Read Apostol, Chapter 13, sections 18-23, and Chapter 14, sections 1-5.

1. From Apostol, 13.14, pages 491-492: do problems 1(c), 2, 3; and from 13.21, page 503: do problems 6, 7, 11, 12.
2. From Apostol, 13.24, pages 508-509: do problems 8, 21, 32; and from 13.25, pages 509-511: do problems 1, 8, 19 .
3. From Apostol, 14.4, pages 516-517: do problems 1, 9, 14, 19.
4. In analogy with section 9.4 of Apostol, write a vector $(a, b, c, d) \in \mathbb{R}^{4}$ as $a+b i+c j+d k$. Also, define a multiplication law on \mathbb{R}^{4} so that $i j=k, j k=i, k i=j, j i=-k, k j=-i$, $i k=-j$ (as with cross product); and also so that $i^{2}=j^{2}=k^{2}=-1$ (unlike the cross product); and so that $1 v=v=v 1$ for all $v \in \mathbb{R}^{4}$.
a) Under this multiplication, evaluate $(i+j)^{2}$ and $(1+i+j+k)(1-i-j-k)$.
b) Which of the axioms of a field (Axioms 1-6 on page 18 of Apostol) are satisfied by the elements of \mathbb{R}^{4} under vector addition and the above multiplication law?
c) Call an element $v \in \mathbb{R}^{4}$ central if $v w=w v$ for all $w \in \mathbb{R}^{4}$. Find all the central elements of \mathbb{R}^{4}.
5. a) Let L be a line in the plane and let C be a conic section in the plane. At how many points can L and C meet? Give examples illustrating each possible value.
b) In part (a), if L is tangent to C at a point P, then at how many points (including P) can L and C meet?
c) Make a conjecture concerning the number of points at which two distinct conic sections C, C^{\prime} in the plane can meet. Give examples to illustrate each of the possible values.
6. Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a differentiable vector-valued function, that $c \in \mathbb{R}$, and that $\int_{0}^{x} F(t) d t=\left(x^{2}+x, e^{x}+c\right)$ for all $x \in \mathbb{R}$. Find F and find c.
