The Monotone Column Permanent Conjecture and Multivariate Eulerian Polynomials

J. Haglund
University of Pennsylvania

October 28, 2011

Polynomials with only Real Zeros

Let $f(z)=b_{0}+b_{1} z+\ldots+b_{n} z^{n}$ be a polynomial with real coefficients and only real zeros. Newton proved that

$$
b_{k}^{2} \geq b_{k-1} b_{k+1}\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)
$$

As a consequence one has

$$
b_{k}^{2} \geq b_{k-1} b_{k+1} \quad(\log \text { concavity })
$$

and

$$
b_{0} \leq b_{1} \leq \cdots \leq b_{i} \geq b_{i+1} \geq \cdots \geq b_{n} \quad \text { for some } i \text { (unimodality). }
$$

Theorem

Aissen, Schoenberg, and Whitney; Erdei If $f(z)=b_{0}+b_{1} z+\cdots+b_{n} z^{n}$ has nonnegative coefficients, then $f(z)$ has only real zeros iff all the minors of the infinite matrix below are nonnegative.

$$
\left[\begin{array}{cccccccc}
b_{0} & b_{1} & b_{2} & \cdots & b_{n} & 0 & 0 & \cdots \\
0 & b_{0} & b_{1} & \cdots & b_{n-1} & b_{n} & 0 & \cdots \\
0 & 0 & b_{0} & \cdots & b_{n-2} & b_{n-1} & b_{n} & \cdots \\
\vdots & & \vdots & & \vdots & & \vdots &
\end{array}\right]
$$

Example

The polynomials

$$
\begin{array}{lr}
\alpha= & z \\
\beta= & z+z^{2} \\
\gamma= & z+4 z^{2}+z^{3} \\
\delta= & z+11 z^{2}+11 z^{3}+z^{4} \\
\varepsilon= & z+26 z^{2}+66 z^{3}+26 z^{4}+z^{5} \\
\zeta= & z+57 z^{2}+302 z^{3}+302 z^{4}+57 z^{5}+z^{6} \text { etc." }
\end{array}
$$

appeared in Euler's work on summation of series. They are now known as Eulerian polynomials, and can be expressed as

$$
A_{n}(z)=\sum_{\sigma \in S_{n}} z^{\operatorname{des}(\sigma)}
$$

where $\operatorname{des}(\sigma)$ is the number of descents of σ, i.e. the number of valuers of i for which $\sigma_{i}>\sigma_{i+1}$.
J. Haglund University of Pennsylvania

For example

$$
\begin{array}{llr}
123 \rightarrow 1 & 132 \rightarrow z & 213 \rightarrow z \\
231 \rightarrow z & 312 \rightarrow z & 321 \rightarrow z^{2}
\end{array}
$$

Letting $A_{n, k}$ denote the number of elements in S_{n} with k descents, we have

$$
A_{n, k}=A_{n-1, k}(k+1)+A_{n-1, k-1}(n-k),
$$

which is equivalent to

$$
A_{n}(z)=A_{n-1}(z)(1+(n-1) z)+A_{n-1}^{\prime}(z)\left(z-z^{2}\right)
$$

This recurrence and the method of interlacing roots can be used to prove $A_{n}(z)$ has only real zeros.

Theorem

(Brändén, H., Visontai, Wagner (2009); the Monotone Column Permanent (MCP) Theorem) Let C be an $n \times n$ matrix of real numbers, weakly increasing down columns, i.e. $c_{i j} \leq c_{i+1, j}$. Then as a polynomial in z,

$$
\operatorname{per}\left(C+z J_{n}\right)
$$

has only real zeros. Here per is the permanent, and J_{n} the matrix of all 1 's.

Example

$n=2$

$$
\operatorname{per}\left[\begin{array}{ll}
a+z & c+z \\
b+z & d+z
\end{array}\right]=(a+z)(d+z)+(b+z)(c+z) .
$$

Assume WLOG that $a=0$; replace d by $c+d$, and so for $b, c, d \geq 0$, we need the discriminant of

$$
z(c+d+z)+(b+z)(c+z)=2 z^{2}+z(2 c+b+d)+b c
$$

to be nonnegative. The discriminant is

$$
\begin{aligned}
(2 c+b+d)^{2}-8 b c & =4 c^{2}+b^{2}+d^{2}+4 b c+4 c d+2 b c-8 b c \\
& =(2 c-b)^{2}+b^{2}+d^{2}+4 c d+2 b c
\end{aligned}
$$

The MCP implies the fact that the Eulerian polynomials have only real zeros;

$$
\begin{gathered}
A_{n}(z)=\operatorname{per}\left[\begin{array}{ccccc}
1 & 1 & \cdots 1 & 1 & 1 \\
1 & 1 & \cdots 1 & 1 & z \\
1 & 1 & \cdots 1 & z & z \\
\vdots & \vdots & & \vdots & \\
1 & z & \cdots z & z & z
\end{array}\right] \sim \operatorname{per}\left[\begin{array}{ccc}
z & z & \cdots z \\
z & z & \cdots z+1 \\
\vdots & \vdots & \\
z & z & \cdots z+1 \\
z & z+1 & \cdots z+1
\end{array}\right] \\
\sigma=3152674, \quad \beta(\sigma)=(31)(52)(674) .
\end{gathered}
$$

Place rooks on squares
$(3,1),(1,3),(5,2),(2,5),(6,7),(7,4),(4,6)$. Rooks below diagonal correspond to descents.

The MCP was conjectured in 1996 by H., Ono, and Wagner. The $n=3$ case was proved by Ray Mayer shortly after, and two proofs of the $n=4$ case appeared in 2009. One, due to H. and Visontai, utilizes Brändén and Borcea's results on stability. It is based on the following stronger form of the MCP, we call the MMCP.

Conjecture

(H., Visontai 2009). Let $z_{1}, z_{2}, \ldots, z_{m}$ be complex parameters, and
C a column monotone $n \times m$ matrix of real numbers. Then for $k \leq \min (n, m)$,

$$
\operatorname{per}_{k}\left(c_{i j}+z_{j}\right)
$$

is stable, i.e. is nonzero if all the z_{j} are in the upper half-plane. Here per ${ }_{k}$ is the sum of all $k \times k$ permanental minors.

Theorem

(Brändén; 2007) Let $f\left(z_{1}, \ldots, z_{n}\right)$ be a linear polynomial with real coefficients. Then f is stable iff

$$
f_{i}(\mathbf{a}) f_{j}(\mathbf{a})-f(\mathbf{a}) f_{i j}(\mathbf{a}) \geq 0, \quad \text { for all } 1 \leq i<j \leq n \text { and all } \mathbf{a} \in \mathbb{R}^{n},
$$

in which the subscripts denote partial differentiation.

Example

The $n=m=k=2$ case of the MMCP.

$$
\begin{aligned}
f & =\operatorname{per}\left[\begin{array}{ll}
a+z & c_{1}+w \\
b+z & d_{1}+w
\end{array}\right] \\
& =2 z w+z(c+d)+w(a+b)+a d+b c \\
f_{z} & =2 w+c+d \quad f_{w}=2 z+a+b \\
f_{z} f_{w}-f f_{z w} & =(d-c)(b-a) \geq 0 .
\end{aligned}
$$

Theorem

(Brändén, H., Visontai, Wagner (2009). The MMCP Conjecture is true if $n \geq m$.

Proof (for the case $k=m, n \geq m$). First we show that if there is a counterexample to the MMCP, there is one where each column has at most two different $c_{i j}$ entries. Clearly the MMCP is true if $m=1$. Assume we have a counterexample to the MMCP, for minimal m, with some column, say the first, containing at least 3 different $c_{i, 1}$ entries;
$\operatorname{per}\left[\begin{array}{cc}a+z_{1} & \cdots \\ a+z_{1} & \cdots \\ b+z_{1} & \cdots \\ c+z_{1} & B_{n, m-1} \\ \vdots & \vdots \\ c+z_{1} & \cdots\end{array}\right]=z_{1} \operatorname{per}\left(B_{n, m-1}\right)(n-m+1)+b w+w^{\prime}$.

By assumption, $\Im\left(z_{1}\right)>0$. View z_{1} as a function of b, and let b vary from a to c. Since z_{1} moves along a line segment in \mathbb{C}, it must be in the upper half-plane at one of the ends of this segment. Now replace z_{1} by $z_{1}-a$, then z_{1} by $c z_{1}$, resulting in

$$
\begin{aligned}
{\left[\begin{array}{cc}
z_{1} & \cdots \\
z_{1} & \cdots \\
c+z_{1} & \cdots \\
\vdots & \vdots \\
c+z_{1} & \cdots
\end{array}\right] } & \rightarrow\left[\begin{array}{cc}
c z_{1} & \cdots \\
c z_{1} & \cdots \\
c+c z_{1} & \cdots \\
\vdots & \vdots \\
c+c z_{1} & \cdots
\end{array}\right]
\end{aligned} \rightarrow\left[\begin{array}{cc}
z_{1} & \cdots \\
z_{1} & \cdots \\
1+z_{1} & \cdots \\
\vdots & \vdots \\
1+z_{1} & \cdots
\end{array}\right]
$$

Proposition

For any $n \times n$ Ferrers board F, let

$$
F(X, Y)=\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & \\
x_{1} & x_{2} & x_{3} & \cdots & \\
\vdots & \vdots & & & \\
x_{1} & x_{2} & y_{k+1} & y_{k+1} & \cdots \\
y_{k} & y_{k} & y_{k} & y_{k} & \cdots \\
\vdots & \vdots & & & \\
y_{2} & y_{2} & y_{2} & y_{2} & \cdots \\
y_{1} & y_{1} & y_{1} & y_{1} & \cdots
\end{array}\right] .
$$

Then $\operatorname{per}(F(X, Y))$ is stable in $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$.

Corollary

The MMCP is true if $n \geq m$.

Proof of the Proposition: Let $F^{*}=F^{*}(X, Y)$ denote $F(X, Y)$ with the first column and bottom row removed. Then

$$
\begin{aligned}
\operatorname{per}(F(X, Y)) & =x_{1}\left(\sum_{i=2}^{n} \partial x_{i}+\sum_{i=k+1}^{n} \partial y_{i}\right) \operatorname{per}\left(F^{*}\right)+k y_{1} \operatorname{per}\left(F^{*}\right) \\
& =\left(x_{1} \partial^{*}+k\right) \operatorname{per}\left(F^{*}\right) y_{1}
\end{aligned}
$$

where

$$
\partial^{*}=\sum_{i=2}^{n} \partial x_{i}+\sum_{i=k+1}^{n} \partial y_{i}
$$

The operator $x_{1} \partial^{*}+k$ is known to preserve stability, so the result follows by induction. (If first column of F is all 0 's, flip $F(X, Y)$ upside down and rotate).

Corollary

The Multivariate Eulerian polynomial

$$
A_{n}\left(x_{2}, \ldots, x_{n}, y_{2}, \ldots, y_{n}\right)=\sum_{\sigma \in S_{n}} \prod_{\sigma_{i}>\sigma_{i+1}} x_{\sigma_{i}} \prod_{\sigma_{i}<\sigma_{i+1}} y_{\sigma_{i+1}}
$$

is stable in $x_{2}, \ldots, x_{n}, y_{2}, \ldots, y_{n}$.

Corollary

(Stable version of Simion's result). Let $M(\mathbf{v})$ denote the set of permutations of the multiset $\left\{1^{v_{1}} 2^{v_{2}} \cdots k^{v_{k}}\right\}$. Then

$$
\begin{equation*}
\sum_{\sigma \in M(\mathbf{v})} \prod_{\sigma_{i}>\sigma_{i+1}} z_{\sigma_{i}} \tag{1}
\end{equation*}
$$

is stable in z_{2}, \ldots, z_{k}.

Corollary

Let Top $(i ; n)$ denote the number of permutations in S_{n} that have i as a "descent top" (where i is immediately followed by something less than i). Then for all $1 \leq i<j \leq n$,

$$
\frac{\operatorname{Top}(i ; n)}{n!} \frac{\operatorname{Top}(j ; n)}{n!} \geq \frac{\operatorname{Top}(i, j ; n)}{n!} .
$$

This shows that occurrences of descent tops in random permutations are negatively correlated.

Let Q_{k} denote the set of "Stirling permutations", that is permutations β of $\{0,0,1,1,2,2, \ldots, k, k\}$ with the property that all the numbers between any two occurrences of the number j are larger than j, and which begin and end with 0 . Gessel and Stanley showed that

$$
\begin{equation*}
\sum_{n=0}^{\infty} S(n+k, n) z^{n}=\left(\sum_{\beta \in Q_{k}} z^{\operatorname{des}(\beta)}\right) /(1-z)^{2 k+1} \tag{2}
\end{equation*}
$$

where $S(n, k)$ is the Stirling number of the second kind.

Example

$$
\begin{aligned}
Q_{2} & =\{011220, \quad 012210, \quad 022110\} \\
A_{3}^{(2)}(z) & =z+2 z^{2}
\end{aligned}
$$

Note $\left|Q_{k}\right|=1 * 3 * 5 * \cdots *(2 k-1)$.

For $\beta \in Q_{k}$, let $\operatorname{Des}(\beta)$ denote the set of descents (values of i for which $\beta_{i}>\beta_{i+1}$) $\operatorname{Asc}(\beta)$ the set of ascents (values of i for which $\beta_{i-1}<\beta_{i}$) and $\operatorname{Plat}(\beta)$ the set of plateaux (values of i for which $\beta_{i}=\beta_{i+1}$).

Theorem

(H., Visontai 2011) The polynomial

$$
A_{n}^{(2)}(X, Y, Z)=\sum_{\beta \in Q_{n}} \prod_{i \in \text { Des }} x_{\beta_{i}} \prod_{i \in \text { Asc }} y_{\beta_{i}} \prod_{i \in \text { Plat }} z_{\beta_{i}} .
$$

is stable, and satisfies

$$
A_{n}^{(2)}(X, Y, Z)=x_{n} y_{n} z_{n} \partial A_{n-1}^{(2)}(X, Y, Z)
$$

where

$$
\partial=\sum_{i=1}^{n-1} \partial x_{i}+\partial y_{i}+\partial z_{i}
$$

A version of the previous theorem holds for r-Stirling permutations, for any $r \geq 1$, which were also introduced by Gessel and Stanley. They are permutations of the multiset

$$
\left\{0^{2} 1^{r} 2^{r} \cdots k^{r}\right\}
$$

which begin and end with 0 , and have the property that all numbers between any two occurrences of j are at least j. In particular we have

$$
A_{n}^{(1)}(X, Y)=\sum_{\substack{\sigma \in S_{n} \\ \sigma_{0}=0, \sigma_{n+1}=0}} \prod_{\sigma_{i}>\sigma_{i+1}} x_{\sigma_{i}} \prod_{\sigma_{i-1}<\sigma_{i}} y_{\sigma_{i}}
$$

is stable in $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, and satisfies

$$
A_{n}^{(1)}(X, Y)=x_{n} y_{n}\left(\sum_{i=1}^{n-1} \partial x_{i}+\partial y_{i}\right) A_{n-1}^{(1)}(X, Y)
$$

Let

$$
f(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad g(z)=\sum_{k=0}^{n} b_{k} z^{k}
$$

We say f and g are apolar if

$$
\sum_{k=0}^{n} a_{k} b_{n-k}\binom{n}{k}(-1)^{k}=0
$$

A circular domain in \mathbb{C} is the closed interior or closed exterior of a circle, or a half-plane.

Theorem

(Grace's Apolarity Theorem) If f, g are apolar, then any circular domain which contains all the roots of f contains at least one of the roots of g.

If z_{1}, \ldots, z_{n} and w_{1}, \ldots, w_{n} are the roots of f and g, respectively, then the apolarity condition is equivalent to $\operatorname{per}\left(w_{i}-z_{j}\right)=0$. In fact, using basic facts about linear fractional transformations one can show that Graces Apolarity Theorem is equivalent to the statment that $\operatorname{per}\left(w_{i}+z_{j}\right)$ is stable in the w_{i} and z_{j}. A new proof of this follows from the MCP Theorem; from the MCP we get that $\operatorname{per}\left(w_{i}+z_{j}\right)$ is stable in the z_{j} if $w_{i} \in \mathbb{R}$ for all i. Results of Bränden and Borcea then imply it is stable in $w_{1}, \ldots, w_{n}, z_{1}, \ldots, z_{n}$.

An interesting special case of the MCP is when $c_{i j}=p_{i} q_{j}$, where the p_{i} are real numbers and the q_{j} are nonnegative reals. Here the MCP reduces to the statement that if the polynomials

$$
\sum_{k=0}^{n} d_{k} z^{k}, \quad \sum_{k=0}^{n} m_{k} z^{k}
$$

have only real zeros, with the roots of one of them all of the same sign, then

$$
\sum_{k=0}^{n} d_{k} m_{k} k!(n-k)!z^{k}
$$

also has only real zeros, a result Szegö derived from Grace's Theorem.

