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Summary. Consider a network of nodes in the plane whose locations are unknown
but which establish communication links based on proximity. We solve the following
problems: given a node in the network, (1) determine if a given cycle surrounds
the node; and (2) find some cycle that surrounds the node. The only localization
capabilities assumed are unique IDs with binary proximity measure, and, in some
cases, cyclic orientation of neighbors. We give complete algorithms for finding and
verifying surrounding cycles when cyclic orientation data is available. We also pro-
vide an efficient but non-complete algorithm in the case where angular data is not
available.

1 Introduction

It is increasingly important to analyze networked collections of sensors, robots,
communication devices, or other local agents which coordinate to solve global
problems. A similar problem arose in mathematics a century ago — how to
extract global properties of a space built from local, combinatorially defined
pieces, or simplices. It is not a coincidence that the techniques developed to
solve such mathematical problems (algebraic topology) provide perspectives
and tools applicable to this latest incarnation of the problem.

This paper considers a network version of a simple classical problem in
algebraic/differential topology. Given a point x0 in the plane R2 and a simple
closed curve, determine whether or not the curve surrounds the point — that
is, whether the winding number of the curve about x0 is nonzero (Fig. 1[left]).
In the topological setting, this problem is very easily solved using simple
topological methods [9]. In a network-theoretic version of the problem, x0 is
a node in a network graph Γ whose vertices represent non-localized sensors
in the plane and whose edges encode proximity; and L is an abstract cycle in
this graph (Fig. 1[right]).
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Fig. 1. [left] Is the node inside the curve or outside? For a network without local-
ization [right], this can be challenging.

Several such problems about winding numbers have very natural motiva-
tions, and are especially challenging when the nodes are not localized. Con-
sider as an example, a networked collection of sensors (e.g., accelerometers or
acoustic sensors) which are distributed in a 2-d domain. Given a certain node
x0 which registers an important reading (an alarm), one problem relevant
to security applications is to determine whether the detection has occurred
within a region of particular importance whose perimeter is defined by a cycle
in the network. Similarly, it an alarm goes off at a node, one might wish to
find a small subcollection L of sensors whose sensing domains are guaranteed
to ‘surround’ the node x0 in the plane: thus, the embedding of the cycle L in
the plane is a curve which surround x0.

If one has sufficient data to localize nodes, then all such problems about
winding numbers are trivial to solve and computationally efficient solutions
exist in the computer graphics literature under various simplifying assump-
tions. The assumption of localized nodes is natural for any number of systems
involving stationary nodes placed intentionally, e.g., video cameras. However,
in the case of nodes which are distributed in an unpredictable and non-uniform
manner, or in which the nodes are mobile, then localized nodes are no longer
a priori natural. Robotics, in particular, presents a natural setting in which
mobile devices communicating via an ad hoc wireless network can provide
localization challenges.

1.1 Related Work

There is a substantial and growing literature on geometric properties of ad
hoc networks in which localization is weakened or not assumed at all. The
recent work on routing without localization initiated by [13] uses a heat-flow
to determine virtual coordinates for a non-localized network for applications
to weighted routing problems. In many cases [13, 7] a set of known landmarks
is used to estimate system geometry. All these methods are effective, but, with
a few exceptions [10] non-rigorous. Recent work of Fekete et al. [8] gives a dis-
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tributed algorithm for rigorous topology exploration, boundary detection, and
surrounding cycles: the algorithm is complete when the nodes are sufficiently
dense.

There is a large body of work on coarse distance estimation in ad hoc
networks augmented with angular data in the form of the angle of separation
between a node’s neighbors. This arises in the the paper [6], which uses a
network graph along with exact angular measures of neighbors to detect holes
in the physical network and perform routing. The work detailed in [12] gives
criteria for ensuring coverage in a sensor network using bounds on separation
angles among neighbors.

Very recently, algebraic topology has been recognized as a novel tool for
problems in sensor and ad hoc networks. The papers [3, 4, 5] present algebraic
topological criteria for coverage in sensor networks. Recent unpublished re-
sults of Y. Baryshnikov relating to hole-detection in networks with randomly
distributed nodes uses Betti numbers to perform boundary detection.

As a problem in computational geometry, networks with no localization
and proximity measurements arise in the literature on unit disc graphs: ab-
stract graphs whose vertices correspond to a set of nodes in the plane and
whose edges are determined by nodes within unit distance. Clearly, not all
graphs are realizable as a unit disc graph. Recognizing whether a graph is
a realizable unit disc graph is NP-complete [1]. It follows that finding some
embedding of an abstract unit disc graph into the plane for which the graph
is the unit disc proximity network is also NP hard. Even finding an ‘approxi-
mate’ embedding which realizes a unit disc graph up to local errors is NP hard
[11]. But, using angular data, [2] gives an algorithm for finding a realization
of a spanner of the unit disc graph, which enables one to compute virtual
coordinates and approximate some locations.

1.2 Innovations

The perspective that guides our techniques is that of topology, more specifi-
cally, winding numbers [9]. Recall that the winding number of a planar cycle
L about a point x ∈ R2 is, roughly speaking, the number of times the cycle
wraps around the point. It can be computed in a number of ways: analyti-
cally, via integrating a tangent vector about L; topologically, via computing
the homology class of L in the complement of x0 ∈ R2; or combinatorially,
via computing the intersection number of L with a ray based at x in R2.
We develop an approach to computing winding numbers which is adapted to
networks and differs from all three above.

In §3, we solve a separation problem: to compute whether a given node
x0 is surrounded by the image of a given cycle L. In §4, we solve an isola-
tion problem of determining whether a given node x0 is surrounded by some
cycle L and constructing an explicit cycle. The algorithms we present can be
implemented in systems as a distributed local computation, in which nodes
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are assumed to have a limited amount of memory and simple processing abil-
ities. We present results of simulations in §7. In §5 we deal with managing
uncertainty in cyclic orientation data, and in §6 we present an algorithm for
systems which possess no cyclic orientation data whatsoever. In both these
cases, as in [8], non-complete algorithms exist which provide certificates.

2 Problem Formulation

2.1 Assumptions

Throughout this paper, we consider networks which satisfy some or all of the
following assumptions.

P (Planar) Nodes with unique labels lie in the Euclidean plane R2.
N (Network) Nodes form the vertices of a connected unit disc network graph

Γ of sufficiently large diameter.
O (Ordering type) Each node can determine the clockwise cyclic ordering of

its neighbors in the plane.

There are no coordinates, no node localization, and no assumptions about
node density or distribution other than sufficient extent. Assumptions P and
N will be in force for the remainder of this paper. Assumption O will some-
times not be imposed.

Assumption P and N imply that nodes can broadcast their unique IDs
and these can be detected by any neighboring nodes within unit distance.
This creates a network graph whose vertices correspond to the labeled nodes
and whose edges correspond to communication links. There is no metric in-
formation encoded in an edge beyond the coarse datum that the distance
between the nodes in the plane is no more than one.

Assumption O means that each node can perform a clockwise “sweep” of
its neighborhood and determine the order in which neighbors appear. More
specifically, there is a cyclic total ordering C on the neighbors of a node x0

which defines the counterclockwise (CCW) order in which they appear. There
is no “compass” and thus ordering is known only up to a cyclic permutation.
There is also no angular data assigned to the ordering: an oriented pair of
neighbors may form an arbitrary (nonzero) angle with x0 without changing
the angular ordering. This type of coarse angular data is not too uncom-
mon in robotics contexts. Cyclic orientation data is natural in, e.g., primitive
landmark vision systems, radar networks, and robots with gap sensors.

Definition: Let x0 be a node and {xi}3
1 be a triple of distinct neighbors

of x0. Define the index

Ix0(x1;x2, x3) :=
{

+1 : x1 C x2 C x3 C x1

−1 : x1 B x2 B x3 B x1
(1)
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Geometric interpretation: The pair of rays in R2 from x0 passing through
x2 and x3 join at x0 to form an bent line that divides the plane. Orient this
bent line using the ordering (x2 → x0 → x3). The index Ix0(x1;x2, x3) = −1
iff x1 lies to the left of this line, and Ix0(x1;x2, x3) = +1 iff x1 lies to the
right of it.

The limit in which two neighbors have angle zero with x0 leads naturally
to the problem of uncertainty in angular ordering. When the angle between
neighbors is so small as to interfere with the orientation type, the data is
weaker and the problems more subtle. For the present, we assume that nodes
are in a ‘general position’ so as to possess a positive lower bound on angles.
This is, of course, completely unrealistic in practice. Later, in §6 we consider
this more carefully and allow for nodes to be unable to distinguish the angular
ordering of certain neighbors. For most (but not all) networks, there is a
surprisingly large tolerance for angular ordering blindness.

The input data for the problem is the network graph Γ . When Assumption
O is in place, the graph has vertices augmented with the cyclic ordering type
of its immediate neighbors.

2.2 Problem statements

Definition: The projection map Γ 7→ Γ ⊂ R2 maps vertices of Γ to the
position of the corresponding node in the Euclidean plane and edges of Γ to
the line segment connecting the nodes. These line segments all have length
bounded above by one. We solve two problems concerning winding numbers
of cycles:

Separation: Given a cycle L in the network graph Γ and a node
x0 ∈ V (Γ ) which is disjoint from the nodes of L, determine whether
the projected cycle L surrounds x0.

The image of the cycle L in the plane is a closed piecewise-linear curve.
If the curve is simple (that is, non-self-intersecting), then the Jordan Curve
Theorem implies that the cycle separates the plane into two connected com-
ponents, only one of which is bounded. We will restrict attention to simple
cycles, using network criteria to satisfy this condition (Corollary 1).

Our second problem is a constructive version of the previous.

Isolation: Given a node x0 ∈ X , find a cycle L in the network graph
Γ whose projection L surrounds x0 or determine that no such cycle
exists.

For reasons of robustness with respect to error, we desire a cycle L which
is not too close to x0. An interesting generalization of this problem relevant
to security applications is to construct a sequence of concentric cycles which
isolate the target node x0 and form ‘moats’ in R2 to ring x0.
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3 Separation

3.1 Restrictions

We consider the separation problem for a network satisfying Assumptions P,
N, and O. Namely, given a node x0 and an oriented cycle L = (xi)N

1 of
cyclically connected nodes distinct from x0, determine whether the projected
cycle L surrounds the node x0. Let d denote the ”hop” distance function on
Γ . We assume that d(x0,L) > 1, meaning that the shortest path from x0 to
a vertex of L in Γ requires more than one ”hop” or edge.

Both Assumption O and the bound on d(x0,L) are necessary. A critical
example is illustrated in Fig. 2, which gives two labeled graphs in R2 with
isomorphic network graphs and identical cyclic orientation data. The target
node x0 lies on opposite sides of the cycles illustrated. It is much easier to
construct examples of unit disc graphs which can be realized in ways which
change winding numbers of cycles.

Fig. 2. Two examples of embedded network graphs with identical network and
cyclic orientation data.

The problem makes the most sense when the projected cycle L is a simple
closed curve in R2. The easiest way to guarantee such a cycle is to choose a
cycle which is ‘minimal’ with respect to communication between nodes.

Definition: For any subgraph ∆ ⊂ Γ , let 〈∆〉 denote the maximal sub-
graph of Γ spanned by the vertices of ∆. Say that ∆ is chord-free if 〈∆〉 = ∆.
The simplest criterion for a cycle L to have a simple projection to the plane
is that 〈L〉 = L. The following lemma is both trivial and well-known [8, 3].

Lemma 1. If the projections of two edges of a unit disc graph Γ intersect in
R2, then these span a subgraph of Γ containing a cycle of three edges.

Corollary 1. Any path (or cycle) P in a unit disc graph Γ satisfying 〈P〉 = P
has image P a non-intersecting (closed) curve in R2.

3.2 Algorithm

In differential topology, the way one decides whether a loop in the plane en-
closes a point is to choose a path from the point which terminates sufficiently
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far from the starting point as to be definitely outside the loop. For a ‘generic’
choice of such a path, the path and the loop intersect transversally (i.e., with-
out tangencies), and the number of intersection points counted mod 2 is zero
if and only if the loop does not surround the point [9].

The obvious generalization of this strategy is to choose any path P in Γ
from x0 to a terminal point which is sufficiently far away from L to guarantee
that it is outside the cycle in R2, and then court intersections. However, this
counting is not always easy or even possible. The inspiration for our method
is nearly opposite to that coming from differential topology. Instead of trying
to force intersections to be a discrete set of points, one thinks of manipulating
the path so as to maximize the amount of intersection with the cycle with the
result of having a single connected component in the intersection. Then, one
could compute whether the endpoints of P lie on the same side of L. This last
step is what we do, using the orientation data in a crucial manner.

Fix an orientation for the cycle L in Γ and order the nodes (`i) of L
cyclically. Choose a node x∞ sufficiently far from L in Γ . Generate chord-free
paths P0 and P∞ from x0 and x∞ respectively to points on L. The projection
of these paths to R2 are not self-intersecting, and can only intersect L at most
once at the last segment of the path.

The crucial step is to determine whether the paths P0 and P∞ lie on the
same side of L or different sides. In the simplest configuration, the final point
on a path is connected to L in Γ by only one edge, as in Fig. 3[left]. The
angular orientation data then suffices to determine on which side of L the
path lies. However, the situation may be more complicated, as in Fig. 3[right].
A more subtle manipulation of orientation data is required in this case. Details
are presented in Algorithm IndexCheck.

Fig. 3. Determining whether an oriented path with terminal node xn approaches
the projected oriented cycle L from the left or from the right can be simple [left]
or complicated [right] depending on the number of communication links between xn

and L.
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Algorithm 1 I = IndexVertexLoop(x,L, Γ )
Require: Γ = (V, E) is a graph satisfying P, N, and O
Require: x ∈ V (Γ ), L = (`i) is an oriented cycle of Γ , 〈L〉 = L, and d(x,L) > 1.
1: choose a path P = (xi)

n
0 in G with x0 = x, 〈P〉 = P, and d(xi,L) = 1 iff i = n.

2: if at xn, for some j, either `j C xn−1 C `j+1 or `j+1 C xn−1 C `j and no other `i

separates xn−1 from these neighbors in C then
3: return I ⇐ I`j (`j−1; `j+1, xn) · I`j+1(`j+2; xn, `j) · I`xn

(xn−1; `j , `j+1)
4: else
5: if for some j, d(xn, `j) = d(xn, `j+1) = 1 then
6: return I ⇐ I`j (`j−1; `j+1, xn) · I`j+1(`j+2; xn, `j) · I`xn

(xn−1; `j , `j+1)
7: else
8: choose any `j with d(`j , xn) = 1.
9: return I ⇐ I`j (xn; `j−1, `j+1)

10: end if
11: end if

Algorithm 2 I = IndexCheck(x0,L, Γ )
Require: Γ = (V, E) is a graph satisfying P, N, and O
Require: x0 ∈ V (Γ ), L is an oriented cycle of Γ , 〈L〉 = L, and d(x0,L) > 1
1: choose x∞ ∈ V (Γ ) with d(x∞,L) > 2|L|2/π2

2: return I ⇐ IndexVertexLoop(x0,L, Γ ) − IndexVertexLoop(x∞,L, Γ )

3.3 Proofs

Lemma 2. If L is a cycle in Γ with 〈L〉 = L and x ∈ V (Γ ) with d(x,L) >

2|L|2/π2, then x is not in the region of R2 bounded by L.

Proof. The Isoperimetric Inequality says that the area A enclosed by the
simple closed curve L in R2 is bounded above by 1/(4π) times the square
of the perimeter of L. This perimeter is bounded above by |L|. Let P be a
chord-free path. By placing a ball of radius 1

2 about every other vertex of P,
one obtains disjoint balls of total area 1

8π|P|. Such a path P from x to L of
length at least 2|L|2/π2 violates the area constraint: the endpoint is thus not
surrounded by L.

Better constants can be estimated with a longer proof; however, the lower
bound must be quadratic in |L|, since a chord-free path in the interior of L
can fill up the area bound by L, which is quadratic in the perimeter. The
following lemmas are critical for turning local cyclic orientation data into
global cyclic orientation data. These can be proved by direct enumeration,
but an approach which is both more elegant and more easily generalized is to
use simple algebraic topology (homology theory).

Lemma 3. Consider a graph ∆ having one oriented cycle (x1, x2, x3), with
each inner node xi connected to an outer node yi. If this graph has planar
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image ∆ as in Fig. 4, then the cyclic orientation of the outer nodes (yi)31 with
respect to any point in their convex hull is equal to

3∏
i=1

Ixi
(yi;xi−1, xi+1) (2)

under the convention −1=CW and +1=CCW, and where the subscript indices
are cyclic (computed mod 3).

Fig. 4. The cyclic orientation of the outer nodes can be derived from the indices of
the inner nodes in the above cases by computing the product of indices.

Lemma 4. Consider a graph Y having one central node x0 attached to an
ordered triple of non-colinear points (yi)31. Then, for any i, Ix0(yi; yi−1, yi+1)
is equal to the cyclic orientation of the ordered triple (yj)31 in R2 about x0,
under the convention −1=CW and +1=CCW.

Theorem 1. In any network satisfying Assumptions P, N, and O, let L be
a cycle satisfying 〈L〉 = L and x0 a node with d(x0,L) > 1. Algorithm In-

dexCheck returns I = 0 iff the winding number of L about the node x0 ∈ R2

vanishes.

Proof. Corollary 1 implies that L is embedded in R2. This simple closed curve
separates the plane in two connected components, thanks to the Jordan Curve
Theorem. Fixing an orientation on L induces an (unknown) orientation on L.

Choose a chord-free path P0 = {xi}n
0 from x0 to xn with d(xi,L) = 1 iff

i = n. Via Corollary 1, the image of this path, P0, is simple and the restriction
of this path to the subpath between nodes x0 and xn−1 lies entirely on one
side of L in R2. The edge from xn−1 to xn may or may not cross L.

If there do not exist consecutive cycle nodes `j , `j+1 incident to xn, then
choose any `j incident to xn. In this case, the ‘Y’ graph connecting `j to xn,
`j−1, and `j+1 has no additional connections between outer nodes, and the
index I`j (xn; `j−1, `j+1) shows on which side of L the node xn (hence x0) lies.

If, however, consecutive cycle neighbors exist, one argues that the sub-
graph ∆ consisting of the cycle (xn, `j , `j+1) and the connections of these
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inner nodes to respective outer nodes (xn−1, `j−1, `j+2) has image ∆ as in
Fig. 4. A more complicated embedding cannot appear thanks to repeated ap-
plication of Lemma 1. Thanks to Lemma 3, the product of the three indices
I`j

(`j−1; `j+1, xn), I`j+1(`j+2;xn, `j), and I`xn
(xn−1; `j , `j+1) gives the cyclic

orientation of the ordered triple (xn−1, `j+2, `j−1) of outer nodes. Via Lemma
4, this tells whether xn−1 (and thus x0) lies to the ‘left’ or to the ‘right’ of the
embedded segment (`i)

j+2
j−1 of L. However, it is possible that L doubles back

and crosses the segment between xn−1 and xn, as in Fig. 3[right]. In this case,
one needs to be sure to use the subgraph ∆ generated by consecutive nodes
(`i)

j+2
j−1 where, from the vantage of xn, `j C xn−1 C `j+1 or `j+1 C xn−1 C `j ,

and no other `i separates.
There is an ambiguity in I resulting from the fact that we do not know

if the orientation on L is clockwise or counterclockwise; thus we do not know
which sign for I (i.e., the ‘left’ or the ‘right’ side of L) corresponds to the
bounded component of R2 − L. To determine this, choose a node x∞ with
d(x∞,L) > 2|L|2/π2. From Lemma 2, x∞ lies within the unbounded com-
ponent of R2 − L. That one can choose such a node and a chord-free path
P∞ from L to x∞ is possible thanks to Assumption N. Computing the index
of x∞ with respect to L and comparing it to that of x0 as in IndexCheck
determines whether x0 and x∞ are on the same or different sides of L.

4 Isolation

We consider the isolation problem for a network satisfying Assumptions P,
N, and O. Given a node x0, determine whether there exists a cycle L which
surrounds x0 and construct one if it exists. We restrict the location of the
cycle we search for by specifying a lower Rα and upper Rω bound on the hop
distance to x0. We search for surrounding cycles within the subgraph whose
vertices satisfy both bounds.

4.1 Algorithm

The first algorithm we give to solve this problem is similar is spirit to the
BoundHole algorithm of [6], in that it relies on angular ordering to perform a
depth-first search with constraints. The algorithm of [6] was intended to find
holes in a network at a known boundary (or ‘stuck’) point assuming known
exact pairwise angles between neighbors.

To solve the Isolation problem, we choose a chord-free path P in Γ from
x0 to some terminal point x∞ which is more than Rω hops from x0. Truncate
the graph Γ to Γ ′, the subgraph generated by nodes within Rα and Rω hops
of x0. The path P restricts to a path P ′ = {pi}N

1 in Γ ′.
Beginning with the first node p1 of P ′, construct a path L by performing a

depth-first search of Γ ′ with the following conditions (Algorithm SweepCycle).
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1. The depth-first search augments the path L by choosing the next available
node of Γ ′ which is clockwise (CW) from the prior edge of L.

2. The search backtracks whenever there is no available CW node, or when
the path L has endpoint in the 1-hop neighborhood of P approaching
from the ‘right’ side.

3. If the search backtracks all the way to the starting point of L, this starting
point is changed to be the next point on P.

4. If the path L has endpoint in the 1-hop neighborhood of P on the ‘left’
side, then L is completed to a cycle in Γ ′ by connecting the ends along P.

The justification for this algorithm is that any cycle in Γ ′ whose image
in R2 has winding number ±1 about x0 must intersect P ′ (since the path
is chord-free and thus embedded). Thus, constructing any path which ap-
proaches P ′ from each side once is automatically a path which encircles x0.

Algorithm 3 L = SweepCycle(x0, Rα, Rω, Γ )
Require: Γ satisfies P, N, and O
Require: Rω > Rα > 1
1: let P be a chord-free path from x0 to x∞ with d(x0, x∞) > Rω

2: truncate P → P ′ = (pi), Γ → Γ ′ with distance to x0 between Rα and Rω

3: split 1-hop neighborhood of P ′ into two sides P ′+, P ′− using orientation data
4: while (`j) has endpoint not in P ′− do
5: while (`j) does not have endpoint in P ′+ and interior point not in P ′+ do
6: augment (`j) via CW depth-first search of Γ ′ − (P ′ ∪ P ′+)
7: end while
8: `1 ⇐ pi, the next available node of P ′
9: end while

10: return L ⇐ ∅ if search is exhausted, else return L = (`j) union segment of P ′
connecting ends of (`j)

4.2 Proofs

Theorem 2. For any system satisfying Assumptions P, N, and O, Algorithm
SweepCycle returns a cycle L in Γ ′ whose image L encloses x0 in R2 if and
only if such a cycle exists.

Proof. The image of the truncated graph Γ ′ lies in a topological annulus
A ⊂ R2, whose boundary components are connected by the embedded path
P. Any simple closed curve in A which consists of a segment of P and a
segment in A − P which approaches P from both sides surrounds x0 in R2

(this is proved using, e.g., homology theory). Thus, if Algorithm SweepCycle
returns a non-empty cycle L, then its image L surrounds x0.

The Jordan Curve Theorem applied to A implies that any simple closed
curve in A which surrounds x0 must intersect P. If L is any cycle of Γ ′
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whose image surrounds x0, then there are at least two nodes of L within the
1-hop neighborhood of P ′, thanks to Lemma 1. Choose two such nodes on
opposite sides of P ′ and such that no further nodes of L are within the 1-hop
neighborhood of P ′ In a search of Γ ′, Algorithm SweepCycle will eventually
hit one of these two nodes. The depth first search the algorithm performs
cannot exhaust Γ ′ without sweeping through L.

5 Angles and uncertainty

As a step toward removing angular orientation data, we modify Assumption
O to account for uncertainty in angular orientation types.

U (Ordering type with Uncertainty) Each node can determine the clockwise
cyclic ordering of any neighbors separated by angles of at least α0.

That is, any triple of neighbors can be cyclically ordered if none of the
three pairwise angles is below the threshold α0. We do not assume that the
cyclic ordering measurement always fails whenever an angle is below α0, but
rather that the reading either returns a true angular reading or an empty (i.e.,
uncertain) reading.

The surprising fact is that for α0 as large as π/3, it is often possible to
rigorously determine winding numbers. Some choices of Γ and L present too
much uncertainty, but criteria for knowing when you can compute winding
numbers are possible. We outline this procedure in the setting of the Separa-
tion Problem as an example.

Consider a network satisfying Assumptions P, N, and U, with α0. Let L
be a cycle satisfying 〈L〉 = L and x0 a node with d(x0,L) > 1. In the simplest
case where xn is not within 1-hop of a consecutive pair of cycle nodes, choose
any isolated incident cycle node `j of L. That L is chord-free implies all three
angles at `i to xn, `i−1, and `i+1 are greater than π/3 and thus α0. Therefore
I is well-defined here and yields winding information.

In the more complicated case where there is a subgraph of the form in
Fig. 4, then some of the indices at the three inner nodes may be undefined.
Since the angles of a triangle sum to π, at least one angle in the interior
triangle is no less that π/3. We consider cases based on how many of these
three interior nodes admit a well-defined cyclic orientation of neighbors.

Case 1: If all three indices exist, we are obviously done.
Case 2: If only one index exists, we claim that this single index is equal

to the full index of P with respect to L. This breaks into two cases, according
to Fig. 4. In the case on the left, each vertex has the same index, and choosing
any one yields the same as their product. In the case on the right, if only one
index exists, a brief argument involving plane geometry shows that the angle
out of which the bisector of the inner triangle emanates is the largest of the
three angles; thus, if only one index is well-defined, it is this one. This node
always has index equal to the product of the three inner node indices.
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Case 3: In the case where only two indices exist, they either have the
same sign or different sign. If they have the same sign, then, using the ‘largest
angle’ result of Case 2, we know that ∆ has no self-intersections in R2. Thus,
the index of this path with respect to L is equal to the index of either of the
two well-defined nodes.

Case 4: If two indices only are defined and the two computed indices
differ, then we are certainly in the case where ∆ is not embedded in the plane.
However, if it is not possible to compute the third index and it is not possible
to determine which of the two nodes has the larger subtended angle, then
there is no information by which the index of this path can be determined.
One may attempt to modify either P or L locally to remove the ambiguity,
but there is no guarantee that this is possible for every Γ .

6 Isolation without cyclic orientation data

For systems which do not satisfy Assumption O, no solutions are possible
which apply to arbitrary networks: it is easy to generate examples of very
sparse graphs which can be embedded in the plane as a unit disc graph in mul-
tiple ways. However, there are non-complete algorithms which, upon success-
ful termination, return rigorous winding number information. The ”flower”
graphs of [8] provide one example of rigorous containment certificate. We
briefly present a different approach which uses a modification of Assumption
P as follows.

P’ There is a simply-connected domain D ⊂ R2 which partitions the nodes
by membership in D and yields an ‘interior’ graph Γ o of all nodes in D
which satisfies Γ o ⊂ D.

It is not necessary to know the precise geometry of D (cf. [3]). Algorithm
TriPath performs the following operations. From x0, choose three chord-free
paths {Pi}3

1 from x0 to the ‘exterior’ graph Γ −Γ o such that the 1-hop neigh-
borhood of each Pi is disjoint from Pi−1 ∪Pi+1 outside an Rα-hop neighbor-
hood of x0. (The existence of such paths is of course not guaranteed for all
networks.) The algorithm searches within Γ o for a sequence of arcs connect-
ing Pi to Pi+1 avoiding Pi−1 for each i. Chaining these arcs together yields a
cycle in Γ o: see Fig. 6[left].

A proof analogous to that of Theorem 2 implies that this cycle surrounds
x0 in R2. Assumption P’ implies that there is a topological annulus A ⊂ R2

whose outer boundary is ∂D and whose inner boundary is a simple closed curve
surrounding x0. The three paths {Pi} intersect A in three pairwise-disjoint
arcs, each connecting the inner boundary of A to the outer boundary of A. A
simple homological argument reveals that any loop in A whose intersections
with the Pi are cyclically ordered must surround the inner hole of A and thus
surround x0.
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We repeat that should Algorithm TriPath fail to construct a surrounding
cycle, it does not indicate the non-existence of such a cycle.

Algorithm 4 L = TriPath(x0, Rα, Γ, Γ o)
Require: Γ satisfies P’ and N
Require: x0 ∈ Γ o

1: search for chord-free paths {Pi}3
1 in Γ from x0 to Γ − Γ o with d(Pi,Pj 6=i) > 1

outside an Rα neighborhood of x0.
2: search for paths {Li}3

1 in Γ o from Pi to Pi+1 with d(Li,Pi−1) > 1.
3: if either search fails then
4: L ⇐ ∅
5: else
6: L ⇐cycle in ∪iPi ∪i Li

7: end if
8: return L

7 Simulations

Algorithm IndexCheck is easily implemented, However, as it produces no out-
put except for a winding number that is easily seen when the graph is illus-
trated, we waste no space illustrating test runs of this algorithm.

Algorithm SweepCycle has been implemented [in C] for randomly generated
sets of nodes with node density, input node, and the radius Rα as user-defined
parameters. Examples of networks which are relatively dense and sparse are
illustrated in Fig. 5. This algorithm inherits the time- and space-complexity
of a depth-first search on the truncated graph.

Algorithm Tripath has likewise been implemented [in Java] with randomly
generated sets of nodes. Fig. 6[left] displays a typical output, with the three
paths (Pi)31 in bold and the cycle L marked. Depending on the exact form
of Γ , it may be impossible to find three such paths (Pi)31 which are properly
separated. Fig. 6[right] illustrates such an example, and reinforces the result
that this algorithm does not always find a surrounding cycle. This algorithm
is distributed and local: both the operation of finding (Pi) and the connecting
segments between them are distributed in this software.

8 Concluding remarks

The challenge of localization in an unknown environment is significant across
many areas of robotics and sensor networks, and has generated an impressive
array of techniques and perspectives. This paper demonstrates that localiza-
tion is not a prerequisite to solving problems about the geometry and topology
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Fig. 5. Results of Algorithm SweepCycle on a dense [left] and sparse [right] randomly
generated network. In both cases, the algorithm successfully produces a chord-free
surrounding cycle outside of the 2-hop neighborhood of the encircled node.

of cycles in a planar network. For many systems, the unit disc graph possesses
sufficient information to find separating cycles about a node. We also demon-
strate that, in addition to the unit disc graph, an angular ordering of neighbors
suffices to solve winding number problems for all possible networks. Absolute
angles are not needed, and large uncertainty in the angular ordering data
may be tolerated. As with many problems in manipulation, localization, map-
ping, etc., the amount of sensory information needed to solve the problem is
sometimes far below what one would expect.
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