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