Instructions: This exam consists of ten problems. Do all ten, showing your work and explaining your assertions. Give yourself two hours. Each problem is worth 20 points, for a total of 200 .

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>0$ for all $x>0$ and such that $f(-10)<0$.
a) Prove that the set $S=\{x \in \mathbb{R} \mid f(x)<0\}$ has a supremum in \mathbb{R}.
b) Let $c=\sup (S)$. What is the value of $f(c)$? Justify your assertion.
2. a) If f is a continuous function on the open interval $a<x<b$, must f always achieve a maximum and a minimum on this interval? Give either a proof or a counterexample.
b) If f is an increasing (not necessarily continuous) function on the closed interval $[0,1]$, prove that $f(0) \leq \int_{0}^{1} f(x) d x \leq f(1)$.
3. Let $0 \leq a \leq 2 \pi$, and let $v=(\cos a, \sin a) \in \mathbb{R}^{2}$.
a) Show that the function $f(t)=v \cdot(\cos t, \sin t)$ achieves a maximum and a minimum on the interval $[0,2 \pi]$.
b) Find where the maximum and the minimum occur, and interpret your answer geometrically.
4. a) Show that if $v, w \in \mathbb{R}^{n}$ are each orthogonal to a certain vector $z \in \mathbb{R}^{n}$, then every vector in the span of v, w is also orthogonal to z.
b) Let $S=\left\{v_{1}, \ldots, v_{m}\right\}$ be a linearly independent set in \mathbb{R}^{n}. Suppose that $w \in \mathbb{R}^{n}$ is not in the span of S. Prove that the set $\left\{v_{1}, \ldots, v_{m}, w\right\}$ is linearly independent.
5. Let $P, Q \in \mathbb{R}^{2}$ be distinct points in the plane, and let L be the (closed) line segment connecting P and Q.
a) Show that if $R \in \mathbb{R}^{2}$ lies on L then there is no ellipse in \mathbb{R}^{2} that passes through R and has foci at P and Q.
b) Show that if $R \in \mathbb{R}^{2}$ does not lie on L then there is a unique ellipse in \mathbb{R}^{2} that passes through R and has foci at P and Q.
6. Consider the curve C in \mathbb{R}^{2} parametrized by $x=t, y=t^{3}$.
a) Find the velocity and acceleration as functions of t. For what values of t are these two vectors linearly independent?
b) For $u>0$, let $s(u)$ be the arclength of the portion of C parametrized by $0 \leq t \leq u$. Express $s(u)$ as an explicit definite integral, and evaluate $s^{\prime}(1)$.
7. a) Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) f^{\prime}(x)=x$ for all $x \in \mathbb{R}$.
b) If f is such a function in part (a), and if $f(0)=-1$, what is $f(1)$?
8. a) Find all solutions to the differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=0$. Do the solutions form a vector space? If so, what is its dimension?
b) Do the same for the differential equation $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x}$.
9. Let $W \subset \mathbb{R}^{4}$ be the set of vectors $(x, y, z, t) \in \mathbb{R}^{4}$ such that $x+2 y+2 z+4 t=0$. Let W^{\perp} be the set of vectors $v \in \mathbb{R}^{4}$ such that $v \perp W$ (i.e. $v \perp w$ for all $w \in W$).
a) Determine whether W and W^{\perp} are subspaces of \mathbb{R}^{4}; and if so, find their dimensions and their intersection.
b) Find the point of W^{\perp} that is closest to $(2,1,1,1)$.
10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation taking $(1,0)$ to $(1,2,3)$ and taking $(0,1)$ to $(-1,-2,-3)$.
a) Find the matrix of T with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}. Also evaluate $T(2,1)$.
b) Find the rank and nullity of T.
