Math 603

1. Let p be a prime number.

a) Use Eisenstein's Irreducibility Criterion to show that the polynomial

$$f(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over \mathbb{Q} . [Hint: First set y = x - 1.]

b) Give another proof of the same assertion, by first showing that $f(x) = \Phi_p(x)$ (in the notation of Problem Set 9 #2).

2. Under the notation of Problem Set 9 #2:

a) Describe $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ in terms of n. In particular, what is this Galois group when n = 5? 6? 7? 8? 12?

b) For which n is this extension abelian? cyclic? of order 2? of order 3? For which n does it have a cyclic quotient of order 3?

c) Let $K_7^+ = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$. Find $[K_7 : \mathbb{Q}], [K_7 : K_7^+], \text{ and } [K_7^+ : \mathbb{Q}]$. Also find $\operatorname{Gal}(K_7/K_7^+)$ and $\operatorname{Gal}(K_7^+/\mathbb{Q})$.

d) Find a Galois extension of \mathbb{Q} having degree 5. Find another of degree 7. [Hint: See part (c).]

3. Find the Galois group of (the splitting field of) each of the following polynomials.

4. Show that for every finite group G, there are field extension $\mathbb{Q} \subset K \subset L$ such that L is a finite Galois extension of K with $\operatorname{Gal}(L/K) = G$. (Remark: $[K : \mathbb{Q}]$ is allowed to be infinite.) [Hint: First show the result for $G = S_n$, using Problem Set 9 #3.]

5. a) Find a Galois extension of \mathbb{Q} with Galois group $C_6 \times C_{15}$.

b) Do the same over the field $\overline{\mathbb{F}}_5(t)$ (where $\overline{\mathbb{F}}_5$ is the algebraic closure of \mathbb{F}_5).

c) Let $L = \mathbb{C}(x, y)$, $M = \mathbb{C}(x^2, xy, y^2) \subset L$, and $K = \mathbb{C}(x^2, y^2) \subset M$. Find [L : M], [M : K], [L : K]. Is L Galois over M? Is M Galois over K? Is L Galois over K? For those extensions that are Galois, find the Galois group.

6. Let K and L be finite extensions of a field k, and let KL be their compositum (inside some fixed algebraic closure).

a) Find a surjective k-algebra homomorphism $\pi: K \otimes_k L \rightarrow KL$.

b) Suppose that K is Galois over k. Show that π is an isomorphism if only if $K \cap L = k$. [Hint: Find dim_k($K \otimes_k L$) and dim_k(KL).]

c) Does (b) still hold if K is no longer assumed Galois over k?

The following problem is optional.

7. Hilbert proved the following Irreducibility Theorem: Let $s_1, \ldots, s_m, x_1, \ldots, x_n$ be transcendentals over \mathbb{Q} . If $f(s_1, \ldots, s_m, x_1, \ldots, x_n)$ is an irreducible polynomial over \mathbb{Q} , then there exist $\alpha_1, \ldots, \alpha_m \in \mathbb{Q}$ such that $f(\alpha_1, \ldots, \alpha_m, x_1, \ldots, x_n)$ is an irreducible polynomial in $\mathbb{Q}[x_1, \ldots, x_n]$. Moreover, if a non-zero polynomial $g \in \mathbb{Q}[s_1, \ldots, s_m]$ is given in advance, then the α 's can be chosen so that $g(\alpha_1, \ldots, \alpha_m) \neq 0$.

a) Verify this explicitly in the case that $m = n = 1, f(s, x) = x^3 - s$. Which values of α work?

b) Show that if $\mathbb{Q}(s_1, \ldots, s_m) \subset L$ is a finite field extension, then there is an irreducible polynomial $F \in \mathbb{Q}[s_1, \ldots, s_m, x]$ such that L is the fraction field of $\mathbb{Q}[s_1, \ldots, s_m, x]/(F)$.

c) Use Hilbert's theorem to show that there is an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that the extension $\mathbb{Q} \subset \mathbb{Q}[x]/(f)$ is Galois with group S_n . [Hint: Part (b) and Problem Set 9 #3.] (Caution: You'll need to verify that $\deg(f) = n!$.)

d) Still assuming Hilbert's theorem, conclude that the field K in problem 4 above can be chosen to be finite over \mathbb{Q} . [Hint: Reduce to the case of part (c) above.]