For each of the following, either give an example or explain why none exists.

1. An integral domain R and a non- $0 R$-module M such that $M^{*}:=\operatorname{Hom}(M, R)$ is 0 .
2. A ring R and an R-module M that is torsion-free but not free.
3. A ring R, an R-module M, and a surjective homomorphism $N^{\prime} \rightarrow N$ of R-modules such that $M \otimes_{R} N^{\prime} \rightarrow M \otimes_{R} N$ is not surjective.
4. A positive integer n such that $\mathbb{Z}[1 / n]$ is not flat over \mathbb{Z}.
5. Two \mathbb{Z}-modules M, N such that $\operatorname{Tor}^{1}(M, N) \neq 0$.
6. An integral domain that is integrally closed but is not integral over \mathbb{Z}.
7. A finitely presented flat module M over the p-adic integers \mathbb{Z}_{p} such that M is not free.
8. A polynomial $f(x, y) \in \mathbb{Z}[x, y]$ and an ideal $I \subset R:=\mathbb{Z}[x, y] /(f(x, y))$ such that I is not finitely generated as an R-module.
9. A Noetherian ring that is not an Artin ring.
10. A discrete valuation ring R of characteristic 3 .
11. A Noetherian ring R and a principal prime ideal $I \subset R$ of height 2 in R.
12. A field of order 50.
13. A field K and a polynomial $f(x) \in K[x]$ of degree >0 such that $f^{\prime}(x)=0 \in K[x]$.
14. A finite field extension of \mathbb{Q} that is not Galois over \mathbb{Q}.
15. A field extension of \mathbb{R} of degree 7 .
16. A Galois extension of $\mathbb{C}(x)$ of degree 10 .
17. A normal basis of $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q}.
18. A cyclic field extension $K \subset L$ and an element $\alpha \in L$ such that $\alpha \notin K$ and such that the norm of α is 1 .
19. A finite field extension K of \mathbb{Q} such that there are infinitely many field homomorphisms $K \rightarrow \mathbb{C}$.
20. A positive integer n such that the regular n-gon cannot be constructed by straightedge and compass.
