1. a) Find the degree of $\alpha=\sqrt{2}+\sqrt{3}$ over \mathbb{Q}, and also find its minimal polynomial.
b) Do the same for $\beta=\sqrt{3+\sqrt[3]{2}}$.
c) Is $\mathbb{Q}(\alpha)$ normal over \mathbb{Q} ? Is $\mathbb{Q}(\beta)$?
2. Let $F=\mathbb{C}(x)$. For $a \in \mathbb{C}$, view $\mathbb{C}((x-a))$ as a field extension of F.
a) Show that if $a, b \in \mathbb{C}$, then there is a square root of $x-a$ in $\mathbb{C}((x-b))$ if and only if $a \neq b$.
b) For each non-negative integer n, let $F_{n}=F[\sqrt{x}, \sqrt{x-1}, \ldots, \sqrt{x-n}]$. Show that each F_{n} is a field extension of F; and that F_{n} can be embedded in $\mathbb{C}((x-m))$ as an F-algebra if and only if $n<m$. (Here m is a non-negative integer.) Deduce that the inclusions $F_{0} \subset F_{1} \subset F_{2} \subset \cdots$ are strict.
c) Show that $F_{\infty}:=F[\sqrt{x}, \sqrt{x-1}, \sqrt{x-2}, \ldots]$ is a field of infinite degree over F.
d) Is there an integer d such that every element of F_{∞} satisfies a polynomial of degree at most d over F ?
3. Let K be a field, and $f(x) \in K[x]$. Assume that K has characteristic 0 . Let $n \geq 1$.
a) Let L be a finite field extension of K, and let $\alpha \in L$. Show that α is a root of f with multiplicity n if and only if $0=f(\alpha)=f^{\prime}(\alpha)=\cdots=f^{(n-1)}(\alpha) \neq f^{(n)}(\alpha)$.
b) Show that f has a root (in some extension of K) of multiplicity at least n if and only if $\left(f(x), f^{\prime}(x), \ldots, f^{(n-1)}(x)\right)$ is a proper ideal of $K[x]$.
c) What if instead K has non-zero characteristic?
4. For each of the following fields K, explicitly find the group Aut K of all automorphisms of K (as a field): $\mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt[3]{2}], \mathbb{Q}\left[\zeta_{7}\right], \mathbb{Q}\left[\zeta_{8}\right], \mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right]$. (Here $\zeta_{n}=e^{2 \pi i / n}$, a primitive nth root of unity.)
5. Let $K=\mathbb{Q}[\sqrt{2}]$ and $L=\mathbb{Q}[\sqrt{2+\sqrt{2}}]$.
a) Find the multiplicative inverse of $\sqrt{2+\sqrt{2}}$ in L (as a polynomial in $\sqrt{2+\sqrt{2}}$).
b) Show $K \subset L$. What is $[K: \mathbb{Q}]$? $[L: K]$? $[L: \mathbb{Q}]$?
c) Let ϕ be an automorphism of L. What can you say about the restriction $\left.\phi\right|_{\mathbb{Q}}$?
d) Let ϕ be an automorphism of L. What can you say about the restriction $\left.\phi\right|_{K}$?
e) Find an element of order 4 in Aut L. What is the group Aut L abstractly?
f) Replace $\sqrt{2}$ by $\sqrt{3}$, and $\sqrt{2+\sqrt{2}}$ by $\sqrt{3+\sqrt{3}}$. Try to redo parts (a) - (e). Do the results still hold?
6. Find all algebraic field extensions of \mathbb{R}. Justify your assertions. (You may assume that $\mathbb{C}=\mathbb{R}[i]$ is algebraically closed.)
7. Let K be a field with algebraic closure \bar{K}. Let $K^{\text {s }}=\{a \in \bar{K} \mid a$ is separable over $K\}$.
a) Show that K^{s} is a subfield of \bar{K} (called the separable closure of K).
b) Show that for every separable polynomial $f(x) \in K[x]$, the field $K^{\text {s }}$ contains a root of f, and $f(x)$ factors over K^{s} as the product of linear factors.
c) Show that K^{s} is normal over K.
