1. Which of the following rings R are discrete valuation rings? For those that are, find the fraction field $K=\mathrm{frac} R$, the residue field $k=R / \mathfrak{m}$ (where \mathfrak{m} is the maximal ideal), and a uniformizer π. For the others, explain why not (full proofs not required). $\mathbb{Z}, \mathbb{Z}_{(5)}$, $\mathbb{Z}[1 / 5], \mathbb{R}[x], \mathbb{R}[x]_{(x-2)}, \mathbb{R}[x, 1 /(x-2)], \mathbb{Q}[x]_{\left(x^{2}+1\right)}, \mathbb{C}[x, y]_{(x, y)},\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)_{(x-1, y)}$, $\left(\mathbb{R}[x, y] /\left(y^{2}-x^{3}\right)\right)_{(x, y)}$.
2. Let R be a discrete valuation ring with fraction field K, maximal ideal \mathfrak{m}, and discrete valuation v. If $a, b \in K$ define $\rho(a, b)=2^{-v(a-b)}$ if $a \neq b$, and define $\rho(a, a)=0$.
a) Show that ρ defines a metric on K.
b) Show that ρ is an ultrametric (=non-archimidean metric); i.e. it satisfies the strong triangle inequality $\rho(a, c) \leq \max (\rho(a, b), \rho(b, c))$.
c) Show that (K, ρ) is a topological field, i.e. that it is a topological space in which addition and multiplication define continuous maps $K \times K \rightarrow K$.
d) Show that in K, the closed unit disc about 0 is R and the open unit disc about 0 is \mathfrak{m}.
3. Let K be a field and let $f(x) \in K[x]$ be a non-zero polynomial of degree n.
a) Show that if $a \in K$ is a root of f, then $(x-a)$ divides $f(x)$ in $K[x]$. [Hint: Use the division algorithm for polynomials.]
b) Deduce that f has at most n roots in K.
c) Will the argument and conclusion of part (b) still hold if K is replaced by a division algebra (i.e. if K is no longer assumed commutative)? Explain. [Hint: Try an example.]
4. Let R be a commutative ring of characteristic p (where p is prime) and define $F: R \rightarrow R$ by $a \mapsto a^{p}$.
a) Show that F is a ring endomorphism (i.e. homomorphism from R to itself).
b) If R is a field, determine which elements lie in the set $\{a \in R \mid F(a)=a\}$.
c) If R is a field, must F be injective? surjective? (Give a proof or counterexample for each.)
d) If R is a finite field, show that F is an automorphism.
5. Let K be a field and let G be a subgroup of the multiplicative group $K^{*}=K-\{0\}$.
a) Show that if $a, b \in K$ have finite orders m, n, then there is a $c \in K$ whose order is the least common multiple of m, n. [Hint: First do the case of m, n relatively prime.]
b) Show that if G is finite then it is cyclic. [Hint: Let ℓ be the l.c.m. of the orders of the elements of G, and apply problem $3(\mathrm{~b})$ to the polynomial $x^{\ell}-1$.]
c) Conclude that if $K \subset L$ is an extension of finite fields, then $L=K[a]$ for some $a \in K$. [Hint: What is the group structure of L^{*} ?]

The remaining problems are optional, and preserve the notation of problem 2 above.
6. Show that the following conditions are equivalent:
(i) (R, ρ) is a complete metric space.
(ii) (K, ρ) is a complete metric space.
(iii) R is a complete local ring, i.e. $R=\lim _{\leftarrow} R / \mathfrak{m}^{n}$.
7. Is K compact if $R=\mathbb{F}_{p}[[x]]$? If $R=\mathbb{F}_{p}[x]_{(x)}$? If $R=\mathbb{Q}[[x]]$? If $R=\mathbb{Z}_{p}$ (the p-adic integers)? If $R=\mathbb{Z}_{(p)}$?
8. a) Show that if $a_{1}, a_{2}, a_{3}, \ldots \in K$ and if $\sum_{n=1}^{\infty} a_{n}$ converges to an element of K, then $\lim _{n \rightarrow \infty} a_{n}=0$.
b) For which of the rings in problem 7 does the converse to part (a) hold? Can you state and prove a necessary and sufficient condition on R for the converse to hold? Compare and contrast this to the situation for the fields \mathbb{R} and \mathbb{C} under their usual topologies.
9. a) Show that if $f \in K[x]$, then the function $K \rightarrow K$ given by f is identically 0 if and only if f is the zero polynomial. Is this true for fields in general?
b) If $f: K \rightarrow K$ is a function, define its derivative $f^{\prime}: K \rightarrow K$ by the usual expression $f^{\prime}(a)=\lim _{h \rightarrow 0}(f(a+h)-f(a)) / h$, if this exists for all $a \in K$. Show that if f is given by a polynomial in $K[x]$ then its derivative exists, and compute it. Also, find all polynomial functions f such that f^{\prime} is the zero function. (Your answer should depend on K.)

