1. Suppose $k \subset K$ is a separable field extension of degree n.
a) Show that $K \approx k[x] /(f(x))$ for some $f(x) \in k[x]$ of degree n.
b) Show that $K \otimes_{k} K \approx K[y] /(f(y))$ as K-algebras. [Hint: Identify each side with $k[x, y] /(f(x), f(y))$.
c) Deduce that if K is Galois over k, then $f(y)$ splits over K, and $K \otimes_{k} K \approx K^{n}$ as K-algebras. [Hint: Use separability and the Chinese Remainder Theorem.]
d) Verify (c) explicitly in the case that $k=\mathbb{Q}$ and $K=\mathbb{Q}(i)$.
e) If K is not Galois over k, is it still necessarily true that $K \otimes_{k} K \approx K^{n}$?
2. Let R be an ordered field (i.e. a field with an ordering " \leq " that satisfies the usual compatibilities with addition and multiplication) whose squares are the non-negative elements. Suppose that the elements of $R[x]$ satisfy the intermediate value theorem (as functions from R to R). Let $C=R[x] /\left(x^{2}+1\right)$.
a) Show that R has characteristic 0 , and that every odd degree polynomial over R has a root in R. Deduce that every non-trivial Galois extension of R has even degree.
b) Show that C is a field, that every element of C is a square of an element of C, and that C has no field extensions of degree 2. [Hint: Use the quadratic formula.]
c) Show that if $R \subset C \subset L$ are finite field extensions and L is Galois over R with group G, then G is a 2-group. [Hint: Let $H \subset G$ be a Sylow 2-subgroup, and let K be the fixed field of H.]
d) In the situation of (c), show that $L=C$. [Hint: If not, $\operatorname{Gal}(L / C)$ has a subgroup E of index 2 ; and considering the extension $C \subset L^{E}$ ($=$ fixed field) yields a contradiction.]
e) Conclude that C is algebraically closed. [Hint: If $C \subset K$ is a non-trivial field extension, let L be the Galois closure of K over R, and apply (d).]
f) Deduce in particular that the field \mathbb{C} of complex numbers is algebraically closed.
3. Let p be a prime number, and let $K \subset L$ be a field extension of degree p that is separable but not Galois. Let \tilde{L} be the Galois closure of L over K. Show that \tilde{L} does not contain any subfield M which is Galois over K of degree p. [Hint: Show that $\operatorname{Gal}(\tilde{L} / K) \subset S_{p}$, and then consider the order of $\operatorname{Gal}(\tilde{L} / L M)$.]
4. a) Prove that any polynomial $f(x) \in \mathbb{Q}[x]$ of degree <5 is solvable by radicals.
b) Find an $\alpha \in \overline{\mathbb{Q}}$ whose irreducible polynomial over \mathbb{Q} has degree 5 , and is solvable by radicals.
5. a) Let p be a prime number, and let G be a subgroup of S_{p}. Suppose that G contains a transposition and a p-cycle. Show that $G=S_{p}$.
b) Suppose that $f(x) \in K[x]$ is a separable irreducible polynomial of degree p (where p is prime), and let G be the Galois group of f over K. Show that G is a subgroup of S_{p}; that p divides the order of G; and that G contains a p-cycle. [Hint: What is $[K[x] /(f(x)): K]$?]
c) Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible of degree p (where p is prime) and that exactly two of its roots do not lie in \mathbb{R}. Let G be the Galois group of f. Show that G contains a transposition, and deduce that G is isomorphic to S_{p}.
d) Deduce that $3 x^{5}-6 x-2$ is not solvable by radicals.
6. For which positive integers n is it possible, with straightedge and compass, to divide any given angle into n equal parts? Prove your assertion.
