Read Apostol, Chapter 15.

1. From Apostol, 15.5, page 555, do problems 1, 4, 5, 13, 14; and from 15.9, page 560, do problems 5-7, 9, 14.
2. From Apostol, 15.12, pages 566-568, do problems 1 (b,e), 4, 8, 13(a,b,d); and from 15.16, page 576 , do problems 1 (a), 2(b), 4 .
3. Prove that the functions $e^{x}, e^{2 x}, e^{3 x}$ are linearly independent in the real vector space V consisting of differentiable functions.
4. Let V be the set of solutions to the differential equation $f^{\prime}(x)=f(x)$ and let W be the set of solutions to the differential equation $f^{\prime \prime}(x)-3 f^{\prime}(x)+2 f(x)=0$.
a) Show that V and W are real vector spaces, and that V is a subspace of W.
b) Find a basis for V, and the dimension of V.
c) Extend your basis of V to a basis of W (i.e. find a basis of W that contains your basis of V), and find the dimension of W.
5. Let $W \subset \mathbb{R}^{3}$ be the subspace given by $x+y+z=0$. Find a basis of W and extend it to a basis of \mathbb{R}^{3}.
6. Prove or disprove each of the following assertions:
a) If V is a finite dimensional vector space with basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$, and W is a subspace of V, then $B \cap W$ is a basis for W.
b) If V is a vector space, and S is a linearly independent subset of V that is not contained in any strictly larger linearly independent subset of V, then S is a basis of V.
