1. a) Let V be an affine variety, with ring of functions R. Let W be a Zariski closed subset of V, and let $I=I(W)$. Show that W is irreducible if and only if I is a prime ideal.
b) Let I_{1}, \ldots, I_{n} be proper ideals of R, and let $W_{i}=V\left(I_{i}\right)$ for each i. Show that

$$
\begin{aligned}
& V\left(I_{1}+\cdots+I_{n}\right)=W_{1} \cap \cdots \cap W_{n}, \\
& V\left(I_{1} \cap \cdots \cap I_{n}\right)=W_{1} \cup \cdots \cup W_{n} .
\end{aligned}
$$

Also explain the relationship with problem 8 on Math 602 (fall 2004) Problem Set 8.
2. a) Let R be a Noetherian ring and $I \subset R$ an ideal. Prove that there are only finitely many prime ideals that are minimal over I. [Hint: If not, show that there is a maximal counterexample I, and that this I is not prime. Show that if $a, b \in R-I$ with $a b \in I$, then every prime that is minimal over I is also minimal over either $I+(a)$ or $I+(b)$.]
b) Deduce that every Noetherian ring has finitely many minimal primes. Also, interpret this assertion geometrically, if R is the ring of functions on a Zariski closed subset of an affine variety V.
c) What happens in (a) and (b) if the ring is not Noetherian?
3. Determine the Krull dimensions of the following rings: $\mathbb{R}\left[x, x^{-1}\right], \mathbb{C}[x, y, z] /\left(z^{2}-x y\right)$, $\mathbb{Z}[x, y] /\left(y^{2}-x^{3}\right), \mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right), \mathbb{Q}[x, y, z] /\left(y^{2}, z^{3}\right), \mathbb{Q}[[x, y, z]], \mathbb{Z}_{(2)}[x]$. Justify your assertions.
4. Given a commutative ring R, define the maximal spectrum of R (denoted Max R) to be the set of maximal ideals of R. For each subset $E \subset R$, let $V(E)$ denote the set $\{\mathfrak{m} \in \operatorname{Max} R \mid E \subset \mathfrak{m}\} \subset \operatorname{Max} R$.
a) Show that Max R has a topology in which the closed sets are precisely the sets $V(E)$.
b) Show that $V(E)=V(I)$ for any $E \subset R$, where I is the ideal generated by E.
c) Show that $V(I)=V(\sqrt{I})$ for any ideal I. (Recall that \sqrt{I} denotes the radical of I, which is defined to be $\left\{r \in R \mid(\exists n) r^{n} \in I\right\}$.)
d) Show that $V\left(\bigcup_{\alpha} E_{\alpha}\right)=\bigcap_{\alpha} V\left(E_{\alpha}\right)$ for any collection of subsets $\left\{E_{\alpha}\right\}_{\alpha \in A}$, and that $V\left(I_{1}+\cdots+I_{n}\right)=V\left(I_{1}\right) \cap \cdots \cap V\left(I_{n}\right)$ for any ideals I_{1}, \ldots, I_{n}.
e) Show that $V\left(I_{1} \cap \cdots \cap I_{n}\right)=V\left(I_{1}\right) \cup \cdots \cup V\left(I_{n}\right)$ for any ideals I_{1}, \ldots, I_{n} of R. Also explain the relationship with problem 1 above.
f) Give examples to illustrate (b) - (e) geometrically, in the case $R=\mathbb{R}[x]$, and in the case $R=\mathbb{Z}$.
g) If $R=\mathbb{C}[x, y] /(f)$, is there a continuous bijective map between $\operatorname{Max} R$ and the locus of zeroes of f in \mathbb{C}^{2} (under the usual topology)? In which direction?
5. Consider the following rings: $\mathbb{C}[x], \mathbb{C}[x, y], \mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right), \mathbb{C}[x, y] /\left(x^{2}-y^{2}\right)$, $\mathbb{C}[x] /\left(x^{2}\right), \mathbb{C}[x, y] /\left(x^{2}\right), \mathbb{C}, \mathbb{C} \times \mathbb{C}, \mathbb{C}[x] /\left(x^{2}-x\right), \mathbb{Z} / 2, \mathbb{Z} / 6, \mathbb{Z}, \mathbb{Z}[1 / 15]$. For each of them, do the following:
a) Describe all the maximal ideals in the given ring R, and describe $\operatorname{Max} R$ geometrically (or topologically).
b) Determine whether $\operatorname{Max} R$ is connected (in the topology given in problem 4).
6. a) Let $R=\mathbb{C}[x, y] /\left(x^{2}-y^{2}\right)$ and $S=\mathbb{C}[x, y] /\left(x^{2}-x\right)$. Show that there is a homomorphism $f: R \rightarrow S$ given by $f(x)=y-2 x y, f(y)=y$. Show that there is an induced continuous map $f^{*}: \operatorname{Max} S \rightarrow \operatorname{Max} R$ given by $\mathfrak{m} \mapsto f^{-1}(\mathfrak{m})$. Describe the map f^{*} geometrically. Is it injective? surjective? (A picture in the (x, y)-plane may help.)
b) In general, if $f: R \rightarrow S$ is a homomorphism of commutative rings, is there an induced continuous map $f^{*}: \operatorname{Max} S \rightarrow \operatorname{Max} R$? (What if $R=\mathbb{Z}$ and $S=\mathbb{Q}$?) What if we instead considered the prime spectrum of R and of S ? (The prime spectrum Spec R is defined as the set of prime ideals of R with the topology defined similarly to that of Max.)

