1. a) Let R be a Noetherian ring, \mathcal{I} the set of ideals of R, and \mathcal{I}_{0} a subset of \mathcal{I}. Let P be a property that ideals in \mathcal{I}_{0} may or may not have. Suppose that one can show the following condition:
$\forall I \in \mathcal{I}_{0}$, if every ideal $J \in \mathcal{I}_{0}$ that properly contains I has property P, then so does I.
Conclude that P holds for all $I \in \mathcal{I}_{0}$.
b) Use this principle ("Noetherian induction") to prove that if R is a Noetherian integral domain, and $r \in R$ is a non-zero non-unit, then r is a product of irreducible elements of R. [Hint: What is \mathcal{I}_{0} ?]
c) Show that (b) (and therefore (a)) fails in general if R is not Noetherian.
2. Let $f: Y \rightarrow X$ be a polynomial map of complex affine varieties, corresponding to a ring extension $i: A \hookrightarrow B$. Suppose that B is an integral extension of A. Show that the map f is closed in the Zariski topology (where a map is defined to be closed if it takes closed sets to closed sets).
3. a) Let $A=\mathbb{C}[x], B=\mathbb{C}[x, y] /(x y-1)$. Is B integral over A ? Describe the corresponding map on varieties. Is it closed?
b) Do the same with B replaced by $\mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right)$.
c) Do the same with B replaced by $\mathbb{C}[x, y] /\left(y^{2}-x\right)$.
d) Do the same with B replaced by $\mathbb{C}\left[x, y, \frac{1}{y-1}\right] /\left(y^{2}-x\right)$.
4. Let n be a square-free non-zero integer. Let R_{n} be the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$. Show that $R_{n}=\mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right]$ if $n \equiv 1(\bmod 4)$, and that $R_{n}=\mathbb{Z}[\sqrt{n}]$ otherwise.
5. For each of the following rings R, determine whether R has a height one prime that is not principal. If there is one, find one explicitly. If there isn't one, determine whether there is some prime ideal that is not principal, and find one explicitly if it exists.
a) $\mathbb{Z}[i, x, y]$.
b) $\mathbb{Q}[x, y, z, w] /(x y-z w)$.
c) $\mathbb{Z}[\sqrt{-5}]$.
d) $\mathbb{Z}[x, y] /\left(5, y-x^{3}-x+1\right)$.
