${\rm Math}\; 116$

Instructions: This exam consists of ten problems. Do all ten, showing your work and explaining your assertions. Give yourself two hours. Each problem is worth 20 points, for a total of 200.

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) > 0 for all x > 0 and such that f(-10) < 0.

a) Prove that the set $S = \{x \in \mathbb{R} \mid f(x) < 0\}$ has a supremum in \mathbb{R} .

b) Let $c = \sup(S)$. What is the value of f(c)? Justify your assertion.

2. a) If f is a continuous function on the open interval a < x < b, must f always achieve a maximum and a minimum on this interval? Give either a proof or a counterexample.

b) If f is an increasing (not necessarily continuous) function on the closed interval [0, 1], prove that $f(0) \leq \int_0^1 f(x) dx \leq f(1)$.

3. Let $0 \le a \le 2\pi$, and let $v = (\cos a, \sin a) \in \mathbb{R}^2$.

a) Show that the function $f(t) = v \cdot (\cos t, \sin t)$ achieves a maximum and a minimum on the interval $[0, 2\pi]$.

b) Find where the maximum and the minimum occur, and interpret your answer geometrically.

4. a) Show that if $v, w \in \mathbb{R}^n$ are each orthogonal to a certain vector $z \in \mathbb{R}^n$, then every vector in the span of v, w is also orthogonal to z.

b) Let $S = \{v_1, \ldots, v_m\}$ be a linearly independent set in \mathbb{R}^n . Suppose that $w \in \mathbb{R}^n$ is not in the span of S. Prove that the set $\{v_1, \ldots, v_m, w\}$ is linearly independent.

5. Let $P, Q \in \mathbb{R}^2$ be distinct points in the plane, and let L be the (closed) line segment connecting P and Q.

a) Show that if $R \in \mathbb{R}^2$ lies on L then there is no ellipse in \mathbb{R}^2 that passes through R and has foci at P and Q.

b) Show that if $R \in \mathbb{R}^2$ does not lie on L then there is a unique ellipse in \mathbb{R}^2 that passes through R and has foci at P and Q.

6. Consider the curve C in \mathbb{R}^2 parametrized by $x = t, y = t^3$.

a) Find the velocity and acceleration as functions of t. For what values of t are these two vectors linearly independent?

b) For u > 0, let s(u) be the arclength of the portion of C parametrized by $0 \le t \le u$. Express s(u) as an explicit definite integral, and evaluate s'(1).

7. a) Find all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x)f'(x) = x for all $x \in \mathbb{R}$. b) If f is such a function in part (a), and if f(0) = -1, what is f(1)?

8. a) Find all solutions to the differential equation y'' + 2y' + 2y = 0. Do the solutions form a vector space? If so, what is its dimension?

b) Do the same for the differential equation $y'' + 2y' + 2y = e^x$.

(continued)

9. Let $W \subset \mathbb{R}^4$ be the set of vectors $(x, y, z, t) \in \mathbb{R}^4$ such that x + 2y + 2z + 4t = 0. Let W^{\perp} be the set of vectors $v \in \mathbb{R}^4$ such that $v \perp W$ (i.e. $v \perp w$ for all $w \in W$).

a) Determine whether W and W^{\perp} are subspaces of \mathbb{R}^4 ; and if so, find their dimensions and their intersection.

b) Find the point of W^{\perp} that is closest to (2, 1, 1, 1).

10. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation taking (1,0) to (1,2,3) and taking (0,1) to (-1,-2,-3).

a) Find the matrix of T with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 . Also evaluate T(2, 1).

b) Find the rank and nullity of T.