1. Suppose that

is a commutative diagram of R-modules, with exact rows.
a) Show that if α_{1} is surjective and α_{2}, α_{4} are injective, then α_{3} is injective.
b) Show that if α_{5} is injective and α_{2}, α_{4} are surjective, then α_{3} is surjective.
c) In particular, deduce that α_{3} is an isomorphism provided that $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}$ are. (The above result is the strong version of the "Five Lemma", which is named after the appearance of this diagram.)
2. In the notation of problems 4 and 5 of Problem Set 1:
a) Show that $I \cap J=(y-4)$ and $I+J=(1)$ in R.
b) Let $\Delta: I \cap J \rightarrow I \oplus J$ be given by $\Delta(f)=(f, f)$, and let $-: I \oplus J \rightarrow I+J$ be given by $-(f, g)=f-g$. Show that the sequence

$$
\begin{equation*}
0 \rightarrow I \cap J \xrightarrow{\Delta} I \oplus J \xrightarrow{孔} I+J \rightarrow 0 \tag{*}
\end{equation*}
$$

is exact.
c) Show that the exact sequence $\left({ }^{*}\right)$ is split. (Hint: What is $I+J$?)
d) Deduce that $I \oplus J \approx(I \cap J) \oplus(I+J)$, and conclude that $I \oplus J$ is therefore free of rank 2 (thereby giving another proof of problem 5(c) of Problem Set 1).
3. In the notation of the above problem:
a) Explicitly find a section s of - , corresponding to a splitting of the exact sequence $\left(^{*}\right)$. (Hint: Find $(a, b) \in I \oplus J$ such that $a-b=1 \in R$.)
b) Explicitly find an isomorphism $\alpha:(I \cap J) \oplus(I+J) \rightarrow I \oplus J$ induced by the section in (a).
c) Compare this isomorphism $\alpha:(y-4) \oplus(1) \rightarrow I \oplus J$ to the one in problem 5 of Problem Set 1.
4. Let P be a finitely generated projective R-module.
a) Show that there is a finitely generated free R-module F, and an R-module K, such that $0 \rightarrow K \xrightarrow{i} F \xrightarrow{\pi} P \rightarrow 0$ is exact.
b) Show that there exists a homomorphism $j: F \rightarrow K$ such that i is a section of j, and that the sequence $F \xrightarrow{i \circ j} F \xrightarrow{\pi} P \rightarrow 0$ is exact.
c) Conclude that P is a finitely presented R-module.
d) Give an example of a finitely generated R-module M (for some R) that is not projective and is not even finitely presented.

