Math 603

1. a) Show that R[x] is a flat *R*-module.

b) Show that R[x, y]/(xy) is not a flat R[x]-module.

c) Let M, N be flat R-modules. Show that $M \oplus N$ and $M \otimes_R N$ are flat R-modules.

d) Show that if M is a finitely generated projective R-module, then M is a flat R-module.

e) Is the \mathbb{Z} -module \mathbb{Q} free? torsion free? flat? projective?

2. Suppose that $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is an exact sequence of *R*-modules. Let $M_1 \subset M_2 \subset \cdots$ be a chain of submodules of M, and define $M'_i = f^{-1}(M_i)$ and $M''_i = g(M_i)$.

a) Show that $M'_1 \subset M'_2 \subset \cdots$ is a chain of submodules of M'.

b) Show that $M_1'' \subset M_2'' \subset \cdots$ is a chain of submodules of M''.

c) Show that if i < j, then the inclusion map $M_i \hookrightarrow M_j$ induces inclusions $M'_i \hookrightarrow M'_j$ and $M''_i \hookrightarrow M''_j$ and also the following commutative diagram with exact rows:

3. In the notation of Problem Set 1, problems 4 and 5:

a) Find linear polynomials $f, g \in R$ such that the only maximal ideal of R containing f is I, and the only maximal ideal of R containing g is J. (Hint: Where can the graphs of f = 0 and of g = 0 intersect the circle?)

b) Find a linear polynomial $h \in R$ such that $h \in J$ and $h \in K$, where K is the maximal ideal corresponding to the point S = (3, -4).

c) Show that $I_f \stackrel{\text{def}}{=} I \otimes_R R[\frac{1}{f}]$ is a free $R[\frac{1}{f}]$ -module, viz. is the unit ideal in $R[\frac{1}{f}]$. (Hint: Show $f \in I_f$.)

d) Show that for suitable choice of g, h above, $\frac{x-3}{y-4} = \frac{h}{g}$ in R. Explain this equality geometrically, in terms of the graphs of g = 0, h = 0, x-3 = 0, y-4 = 0, and $x^2 + y^2 = 25$.

e) Using (d), show that $I_g \stackrel{\text{def}}{=} I \otimes_R R[\frac{1}{g}]$ is a free $R[\frac{1}{g}]$ -module, viz. is the ideal (y-4) in $R[\frac{1}{g}]$.

4. a) Let R be a commutative ring and suppose that every R-module M is free. Show that R is a field.

b) Let $R = \mathbb{R}[x, y]/(x^2 + y^2 - 25)$. Is R a PID? Is every finitely generated projective R-module free?

5. Let R be a commutative ring, and let M, N, S be R-modules. Assume that M is finitely presented and that S is flat. Consider the natural map

$$\alpha: S \otimes_R \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, S \otimes_R N)$$

taking $s \otimes \phi$ (for $s \in S$ and $\phi \in \text{Hom}(M, N)$) to the homomorphism $m \mapsto s \otimes \phi(m)$.

a) Show that if M is a free R-module then α is an isomorphism. [Hint: If $M = R^n$, show that both sides are just $(S \otimes_R N)^n$.]

b) Suppose more generally that $R^a \to R^b \to M \to 0$ is a finite presentation for M. Show that the induced diagram

is commutative and has exact rows.

c) Using the Five Lemma and part (a), deduce that α is an isomorphism.

6. Let $\phi : \mathbb{Z}^2 \to \mathbb{Z}^3$ be given by the matrix

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

and let M be the cokernel of ϕ .

- a) Find all $n \in \mathbb{Z}$ such that the \mathbb{Z} -module M has (non-zero) n-torsion.
- b) Is *M* free? flat? torsion free? projective?
- c) Show that M has a finite free resolution.
- d) For each prime number p, compute $M \otimes \mathbb{Z}/p = \operatorname{Tor}^{0}(M, \mathbb{Z}/p)$ and $\operatorname{Tor}^{1}(M, \mathbb{Z}/p)$.
- e) For every \mathbb{Z} -module N and every $i \geq 2$, compute $\operatorname{Tor}^{i}(M, N)$.

7. Let M, N be R-modules, and let $0 \to N \to I_0 \xrightarrow{f_0} I_1 \xrightarrow{f_1} I_2 \xrightarrow{f_2} \cdots$ be an injective resolution of N. Let $\phi \in \text{Ext}^1(M, N)$, and choose a homomorphism $\Phi \in \text{Hom}(M, I_1)$ representing ϕ (where we use the above resolution to compute Ext).

a) Show that $f_1 \circ \Phi = 0$, and deduce that $\Phi : M \to I_0/N$.

b) Let $M' \to I_0$ be the pullback of $M \to I_0/N$ via the reduction map $I_0 \to I_0/N$. Show that the kernel of $M' \to M$ is N, giving an exact sequence $0 \to N \to M' \to M \to 0$, which corresponds to some class in Ext(M, N) that we denote by $c(\phi)$. (Here Ext(M, N)is the set of equivalence classes of extensions $0 \to N \to L \to M \to 0$ of M by N.)

c) Show that $c : \operatorname{Ext}^{1}(M, N) \to \operatorname{Ext}(M, N)$ is a bijection.