Math 603

1. a) Let R be a Noetherian ring, \mathcal{I} the set of ideals of R, and \mathcal{I}_0 a subset of \mathcal{I} . Let P be a property that ideals in \mathcal{I}_0 may or may not have. Suppose that one can show the following condition:

 $\forall I \in \mathcal{I}_0$, if every ideal $J \in \mathcal{I}_0$ that properly contains I has property P, then so does I.

Conclude that P holds for all $I \in \mathcal{I}_0$.

b) Use this principle ("Noetherian induction") to prove that if R is a Noetherian integral domain, and $r \in R$ is a non-zero non-unit, then r is a product of irreducible elements of R. [Hint: What is \mathcal{I}_0 ?]

c) Show that (b) (and therefore (a)) fails in general if R is not Noetherian.

2. Let $f: Y \to X$ be a polynomial map of complex affine varieties, corresponding to a ring extension $i: A \hookrightarrow B$. Suppose that B is an integral extension of A. Show that the map f is closed in the Zariski topology (where a map is defined to be *closed* if it takes closed sets to closed sets).

3. a) Let $A = \mathbb{C}[x]$, $B = \mathbb{C}[x, y]/(xy-1)$. Is B integral over A? Describe the corresponding map on varieties. Is it closed?

b) Do the same with B replaced by $\mathbb{C}[x, y]/(x^2 + y^2 - 1)$.

c) Do the same with B replaced by $\mathbb{C}[x, y]/(y^2 - x)$.

d) Do the same with B replaced by $\mathbb{C}[x, y, \frac{1}{y-1}]/(y^2 - x)$.

4. Let *n* be a square-free non-zero integer. Let R_n be the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$. Show that $R_n = \mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right]$ if $n \equiv 1 \pmod{4}$, and that $R_n = \mathbb{Z}[\sqrt{n}]$ otherwise.

5. For each of the following rings R, determine whether R has a height one prime that is not principal. If there is one, find one explicitly. If there isn't one, determine whether there is *some* prime ideal that is not principal, and find one explicitly if it exists.