1. Let $F = \mathbb{Z}/p\mathbb{Z}$, let L = F(x, y), and let $K = F(x^p, y^p)$. Show that L is a finite field extension of K, but that there are infinitely many fields between K and L. Is $L = K[\alpha]$ for some $\alpha \in L$? Is L separable over K?

2. Let $\zeta_n = e^{2\pi i/n} \in \mathbb{C}$ and let $\Phi_n(x)$ be the minimal polynomial of ζ_n over \mathbb{Q} . a) Find the roots of $\Phi_n(x)$. Show that deg $\Phi_n(x) = \phi(n)$, where

$$\phi(n) = \#\{m \in \mathbb{Z} \mid 1 \le m \le n, \ (m,n) = 1\}.$$

b) Show that $\prod_{\substack{d|n\\d>0}} \Phi_d(x) = x^n - 1$, and deduce that $\sum_{\substack{d|n\\d>0}} \phi(d) = n$. c) Let $K_n = \mathbb{Q}(\zeta_n)$. What is $[K_n : \mathbb{Q}]$? [Hint: Observe $K_n \approx \mathbb{Q}[x]/(\Phi_n(x))$.]

d) Show that K_n is Galois over \mathbb{Q} .

3. Let K be a field, and let x_1, \ldots, x_n be transcendentals (variables) over K. For $i = 1, \ldots, n$ let s_i be the *i*th elementary symmetric polynomial in x_1, \ldots, x_n . (Thus s_1, \ldots, s_n are algebraically independent.)

a) Show that $K(x_1, \ldots, x_n)$ is the splitting field over $K(s_1, \ldots, s_n)$ of the polynomial $Z^n - s_1 Z^{n-1} + s_2 Z^{n-2} - \cdots + (-1)^n s_n$.

b) Show that the extension $K(s_1, \ldots, s_n) \subset K(x_1, \ldots, x_n)$ is Galois.

c) Show that the Galois group G is the symmetric group S_n . [Hint: Show that $S_n \subset G$ and that $\#G = [K(x_1, \ldots, x_n) : K(s_1, \ldots, s_n)] \leq n!$.]

4. Let L be a normal field extension of K, and let K_0 be the maximal purely inseparable extension of K contained in L. View L as contained in a fixed algebraic closure \bar{K} of K.

a) Let $\beta \in L$, and let $\beta_1, \ldots, \beta_n \in \overline{K}$ be the distinct images of β under the *K*-embeddings $L \hookrightarrow \overline{K}$ (listing each image only *once*, regardless of multiplicity). Let $f(x) = \prod(x - \beta_i)$. Show that $f(x) \in K_0[x]$. [Hint: Show $f(x) \in L[x]$, and then show that the coefficients of f are mapped to themselves under each *K*-embedding $L \hookrightarrow \overline{K}$.]

b) In part (a), show that f(x) is the minimal polynomial of β over K_0 . [Hint: Show that every β_i is a root of the minimal polynomial.]

c) Conclude that L is separable over K_0 .

5. Let $K = \mathbb{F}_p(t)$ and let $L = K[\sqrt[2p]{t}]$, where p is an odd prime number.

a) Find the maximal separable extension K' of K in L, and the maximal purely inseparable extension K_0 of K in L.

b) Show *explicitly* in this example that L is the compositum of K' and K_0 , by expressing $\sqrt[2p]{t}$ as a combination of elements from K' and K_0 .

c) What if instead p = 2?

The following problems are optional.

6. Prove "Fermat's Last Theorem" for the ring $\mathbb{C}[t]$ (rather than for \mathbb{Z} , as usual). That is, show that if n > 2 then there is no choice of relatively prime non-constant polynomials $p(t), q(t), r(t) \in \mathbb{C}[t]$ such that $p^n + q^n = r^n$. Do this in steps, as follows:

- a) Show that if such polynomials exist, then they are *pairwise* relatively prime.
- b) For these p, q, r and their derivatives p', q', r', show that

$$\begin{pmatrix} p & q & r \\ p' & q' & r' \end{pmatrix} \begin{pmatrix} p^{n-1} \\ q^{n-1} \\ -r^{n-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

c) Show that
$$M\begin{pmatrix} 1\\ 1 \end{pmatrix} \equiv \begin{pmatrix} 0\\ 0 \end{pmatrix} \pmod{p^{n-1}}$$
, where $M = \begin{pmatrix} q & r\\ q' & r' \end{pmatrix} \begin{pmatrix} q^{n-1} & 0\\ 0 & -r^{n-1} \end{pmatrix}$.

Deduce that $\det(M) \equiv 0 \pmod{p^{n-1}}$ and hence that $\det\begin{pmatrix} q & r \\ q' & r' \end{pmatrix} \equiv 0 \pmod{p^{n-1}}$.

d) Conclude that $p^{n-1} | (qr' - rq')$, and similarly that $q^{n-1} | (rp' - pr')$ and that $r^{n-1} | (pq' - qp')$.

e) Examining the degrees of p, q, r, deduce that one of the polynomials qr' - rq', rp' - pr' and pq' - qp' is identically 0.

f) Derive a contradiction and thereby show the desired conclusion. [Hint: First show that the derivative of r/q is not identically 0.]

7. a) Let n > 2, and let K and L respectively be the fraction fields of $\mathbb{C}[t]$ and of $\mathbb{C}[x, y]/(x^n + y^n - 1)$. Show that there is no isomorphism $\Phi : L \to K$ of \mathbb{C} -algebras (i.e. fixing the elements of \mathbb{C}). [Hint: Problem 6.]

b) Interpret the conclusion of part (a) geometrically, in terms of two varieties not being isomorphic. [Note: The fields K and L are each of transcendence degree 1 over \mathbb{C} .]

8. a) Show that every purely inseparable extension is normal.

b) More generally, show that if M is normal over N, and N is purely inseparable over K, then M is normal over K.

c) Let n > 1, let p > n be prime, and let K be a field of characteristic p. Also let $\mathcal{M} = \mathcal{L}[\sqrt[p]{x_1}]$, where $\mathcal{L} = K(x_1, \ldots, x_n)$. In the notation of Problem 3 above, show that \mathcal{M} is not normal over $\mathcal{K} = K(s_1, \ldots, s_n)$.

d) In the situation of part (c), let \mathcal{N} be the maximal purely inseparable extension of \mathcal{K} contained in \mathcal{M} . Show that $\mathcal{N} = \mathcal{K}$. [Hint: If not, show that $[\mathcal{N} : \mathcal{K}] = p$, and deduce that $\mathcal{M} = \mathcal{L}\mathcal{N}$. Conclude that \mathcal{M} is Galois over \mathcal{N} , and then use part (b) to obtain a contradiction.]

e) Deduce that the conclusion of Problem 4(c) above does not necessarily hold if the given field extension is not normal.