1. a) Show that $R[x]$ is a flat R-module.
b) Show that $R[x, y] /(x y)$ is not a flat $R[x]$-module.
c) Let M, N be flat R-modules. Show that $M \oplus N$ and $M \otimes_{R} N$ are flat R-modules.
d) Show that if M is a finitely generated projective R-module, then M is a flat R module.
e) Is the \mathbb{Z}-module \mathbb{Q} free? torsion free? flat? projective?
2. Suppose that $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is an exact sequence of R-modules. Let $M_{1} \subset$ $M_{2} \subset \cdots$ be a chain of submodules of M, and define $M_{i}^{\prime}=f^{-1}\left(M_{i}\right)$ and $M_{i}^{\prime \prime}=g\left(M_{i}\right)$.
a) Show that $M_{1}^{\prime} \subset M_{2}^{\prime} \subset \cdots$ is a chain of submodules of M^{\prime}.
b) Show that $M_{1}^{\prime \prime} \subset M_{2}^{\prime \prime} \subset \cdots$ is a chain of submodules of $M^{\prime \prime}$.
c) Show that if $i<j$, then the inclusion map $M_{i} \hookrightarrow M_{j}$ induces inclusions $M_{i}^{\prime} \hookrightarrow M_{j}^{\prime}$ and $M_{i}^{\prime \prime} \hookrightarrow M_{j}^{\prime \prime}$ and also the following commutative diagram with exact rows:

3. In the notation of Problem Set 1, problems 4 and 5:
a) Find linear polynomials $f, g \in R$ such that the only maximal ideal of R containing f is I, and the only maximal ideal of R containing g is J. (Hint: Where can the graphs of $f=0$ and of $g=0$ intersect the circle?)
b) Find a linear polynomial $h \in R$ such that $h \in J$ and $h \in K$, where K is the maximal ideal corresponding to the point $S=(3,-4)$.
c) Show that $I_{f} \stackrel{\text { def }}{=} I \otimes_{R} R\left[\frac{1}{f}\right]$ is a free $R\left[\frac{1}{f}\right]$-module, viz. is the unit ideal in $R\left[\frac{1}{f}\right]$. (Hint: Show $f \in I_{f}$.)
d) Show that for suitable choice of g, h above, $\frac{x-3}{y-4}=\frac{h}{g}$ in R. Explain this equality geometrically, in terms of the graphs of $g=0, h=0, x-3=0, y-4=0$, and $x^{2}+y^{2}=25$.
e) Using (d), show that $I_{g} \stackrel{\text { def }}{=} I \otimes_{R} R\left[\frac{1}{g}\right]$ is a free $R\left[\frac{1}{g}\right]$-module, viz. is the ideal $(y-4)$ in $R\left[\frac{1}{g}\right]$.
4. a) Let R be a commutative ring and suppose that every R-module M is free. Show that R is a field.
b) Let $R=\mathbb{R}[x, y] /\left(x^{2}+y^{2}-25\right)$. Is R a PID? Is every finitely generated projective R-module free?
5. Let R be a commutative ring, and let M, N, S be R-modules. Assume that M is finitely presented and that S is flat. Consider the natural map

$$
\alpha: S \otimes_{R} \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(M, S \otimes_{R} N\right)
$$

taking $s \otimes \phi($ for $s \in S$ and $\phi \in \operatorname{Hom}(M, N))$ to the homomorphism $m \mapsto s \otimes \phi(m)$.
a) Show that if M is a free R-module then α is an isomorphism. [Hint: If $M=R^{n}$, show that both sides are just $\left(S \otimes_{R} N\right)^{n}$.]
b) Suppose more generally that $R^{a} \rightarrow R^{b} \rightarrow M \rightarrow 0$ is a finite presentation for M. Show that the induced diagram

is commutative and has exact rows.
c) Using the Five Lemma and part (a), deduce that α is an isomorphism.
6. Let $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{3}$ be given by the matrix

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

and let M be the cokernel of ϕ.
a) Find all $n \in \mathbb{Z}$ such that the \mathbb{Z}-module M has (non-zero) n-torsion.
b) Is M free? flat? torsion free? projective?
c) Show that M has a finite free resolution.
d) For each prime number p, compute $M \otimes \mathbb{Z} / p=\operatorname{Tor}^{0}(M, \mathbb{Z} / p)$ and $\operatorname{Tor}^{1}(M, \mathbb{Z} / p)$.
e) For every \mathbb{Z}-module N and every $i \geq 2$, compute $\operatorname{Tor}^{i}(M, N)$.
7. Let M, N be R-modules, and let $0 \rightarrow N \rightarrow I_{0} \xrightarrow{f_{0}} I_{1} \xrightarrow{f_{1}} I_{2} \xrightarrow{f_{2}} \cdots$ be an injective resolution of N. Let $\phi \in \operatorname{Ext}^{1}(M, N)$, and choose a homomorphism $\Phi \in \operatorname{Hom}\left(M, I_{1}\right)$ representing ϕ (where we use the above resolution to compute Ext).
a) Show that $f_{1} \circ \Phi=0$, and deduce that $\Phi: M \rightarrow I_{0} / N$.
b) Let $M^{\prime} \rightarrow I_{0}$ be the pullback of $M \rightarrow I_{0} / N$ via the reduction map $I_{0} \rightarrow I_{0} / N$. Show that the kernel of $M^{\prime} \rightarrow M$ is N, giving an exact sequence $0 \rightarrow N \rightarrow M^{\prime} \rightarrow M \rightarrow 0$, which corresponds to some class in $\operatorname{Ext}(M, N)$ that we denote by $c(\phi)$. (Here $\operatorname{Ext}(M, N)$ is the set of equivalence classes of extensions $0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$ of M by N.)
c) Show that $c: \operatorname{Ext}^{1}(M, N) \rightarrow \operatorname{Ext}(M, N)$ is a bijection.

