1. Which of the following R-modules are finitely generated? Which are free? Which are R-algebras? Among the R-algebras, which are finitely generated as R-algebras?
a) $R=\mathbb{Z}, M=\mathbb{Z} / 5 \times \mathbb{Z} / 7$
b) $R=\mathbb{Z}, M=(5)=$ ideal generated by 5
c) $R=\mathbb{Z}, M=\mathbb{Z}[\sqrt{3}]$
d) $R=\mathbb{Z}, M=\mathbb{Z}[\pi]$
e) $R=\mathbb{Z}, M=\mathbb{Z}[1 / 2,1 / 3]$
f) $R=\mathbb{Z}, M=\mathbb{Q}$
g) $R=\mathbb{Z}, M=\frac{1}{2} \mathbb{Z}=\left\{\left.\frac{n}{2} \right\rvert\, n \in \mathbb{Z}\right\}$
h) $R=\mathbb{Z}[\sqrt{-5}], M=(2,1+\sqrt{-5}) \subset R$
i) $R=\mathbb{R}[x], M=\mathbb{R}[x, y]$
j) $R=\mathbb{R}[x], M=\mathbb{R}[x, y] /\left(y^{2}-x\right)$
k) $R=\mathbb{R}[x, y], M=(x, y) \subset R$.
2. Let M be a module over R, and let $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$ be an exact sequence of R-modules. Show by example that the induced sequences

$$
\begin{gather*}
0 \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right) \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(M, N^{\prime \prime}\right) \rightarrow 0 \tag{1}\\
0 \rightarrow \operatorname{Hom}\left(N^{\prime \prime}, M\right) \rightarrow \operatorname{Hom}(N, M) \rightarrow \operatorname{Hom}\left(N^{\prime}, M\right) \rightarrow 0 \tag{2}\\
0 \rightarrow M \otimes N^{\prime} \rightarrow M \otimes N \rightarrow M \otimes N^{\prime \prime} \rightarrow 0 \tag{3}
\end{gather*}
$$

are not necessarily exact, unlike the case of vector spaces over a field. (Compare Math 602, fall 2004, Problem Set 11, problem 4.)
3. a) If R is a commutative ring, find an isomorphism $R \otimes_{\mathbb{Z}} \mathbb{Z}[\sqrt{2}] \xrightarrow{\sim} R[x] /\left(x^{2}-2\right)$.
b) Determine whether $\mathbb{Z}[\sqrt{3}] \otimes_{\mathbb{Z}} \mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{2}] \otimes_{\mathbb{Z}} \mathbb{Z}[\sqrt{2}]$ are integral domains.
c) Simplify each of the following \mathbb{Z}-modules (up to isomorphism): $\operatorname{Hom}(\mathbb{Z} / 10, \mathbb{Z})$ (the dual of the \mathbb{Z}-module $\mathbb{Z} / 10), \operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 10), \operatorname{Hom}(\mathbb{Z} / 10, \mathbb{Z} / 6), \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 10, \mathbb{Z} / 10 \otimes_{\mathbb{Z}} \mathbb{Z} / 6$, $\mathbb{Z} / 10 \otimes_{\mathbb{Z}} \mathbb{Q}, \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$.
4. Let R be the ring of real polynomial functions on the circle $x^{2}+y^{2}=25$. Let P be the point $(3,4)$, and let I be the ideal of functions in R vanishing at P.
a) Show that I is generated by the elements $x-3, y-4$.
b) Show that if $I=(f)$ where $f \in R$, then f divides $x-3$ and $y-4$ in R. Deduce that f cannot vanish at any point of the circle except for P. Also, deduce that f cannot vanish to order ≥ 2 at P, as a function on the circle.
c) Deduce that I cannot be principal. (Hint: Let $F(x, y) \in \mathbb{R}[x, y]$ represent the function $f \in R$. What does the graph of $F(x, y)=0$ look like? Where does it meet the circle? Is it tangent or transversal to the circle?)
d) Show that no two elements in I are linearly independent over the ring R.
e) Using (c) and (d), conclude that I is not a free R-module.
(continued on next page)
5. In the notation of problem 4 , let Q be the point $(-3,4)$, and let J be the ideal of functions in R vanishing at Q. Consider the R-module $I \oplus J$.
a) Show that every element $(i, j) \in I \oplus J$ can be uniquely expressed in the form

$$
((x-3) f+(y-4) g,(x+3) f+(y-4) g),
$$

for some $f, g \in R$. (Hint: First solve for f, g as linear combinations of i, j. Then use 4(a) and the identity $x^{2}+y^{2}=25$ in R, to show that $\frac{x+3}{y-4} i \in R$.)
b) Show conversely that every element of $R \times R$ of the above form must lie in $I \oplus J$.
c) Deduce that $I \oplus J$ is a free R-module of rank 2, even though I is not free. (Is J free?)

