Read Apostol, Chapter 4, section 22; and Chapter 12, sections 1-10.

1. From Apostol, 4.23, page 201, do problems 1, 2, 10. In \#1 and 2, also find all critical points (i.e. points where $f_{x}=f_{y}=0$ or where either f_{x} or f_{y} is undefined). In $\# 10$, such a function is called harmonic.
2. From Apostol, 12.4, pages 450-451, do problems 1(a,c,e), 2, 5, 12.
3. From Apostol, 12.8, pages 456-457: do problems 1(b,e), 4, 5, 13(a,b), 19.
4. From Apostol, 12.11, pages 460-462: do problems 1, 5, 12, 20. (In $\# 20$, we say that n-space together with this distance function is a metric space.)
5. For any complex number $z=x+i y$ with $x, y \in \mathbb{R}$, the real part of z is x and it is denoted by $\operatorname{Re}(z)$. For any positive integer n, define $f_{n}(x, y)=\operatorname{Re}\left((x+i y)^{n}\right)$, for all real numbers x, y. Are the functions f_{1}, f_{2}, f_{3} harmonic? (See problem 1 above.) Any conjectures?

6 . Let V be the set of continuous functions on the closed interval $[0,1]$. We may add two functions by defining $(f+g)(x)$ to be $f(x)+g(x)$, and we may multiply a function by a real number by defining $(c f)(x)=c(f(x))$.
a) Show that the set V, under these two operations, satisfies all the vector laws (given in and just after Theorem 12.1, page 447 of Apostol, and also listed as axioms 1-10 in Section 15.2, pages 551-552).
b) Show that if we define $f \cdot g=\int_{0}^{1} f(x) g(x) d x \in \mathbb{R}$, then the laws of dot product (listed in Theorem 12.2 of Apostol, page 451) are also satisfied.

