1. Let p be a prime number.
a) Use Eisenstein's Irreducibility Criterion to show that the polynomial

$$
f(x)=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is irreducible over \mathbb{Q}. [Hint: First set $y=x-1$.]
b) Give another proof of the same assertion, by first showing that $f(x)=\Phi_{p}(x)$ (in the notation of Problem Set $9 \# 2$).
2. Under the notation of Problem Set $9 \# 2$:
a) Describe $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ in terms of n. In particular, what is this Galois group when $n=5 ? 6 ? 7 ? 8 ? 12$?
b) For which n is this extension abelian? cyclic? of order 2 ? of order 3? For which n does it have a cyclic quotient of order 3?
c) Let $K_{7}^{+}=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$. Find $\left[K_{7}: \mathbb{Q}\right]$, $\left[K_{7}: K_{7}^{+}\right]$, and $\left[K_{7}^{+}: \mathbb{Q}\right]$. Also find $\operatorname{Gal}\left(K_{7} / K_{7}^{+}\right)$and $\operatorname{Gal}\left(K_{7}^{+} / \mathbb{Q}\right)$.
d) Find a Galois extension of \mathbb{Q} having degree 5. Find another of degree 7. [Hint: See part (c).]
3. Find the Galois group of (the splitting field of) each of the following polynomials.
a) $x^{3}-10$ over \mathbb{Q}.
b) $x^{3}-10$ over $\mathbb{Q}(\sqrt{2})$.
c) $x^{3}-10$ over $\mathbb{Q}(\sqrt{-3})$.
d) $x^{4}-5$ over $\mathbb{Q}, \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{-5}), \mathbb{Q}(i)$.
e) $x^{4}-t$ over $\mathbb{R}(t), \mathbb{C}(t)$.
4. Show that for every finite group G, there are field extension $\mathbb{Q} \subset K \subset L$ such that L is a finite Galois extension of K with $\operatorname{Gal}(L / K)=G$. (Remark: $[K: \mathbb{Q}]$ is allowed to be infinite.) [Hint: First show the result for $G=S_{n}$, using Problem Set $9 \# 3$.]
5. a) Find a Galois extension of \mathbb{Q} with Galois group $C_{6} \times C_{15}$.
b) Do the same over the field $\overline{\mathbb{F}}_{5}(t)$ (where $\overline{\mathbb{F}}_{5}$ is the algebraic closure of \mathbb{F}_{5}).
c) Let $L=\mathbb{C}(x, y), M=\mathbb{C}\left(x^{2}, x y, y^{2}\right) \subset L$, and $K=\mathbb{C}\left(x^{2}, y^{2}\right) \subset M$. Find $[L: M]$, [$M: K]$, $[L: K]$. Is L Galois over M ? Is M Galois over K ? Is L Galois over K ? For those extensions that are Galois, find the Galois group.
6. Let K and L be finite extensions of a field k, and let $K L$ be their compositum (inside some fixed algebraic closure).
a) Find a surjective k-algebra homomorphism $\pi: K \otimes_{k} L \rightarrow K L$.
b) Suppose that K is Galois over k. Show that π is an isomorphism if only if $K \cap L=k$.
[Hint: Find $\operatorname{dim}_{k}\left(K \otimes_{k} L\right)$ and $\operatorname{dim}_{k}(K L)$.]
c) Does (b) still hold if K is no longer assumed Galois over k ?

The following problem is optional.
7. Hilbert proved the following Irreducibility Theorem: Let $s_{1}, \ldots, s_{m}, x_{1}, \ldots, x_{n}$ be transcendentals over \mathbb{Q}. If $f\left(s_{1}, \ldots, s_{m}, x_{1}, \ldots, x_{n}\right)$ is an irreducible polynomial over \mathbb{Q}, then
there exist $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Q}$ such that $f\left(\alpha_{1}, \ldots, \alpha_{m}, x_{1}, \ldots, x_{n}\right)$ is an irreducible polynomial in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Moreover, if a non-zero polynomial $g \in \mathbb{Q}\left[s_{1}, \ldots, s_{m}\right]$ is given in advance, then the α 's can be chosen so that $g\left(\alpha_{1}, \ldots, \alpha_{m}\right) \neq 0$.
a) Verify this explicitly in the case that $m=n=1, f(s, x)=x^{3}-s$. Which values of α work?
b) Show that if $\mathbb{Q}\left(s_{1}, \ldots, s_{m}\right) \subset L$ is a finite field extension, then there is an irreducible polynomial $F \in \mathbb{Q}\left[s_{1}, \ldots, s_{m}, x\right]$ such that L is the fraction field of $\mathbb{Q}\left[s_{1}, \ldots, s_{m}, x\right] /(F)$.
c) Use Hilbert's theorem to show that there is an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that the extension $\mathbb{Q} \subset \mathbb{Q}[x] /(f)$ is Galois with group S_{n}. [Hint: Part (b) and Problem Set $9 \# 3$.] (Caution: You'll need to verify that $\operatorname{deg}(f)=n!$.)
d) Still assuming Hilbert's theorem, conclude that the field K in problem 4 above can be chosen to be finite over \mathbb{Q}. [Hint: Reduce to the case of part (c) above.]

