Reminder: The first exam is on Monday, October 5 in class. One two-sided handwritten 5 "x 7 " index card is permitted during the exam, but no other aids.

Read Apostol, Chapter 4, sections 3-5, 10, 13, 14, 16, 17. Optional: In Chapter 4 also read sections $1,2,7,8,11,18,20$.

1. From Apostol, section 4.6, pages 167-168, do problems 12 and 38; and in section 4.9, page 173 , do problems $1,8,11$.
2. From Apostol, section 4.12, page 179-180, do problems 4 and 16 ; and in section 4.15, page 186, do problems 1 and 4.
3. Let $f(x)=1$ if the integer $[x]$ is even, and let $f(x)=-1$ if $[x]$ is odd. Let $F(x)=$ $\int_{0}^{x} f$ and let $\Phi(x)=\int_{0}^{x} F$. Graph the functions f, F, Φ. Are these functions integrable? continuous? differentiable?
4. a) Determine whether the function $f(x)=x^{3}-x+1$ has a maximum value and whether it has a minimum value on the closed interval $[-1,2]$. If such values exist, find them and find for which values of x they are achieved. Relate your answer to the Extreme Value Theorem.
b) Redo part (a) on the open interval $(-1,2)$.
5. Which of the following functions are differentiable at $x=0$? For each one that is, find $f^{\prime}(0)$, and determine whether the function f^{\prime} is continuous at $x=0$.
a) $f(x)=\sin (1 / x)$ for $x \neq 0, f(0)=0$.
b) $f(x)=x \sin (1 / x)$ for $x \neq 0, f(0)=0$.
c) $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0, f(0)=0$.
d) $f(x)=x^{3} \sin (1 / x)$ for $x \neq 0, f(0)=0$.
6. Let f be the function given in problem 6 of Problem Set 2 . For which real numbers a in $[0,1]$ is the function f differentiable at $x=a$? Prove your assertion.
